summaryrefslogtreecommitdiff
path: root/theories/Reals/RiemannInt_SF.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/RiemannInt_SF.v')
-rw-r--r--theories/Reals/RiemannInt_SF.v2632
1 files changed, 2632 insertions, 0 deletions
diff --git a/theories/Reals/RiemannInt_SF.v b/theories/Reals/RiemannInt_SF.v
new file mode 100644
index 00000000..0ae8f9f2
--- /dev/null
+++ b/theories/Reals/RiemannInt_SF.v
@@ -0,0 +1,2632 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: RiemannInt_SF.v,v 1.16.2.1 2004/07/16 19:31:13 herbelin Exp $ i*)
+
+Require Import Rbase.
+Require Import Rfunctions.
+Require Import Ranalysis.
+Require Import Classical_Prop.
+Open Local Scope R_scope.
+
+Set Implicit Arguments.
+
+(**************************************************)
+(* Each bounded subset of N has a maximal element *)
+(**************************************************)
+
+Definition Nbound (I:nat -> Prop) : Prop :=
+ exists n : nat, (forall i:nat, I i -> (i <= n)%nat).
+
+Lemma IZN_var : forall z:Z, (0 <= z)%Z -> {n : nat | z = Z_of_nat n}.
+intros; apply Z_of_nat_complete_inf; assumption.
+Qed.
+
+Lemma Nzorn :
+ forall I:nat -> Prop,
+ (exists n : nat, I n) ->
+ Nbound I -> sigT (fun n:nat => I n /\ (forall i:nat, I i -> (i <= n)%nat)).
+intros I H H0; set (E := fun x:R => exists i : nat, I i /\ INR i = x);
+ assert (H1 : bound E).
+unfold Nbound in H0; elim H0; intros N H1; unfold bound in |- *;
+ exists (INR N); unfold is_upper_bound in |- *; intros;
+ unfold E in H2; elim H2; intros; elim H3; intros;
+ rewrite <- H5; apply le_INR; apply H1; assumption.
+assert (H2 : exists x : R, E x).
+elim H; intros; exists (INR x); unfold E in |- *; exists x; split;
+ [ assumption | reflexivity ].
+assert (H3 := completeness E H1 H2); elim H3; intros; unfold is_lub in p;
+ elim p; clear p; intros; unfold is_upper_bound in H4, H5;
+ assert (H6 : 0 <= x).
+elim H2; intros; unfold E in H6; elim H6; intros; elim H7; intros;
+ apply Rle_trans with x0;
+ [ rewrite <- H9; change (INR 0 <= INR x1) in |- *; apply le_INR;
+ apply le_O_n
+ | apply H4; assumption ].
+assert (H7 := archimed x); elim H7; clear H7; intros;
+ assert (H9 : x <= IZR (up x) - 1).
+apply H5; intros; assert (H10 := H4 _ H9); unfold E in H9; elim H9; intros;
+ elim H11; intros; rewrite <- H13; apply Rplus_le_reg_l with 1;
+ replace (1 + (IZR (up x) - 1)) with (IZR (up x));
+ [ idtac | ring ]; replace (1 + INR x1) with (INR (S x1));
+ [ idtac | rewrite S_INR; ring ].
+assert (H14 : (0 <= up x)%Z).
+apply le_IZR; apply Rle_trans with x; [ apply H6 | left; assumption ].
+assert (H15 := IZN _ H14); elim H15; clear H15; intros; rewrite H15;
+ rewrite <- INR_IZR_INZ; apply le_INR; apply lt_le_S;
+ apply INR_lt; rewrite H13; apply Rle_lt_trans with x;
+ [ assumption | rewrite INR_IZR_INZ; rewrite <- H15; assumption ].
+assert (H10 : x = IZR (up x) - 1).
+apply Rle_antisym;
+ [ assumption
+ | apply Rplus_le_reg_l with (- x + 1);
+ replace (- x + 1 + (IZR (up x) - 1)) with (IZR (up x) - x);
+ [ idtac | ring ]; replace (- x + 1 + x) with 1;
+ [ assumption | ring ] ].
+assert (H11 : (0 <= up x)%Z).
+apply le_IZR; apply Rle_trans with x; [ apply H6 | left; assumption ].
+assert (H12 := IZN_var H11); elim H12; clear H12; intros; assert (H13 : E x).
+elim (classic (E x)); intro; try assumption.
+cut (forall y:R, E y -> y <= x - 1).
+intro; assert (H14 := H5 _ H13); cut (x - 1 < x).
+intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H14 H15)).
+apply Rminus_lt; replace (x - 1 - x) with (-1); [ idtac | ring ];
+ rewrite <- Ropp_0; apply Ropp_lt_gt_contravar; apply Rlt_0_1.
+intros; assert (H14 := H4 _ H13); elim H14; intro; unfold E in H13; elim H13;
+ intros; elim H16; intros; apply Rplus_le_reg_l with 1.
+replace (1 + (x - 1)) with x; [ idtac | ring ]; rewrite <- H18;
+ replace (1 + INR x1) with (INR (S x1)); [ idtac | rewrite S_INR; ring ].
+cut (x = INR (pred x0)).
+intro; rewrite H19; apply le_INR; apply lt_le_S; apply INR_lt; rewrite H18;
+ rewrite <- H19; assumption.
+rewrite H10; rewrite p; rewrite <- INR_IZR_INZ; replace 1 with (INR 1);
+ [ idtac | reflexivity ]; rewrite <- minus_INR.
+replace (x0 - 1)%nat with (pred x0);
+ [ reflexivity
+ | case x0; [ reflexivity | intro; simpl in |- *; apply minus_n_O ] ].
+induction x0 as [| x0 Hrecx0];
+ [ rewrite p in H7; rewrite <- INR_IZR_INZ in H7; simpl in H7;
+ elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H6 H7))
+ | apply le_n_S; apply le_O_n ].
+rewrite H15 in H13; elim H12; assumption.
+split with (pred x0); unfold E in H13; elim H13; intros; elim H12; intros;
+ rewrite H10 in H15; rewrite p in H15; rewrite <- INR_IZR_INZ in H15;
+ assert (H16 : INR x0 = INR x1 + 1).
+rewrite H15; ring.
+rewrite <- S_INR in H16; assert (H17 := INR_eq _ _ H16); rewrite H17;
+ simpl in |- *; split.
+assumption.
+intros; apply INR_le; rewrite H15; rewrite <- H15; elim H12; intros;
+ rewrite H20; apply H4; unfold E in |- *; exists i;
+ split; [ assumption | reflexivity ].
+Qed.
+
+(*******************************************)
+(* Step functions *)
+(*******************************************)
+
+Definition open_interval (a b x:R) : Prop := a < x < b.
+Definition co_interval (a b x:R) : Prop := a <= x < b.
+
+Definition adapted_couple (f:R -> R) (a b:R) (l lf:Rlist) : Prop :=
+ ordered_Rlist l /\
+ pos_Rl l 0 = Rmin a b /\
+ pos_Rl l (pred (Rlength l)) = Rmax a b /\
+ Rlength l = S (Rlength lf) /\
+ (forall i:nat,
+ (i < pred (Rlength l))%nat ->
+ constant_D_eq f (open_interval (pos_Rl l i) (pos_Rl l (S i)))
+ (pos_Rl lf i)).
+
+Definition adapted_couple_opt (f:R -> R) (a b:R) (l lf:Rlist) :=
+ adapted_couple f a b l lf /\
+ (forall i:nat,
+ (i < pred (Rlength lf))%nat ->
+ pos_Rl lf i <> pos_Rl lf (S i) \/ f (pos_Rl l (S i)) <> pos_Rl lf i) /\
+ (forall i:nat, (i < pred (Rlength l))%nat -> pos_Rl l i <> pos_Rl l (S i)).
+
+Definition is_subdivision (f:R -> R) (a b:R) (l:Rlist) : Type :=
+ sigT (fun l0:Rlist => adapted_couple f a b l l0).
+
+Definition IsStepFun (f:R -> R) (a b:R) : Type :=
+ sigT (fun l:Rlist => is_subdivision f a b l).
+
+(* Class of step functions *)
+Record StepFun (a b:R) : Type := mkStepFun
+ {fe :> R -> R; pre : IsStepFun fe a b}.
+
+Definition subdivision (a b:R) (f:StepFun a b) : Rlist := projT1 (pre f).
+
+Definition subdivision_val (a b:R) (f:StepFun a b) : Rlist :=
+ match projT2 (pre f) with
+ | existT a b => a
+ end.
+
+Fixpoint Int_SF (l k:Rlist) {struct l} : R :=
+ match l with
+ | nil => 0
+ | cons a l' =>
+ match k with
+ | nil => 0
+ | cons x nil => 0
+ | cons x (cons y k') => a * (y - x) + Int_SF l' (cons y k')
+ end
+ end.
+
+(* Integral of step functions *)
+Definition RiemannInt_SF (a b:R) (f:StepFun a b) : R :=
+ match Rle_dec a b with
+ | left _ => Int_SF (subdivision_val f) (subdivision f)
+ | right _ => - Int_SF (subdivision_val f) (subdivision f)
+ end.
+
+(********************************)
+(* Properties of step functions *)
+(********************************)
+
+Lemma StepFun_P1 :
+ forall (a b:R) (f:StepFun a b),
+ adapted_couple f a b (subdivision f) (subdivision_val f).
+intros a b f; unfold subdivision_val in |- *; case (projT2 (pre f)); intros;
+ apply a0.
+Qed.
+
+Lemma StepFun_P2 :
+ forall (a b:R) (f:R -> R) (l lf:Rlist),
+ adapted_couple f a b l lf -> adapted_couple f b a l lf.
+unfold adapted_couple in |- *; intros; decompose [and] H; clear H;
+ repeat split; try assumption.
+rewrite H2; unfold Rmin in |- *; case (Rle_dec a b); intro;
+ case (Rle_dec b a); intro; try reflexivity.
+apply Rle_antisym; assumption.
+apply Rle_antisym; auto with real.
+rewrite H1; unfold Rmax in |- *; case (Rle_dec a b); intro;
+ case (Rle_dec b a); intro; try reflexivity.
+apply Rle_antisym; assumption.
+apply Rle_antisym; auto with real.
+Qed.
+
+Lemma StepFun_P3 :
+ forall a b c:R,
+ a <= b ->
+ adapted_couple (fct_cte c) a b (cons a (cons b nil)) (cons c nil).
+intros; unfold adapted_couple in |- *; repeat split.
+unfold ordered_Rlist in |- *; intros; simpl in H0; inversion H0;
+ [ simpl in |- *; assumption | elim (le_Sn_O _ H2) ].
+simpl in |- *; unfold Rmin in |- *; case (Rle_dec a b); intro;
+ [ reflexivity | elim n; assumption ].
+simpl in |- *; unfold Rmax in |- *; case (Rle_dec a b); intro;
+ [ reflexivity | elim n; assumption ].
+unfold constant_D_eq, open_interval in |- *; intros; simpl in H0;
+ inversion H0; [ reflexivity | elim (le_Sn_O _ H3) ].
+Qed.
+
+Lemma StepFun_P4 : forall a b c:R, IsStepFun (fct_cte c) a b.
+intros; unfold IsStepFun in |- *; case (Rle_dec a b); intro.
+apply existT with (cons a (cons b nil)); unfold is_subdivision in |- *;
+ apply existT with (cons c nil); apply (StepFun_P3 c r).
+apply existT with (cons b (cons a nil)); unfold is_subdivision in |- *;
+ apply existT with (cons c nil); apply StepFun_P2;
+ apply StepFun_P3; auto with real.
+Qed.
+
+Lemma StepFun_P5 :
+ forall (a b:R) (f:R -> R) (l:Rlist),
+ is_subdivision f a b l -> is_subdivision f b a l.
+unfold is_subdivision in |- *; intros; elim X; intros; exists x;
+ unfold adapted_couple in p; decompose [and] p; clear p;
+ unfold adapted_couple in |- *; repeat split; try assumption.
+rewrite H1; unfold Rmin in |- *; case (Rle_dec a b); intro;
+ case (Rle_dec b a); intro; try reflexivity.
+apply Rle_antisym; assumption.
+apply Rle_antisym; auto with real.
+rewrite H0; unfold Rmax in |- *; case (Rle_dec a b); intro;
+ case (Rle_dec b a); intro; try reflexivity.
+apply Rle_antisym; assumption.
+apply Rle_antisym; auto with real.
+Qed.
+
+Lemma StepFun_P6 :
+ forall (f:R -> R) (a b:R), IsStepFun f a b -> IsStepFun f b a.
+unfold IsStepFun in |- *; intros; elim X; intros; apply existT with x;
+ apply StepFun_P5; assumption.
+Qed.
+
+Lemma StepFun_P7 :
+ forall (a b r1 r2 r3:R) (f:R -> R) (l lf:Rlist),
+ a <= b ->
+ adapted_couple f a b (cons r1 (cons r2 l)) (cons r3 lf) ->
+ adapted_couple f r2 b (cons r2 l) lf.
+unfold adapted_couple in |- *; intros; decompose [and] H0; clear H0;
+ assert (H5 : Rmax a b = b).
+unfold Rmax in |- *; case (Rle_dec a b); intro;
+ [ reflexivity | elim n; assumption ].
+assert (H7 : r2 <= b).
+rewrite H5 in H2; rewrite <- H2; apply RList_P7;
+ [ assumption | simpl in |- *; right; left; reflexivity ].
+repeat split.
+apply RList_P4 with r1; assumption.
+rewrite H5 in H2; unfold Rmin in |- *; case (Rle_dec r2 b); intro;
+ [ reflexivity | elim n; assumption ].
+unfold Rmax in |- *; case (Rle_dec r2 b); intro;
+ [ rewrite H5 in H2; rewrite <- H2; reflexivity | elim n; assumption ].
+simpl in H4; simpl in |- *; apply INR_eq; apply Rplus_eq_reg_l with 1;
+ do 2 rewrite (Rplus_comm 1); do 2 rewrite <- S_INR;
+ rewrite H4; reflexivity.
+intros; unfold constant_D_eq, open_interval in |- *; intros;
+ unfold constant_D_eq, open_interval in H6;
+ assert (H9 : (S i < pred (Rlength (cons r1 (cons r2 l))))%nat).
+simpl in |- *; simpl in H0; apply lt_n_S; assumption.
+assert (H10 := H6 _ H9); apply H10; assumption.
+Qed.
+
+Lemma StepFun_P8 :
+ forall (f:R -> R) (l1 lf1:Rlist) (a b:R),
+ adapted_couple f a b l1 lf1 -> a = b -> Int_SF lf1 l1 = 0.
+simple induction l1.
+intros; induction lf1 as [| r lf1 Hreclf1]; reflexivity.
+simple induction r0.
+intros; induction lf1 as [| r1 lf1 Hreclf1].
+reflexivity.
+unfold adapted_couple in H0; decompose [and] H0; clear H0; simpl in H5;
+ discriminate.
+intros; induction lf1 as [| r3 lf1 Hreclf1].
+reflexivity.
+simpl in |- *; cut (r = r1).
+intro; rewrite H3; rewrite (H0 lf1 r b).
+ring.
+rewrite H3; apply StepFun_P7 with a r r3; [ right; assumption | assumption ].
+clear H H0 Hreclf1 r0; unfold adapted_couple in H1; decompose [and] H1;
+ intros; simpl in H4; rewrite H4; unfold Rmin in |- *;
+ case (Rle_dec a b); intro; [ assumption | reflexivity ].
+unfold adapted_couple in H1; decompose [and] H1; intros; apply Rle_antisym.
+apply (H3 0%nat); simpl in |- *; apply lt_O_Sn.
+simpl in H5; rewrite H2 in H5; rewrite H5; replace (Rmin b b) with (Rmax a b);
+ [ rewrite <- H4; apply RList_P7;
+ [ assumption | simpl in |- *; right; left; reflexivity ]
+ | unfold Rmin, Rmax in |- *; case (Rle_dec b b); case (Rle_dec a b); intros;
+ try assumption || reflexivity ].
+Qed.
+
+Lemma StepFun_P9 :
+ forall (a b:R) (f:R -> R) (l lf:Rlist),
+ adapted_couple f a b l lf -> a <> b -> (2 <= Rlength l)%nat.
+intros; unfold adapted_couple in H; decompose [and] H; clear H;
+ induction l as [| r l Hrecl];
+ [ simpl in H4; discriminate
+ | induction l as [| r0 l Hrecl0];
+ [ simpl in H3; simpl in H2; generalize H3; generalize H2;
+ unfold Rmin, Rmax in |- *; case (Rle_dec a b);
+ intros; elim H0; rewrite <- H5; rewrite <- H7;
+ reflexivity
+ | simpl in |- *; do 2 apply le_n_S; apply le_O_n ] ].
+Qed.
+
+Lemma StepFun_P10 :
+ forall (f:R -> R) (l lf:Rlist) (a b:R),
+ a <= b ->
+ adapted_couple f a b l lf ->
+ exists l' : Rlist,
+ (exists lf' : Rlist, adapted_couple_opt f a b l' lf').
+simple induction l.
+intros; unfold adapted_couple in H0; decompose [and] H0; simpl in H4;
+ discriminate.
+intros; case (Req_dec a b); intro.
+exists (cons a nil); exists nil; unfold adapted_couple_opt in |- *;
+ unfold adapted_couple in |- *; unfold ordered_Rlist in |- *;
+ repeat split; try (intros; simpl in H3; elim (lt_n_O _ H3)).
+simpl in |- *; rewrite <- H2; unfold Rmin in |- *; case (Rle_dec a a); intro;
+ reflexivity.
+simpl in |- *; rewrite <- H2; unfold Rmax in |- *; case (Rle_dec a a); intro;
+ reflexivity.
+elim (RList_P20 _ (StepFun_P9 H1 H2)); intros t1 [t2 [t3 H3]];
+ induction lf as [| r1 lf Hreclf].
+unfold adapted_couple in H1; decompose [and] H1; rewrite H3 in H7;
+ simpl in H7; discriminate.
+clear Hreclf; assert (H4 : adapted_couple f t2 b r0 lf).
+rewrite H3 in H1; assert (H4 := RList_P21 _ _ H3); simpl in H4; rewrite H4;
+ eapply StepFun_P7; [ apply H0 | apply H1 ].
+cut (t2 <= b).
+intro; assert (H6 := H _ _ _ H5 H4); case (Req_dec t1 t2); intro Hyp_eq.
+replace a with t2.
+apply H6.
+rewrite <- Hyp_eq; rewrite H3 in H1; unfold adapted_couple in H1;
+ decompose [and] H1; clear H1; simpl in H9; rewrite H9;
+ unfold Rmin in |- *; case (Rle_dec a b); intro;
+ [ reflexivity | elim n; assumption ].
+elim H6; clear H6; intros l' [lf' H6]; case (Req_dec t2 b); intro.
+exists (cons a (cons b nil)); exists (cons r1 nil);
+ unfold adapted_couple_opt in |- *; unfold adapted_couple in |- *;
+ repeat split.
+unfold ordered_Rlist in |- *; intros; simpl in H8; inversion H8;
+ [ simpl in |- *; assumption | elim (le_Sn_O _ H10) ].
+simpl in |- *; unfold Rmin in |- *; case (Rle_dec a b); intro;
+ [ reflexivity | elim n; assumption ].
+simpl in |- *; unfold Rmax in |- *; case (Rle_dec a b); intro;
+ [ reflexivity | elim n; assumption ].
+intros; simpl in H8; inversion H8.
+unfold constant_D_eq, open_interval in |- *; intros; simpl in |- *;
+ simpl in H9; rewrite H3 in H1; unfold adapted_couple in H1;
+ decompose [and] H1; apply (H16 0%nat).
+simpl in |- *; apply lt_O_Sn.
+unfold open_interval in |- *; simpl in |- *; rewrite H7; simpl in H13;
+ rewrite H13; unfold Rmin in |- *; case (Rle_dec a b);
+ intro; [ assumption | elim n; assumption ].
+elim (le_Sn_O _ H10).
+intros; simpl in H8; elim (lt_n_O _ H8).
+intros; simpl in H8; inversion H8;
+ [ simpl in |- *; assumption | elim (le_Sn_O _ H10) ].
+assert (Hyp_min : Rmin t2 b = t2).
+unfold Rmin in |- *; case (Rle_dec t2 b); intro;
+ [ reflexivity | elim n; assumption ].
+unfold adapted_couple in H6; elim H6; clear H6; intros;
+ elim (RList_P20 _ (StepFun_P9 H6 H7)); intros s1 [s2 [s3 H9]];
+ induction lf' as [| r2 lf' Hreclf'].
+unfold adapted_couple in H6; decompose [and] H6; rewrite H9 in H13;
+ simpl in H13; discriminate.
+clear Hreclf'; case (Req_dec r1 r2); intro.
+case (Req_dec (f t2) r1); intro.
+exists (cons t1 (cons s2 s3)); exists (cons r1 lf'); rewrite H3 in H1;
+ rewrite H9 in H6; unfold adapted_couple in H6, H1;
+ decompose [and] H1; decompose [and] H6; clear H1 H6;
+ unfold adapted_couple_opt in |- *; unfold adapted_couple in |- *;
+ repeat split.
+unfold ordered_Rlist in |- *; intros; simpl in H1;
+ induction i as [| i Hreci].
+simpl in |- *; apply Rle_trans with s1.
+replace s1 with t2.
+apply (H12 0%nat).
+simpl in |- *; apply lt_O_Sn.
+simpl in H19; rewrite H19; symmetry in |- *; apply Hyp_min.
+apply (H16 0%nat); simpl in |- *; apply lt_O_Sn.
+change (pos_Rl (cons s2 s3) i <= pos_Rl (cons s2 s3) (S i)) in |- *;
+ apply (H16 (S i)); simpl in |- *; assumption.
+simpl in |- *; simpl in H14; rewrite H14; reflexivity.
+simpl in |- *; simpl in H18; rewrite H18; unfold Rmax in |- *;
+ case (Rle_dec a b); case (Rle_dec t2 b); intros; reflexivity || elim n;
+ assumption.
+simpl in |- *; simpl in H20; apply H20.
+intros; simpl in H1; unfold constant_D_eq, open_interval in |- *; intros;
+ induction i as [| i Hreci].
+simpl in |- *; simpl in H6; case (total_order_T x t2); intro.
+elim s; intro.
+apply (H17 0%nat);
+ [ simpl in |- *; apply lt_O_Sn
+ | unfold open_interval in |- *; simpl in |- *; elim H6; intros; split;
+ assumption ].
+rewrite b0; assumption.
+rewrite H10; apply (H22 0%nat);
+ [ simpl in |- *; apply lt_O_Sn
+ | unfold open_interval in |- *; simpl in |- *; replace s1 with t2;
+ [ elim H6; intros; split; assumption
+ | simpl in H19; rewrite H19; rewrite Hyp_min; reflexivity ] ].
+simpl in |- *; simpl in H6; apply (H22 (S i));
+ [ simpl in |- *; assumption
+ | unfold open_interval in |- *; simpl in |- *; apply H6 ].
+intros; simpl in H1; rewrite H10;
+ change
+ (pos_Rl (cons r2 lf') i <> pos_Rl (cons r2 lf') (S i) \/
+ f (pos_Rl (cons s1 (cons s2 s3)) (S i)) <> pos_Rl (cons r2 lf') i)
+ in |- *; rewrite <- H9; elim H8; intros; apply H6;
+ simpl in |- *; apply H1.
+intros; induction i as [| i Hreci].
+simpl in |- *; red in |- *; intro; elim Hyp_eq; apply Rle_antisym.
+apply (H12 0%nat); simpl in |- *; apply lt_O_Sn.
+rewrite <- Hyp_min; rewrite H6; simpl in H19; rewrite <- H19;
+ apply (H16 0%nat); simpl in |- *; apply lt_O_Sn.
+elim H8; intros; rewrite H9 in H21; apply (H21 (S i)); simpl in |- *;
+ simpl in H1; apply H1.
+exists (cons t1 l'); exists (cons r1 (cons r2 lf')); rewrite H9 in H6;
+ rewrite H3 in H1; unfold adapted_couple in H1, H6;
+ decompose [and] H6; decompose [and] H1; clear H6 H1;
+ unfold adapted_couple_opt in |- *; unfold adapted_couple in |- *;
+ repeat split.
+rewrite H9; unfold ordered_Rlist in |- *; intros; simpl in H1;
+ induction i as [| i Hreci].
+simpl in |- *; replace s1 with t2.
+apply (H16 0%nat); simpl in |- *; apply lt_O_Sn.
+simpl in H14; rewrite H14; rewrite Hyp_min; reflexivity.
+change
+ (pos_Rl (cons s1 (cons s2 s3)) i <= pos_Rl (cons s1 (cons s2 s3)) (S i))
+ in |- *; apply (H12 i); simpl in |- *; apply lt_S_n;
+ assumption.
+simpl in |- *; simpl in H19; apply H19.
+rewrite H9; simpl in |- *; simpl in H13; rewrite H13; unfold Rmax in |- *;
+ case (Rle_dec t2 b); case (Rle_dec a b); intros; reflexivity || elim n;
+ assumption.
+rewrite H9; simpl in |- *; simpl in H15; rewrite H15; reflexivity.
+intros; simpl in H1; unfold constant_D_eq, open_interval in |- *; intros;
+ induction i as [| i Hreci].
+simpl in |- *; rewrite H9 in H6; simpl in H6; apply (H22 0%nat).
+simpl in |- *; apply lt_O_Sn.
+unfold open_interval in |- *; simpl in |- *.
+replace t2 with s1.
+assumption.
+simpl in H14; rewrite H14; rewrite Hyp_min; reflexivity.
+change (f x = pos_Rl (cons r2 lf') i) in |- *; clear Hreci; apply (H17 i).
+simpl in |- *; rewrite H9 in H1; simpl in H1; apply lt_S_n; apply H1.
+rewrite H9 in H6; unfold open_interval in |- *; apply H6.
+intros; simpl in H1; induction i as [| i Hreci].
+simpl in |- *; rewrite H9; right; simpl in |- *; replace s1 with t2.
+assumption.
+simpl in H14; rewrite H14; rewrite Hyp_min; reflexivity.
+elim H8; intros; apply (H6 i).
+simpl in |- *; apply lt_S_n; apply H1.
+intros; rewrite H9; induction i as [| i Hreci].
+simpl in |- *; red in |- *; intro; elim Hyp_eq; apply Rle_antisym.
+apply (H16 0%nat); simpl in |- *; apply lt_O_Sn.
+rewrite <- Hyp_min; rewrite H6; simpl in H14; rewrite <- H14; right;
+ reflexivity.
+elim H8; intros; rewrite <- H9; apply (H21 i); rewrite H9; rewrite H9 in H1;
+ simpl in |- *; simpl in H1; apply lt_S_n; apply H1.
+exists (cons t1 l'); exists (cons r1 (cons r2 lf')); rewrite H9 in H6;
+ rewrite H3 in H1; unfold adapted_couple in H1, H6;
+ decompose [and] H6; decompose [and] H1; clear H6 H1;
+ unfold adapted_couple_opt in |- *; unfold adapted_couple in |- *;
+ repeat split.
+rewrite H9; unfold ordered_Rlist in |- *; intros; simpl in H1;
+ induction i as [| i Hreci].
+simpl in |- *; replace s1 with t2.
+apply (H15 0%nat); simpl in |- *; apply lt_O_Sn.
+simpl in H13; rewrite H13; rewrite Hyp_min; reflexivity.
+change
+ (pos_Rl (cons s1 (cons s2 s3)) i <= pos_Rl (cons s1 (cons s2 s3)) (S i))
+ in |- *; apply (H11 i); simpl in |- *; apply lt_S_n;
+ assumption.
+simpl in |- *; simpl in H18; apply H18.
+rewrite H9; simpl in |- *; simpl in H12; rewrite H12; unfold Rmax in |- *;
+ case (Rle_dec t2 b); case (Rle_dec a b); intros; reflexivity || elim n;
+ assumption.
+rewrite H9; simpl in |- *; simpl in H14; rewrite H14; reflexivity.
+intros; simpl in H1; unfold constant_D_eq, open_interval in |- *; intros;
+ induction i as [| i Hreci].
+simpl in |- *; rewrite H9 in H6; simpl in H6; apply (H21 0%nat).
+simpl in |- *; apply lt_O_Sn.
+unfold open_interval in |- *; simpl in |- *; replace t2 with s1.
+assumption.
+simpl in H13; rewrite H13; rewrite Hyp_min; reflexivity.
+change (f x = pos_Rl (cons r2 lf') i) in |- *; clear Hreci; apply (H16 i).
+simpl in |- *; rewrite H9 in H1; simpl in H1; apply lt_S_n; apply H1.
+rewrite H9 in H6; unfold open_interval in |- *; apply H6.
+intros; simpl in H1; induction i as [| i Hreci].
+simpl in |- *; left; assumption.
+elim H8; intros; apply (H6 i).
+simpl in |- *; apply lt_S_n; apply H1.
+intros; rewrite H9; induction i as [| i Hreci].
+simpl in |- *; red in |- *; intro; elim Hyp_eq; apply Rle_antisym.
+apply (H15 0%nat); simpl in |- *; apply lt_O_Sn.
+rewrite <- Hyp_min; rewrite H6; simpl in H13; rewrite <- H13; right;
+ reflexivity.
+elim H8; intros; rewrite <- H9; apply (H20 i); rewrite H9; rewrite H9 in H1;
+ simpl in |- *; simpl in H1; apply lt_S_n; apply H1.
+rewrite H3 in H1; clear H4; unfold adapted_couple in H1; decompose [and] H1;
+ clear H1; clear H H7 H9; cut (Rmax a b = b);
+ [ intro; rewrite H in H5; rewrite <- H5; apply RList_P7;
+ [ assumption | simpl in |- *; right; left; reflexivity ]
+ | unfold Rmax in |- *; case (Rle_dec a b); intro;
+ [ reflexivity | elim n; assumption ] ].
+Qed.
+
+Lemma StepFun_P11 :
+ forall (a b r r1 r3 s1 s2 r4:R) (r2 lf1 s3 lf2:Rlist)
+ (f:R -> R),
+ a < b ->
+ adapted_couple f a b (cons r (cons r1 r2)) (cons r3 lf1) ->
+ adapted_couple_opt f a b (cons s1 (cons s2 s3)) (cons r4 lf2) -> r1 <= s2.
+intros; unfold adapted_couple_opt in H1; elim H1; clear H1; intros;
+ unfold adapted_couple in H0, H1; decompose [and] H0;
+ decompose [and] H1; clear H0 H1; assert (H12 : r = s1).
+simpl in H10; simpl in H5; rewrite H10; rewrite H5; reflexivity.
+assert (H14 := H3 0%nat (lt_O_Sn _)); simpl in H14; elim H14; intro.
+assert (H15 := H7 0%nat (lt_O_Sn _)); simpl in H15; elim H15; intro.
+rewrite <- H12 in H1; case (Rle_dec r1 s2); intro; try assumption.
+assert (H16 : s2 < r1); auto with real.
+induction s3 as [| r0 s3 Hrecs3].
+simpl in H9; rewrite H9 in H16; cut (r1 <= Rmax a b).
+intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H17 H16)).
+rewrite <- H4; apply RList_P7;
+ [ assumption | simpl in |- *; right; left; reflexivity ].
+clear Hrecs3; induction lf2 as [| r5 lf2 Hreclf2].
+simpl in H11; discriminate.
+clear Hreclf2; assert (H17 : r3 = r4).
+set (x := (r + s2) / 2); assert (H17 := H8 0%nat (lt_O_Sn _));
+ assert (H18 := H13 0%nat (lt_O_Sn _));
+ unfold constant_D_eq, open_interval in H17, H18; simpl in H17;
+ simpl in H18; rewrite <- (H17 x).
+rewrite <- (H18 x).
+reflexivity.
+rewrite <- H12; unfold x in |- *; split.
+apply Rmult_lt_reg_l with 2;
+ [ prove_sup0
+ | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; assumption
+ | discrR ] ].
+apply Rmult_lt_reg_l with 2;
+ [ prove_sup0
+ | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_l; rewrite (Rplus_comm r); rewrite double;
+ apply Rplus_lt_compat_l; assumption
+ | discrR ] ].
+unfold x in |- *; split.
+apply Rmult_lt_reg_l with 2;
+ [ prove_sup0
+ | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; assumption
+ | discrR ] ].
+apply Rlt_trans with s2;
+ [ apply Rmult_lt_reg_l with 2;
+ [ prove_sup0
+ | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2));
+ rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_l; rewrite (Rplus_comm r); rewrite double;
+ apply Rplus_lt_compat_l; assumption
+ | discrR ] ]
+ | assumption ].
+assert (H18 : f s2 = r3).
+apply (H8 0%nat);
+ [ simpl in |- *; apply lt_O_Sn
+ | unfold open_interval in |- *; simpl in |- *; split; assumption ].
+assert (H19 : r3 = r5).
+assert (H19 := H7 1%nat); simpl in H19;
+ assert (H20 := H19 (lt_n_S _ _ (lt_O_Sn _))); elim H20;
+ intro.
+set (x := (s2 + Rmin r1 r0) / 2); assert (H22 := H8 0%nat);
+ assert (H23 := H13 1%nat); simpl in H22; simpl in H23;
+ rewrite <- (H22 (lt_O_Sn _) x).
+rewrite <- (H23 (lt_n_S _ _ (lt_O_Sn _)) x).
+reflexivity.
+unfold open_interval in |- *; simpl in |- *; unfold x in |- *; split.
+apply Rmult_lt_reg_l with 2;
+ [ prove_sup0
+ | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l;
+ unfold Rmin in |- *; case (Rle_dec r1 r0); intro;
+ assumption
+ | discrR ] ].
+apply Rmult_lt_reg_l with 2;
+ [ prove_sup0
+ | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_l; rewrite double;
+ apply Rlt_le_trans with (r0 + Rmin r1 r0);
+ [ do 2 rewrite <- (Rplus_comm (Rmin r1 r0)); apply Rplus_lt_compat_l;
+ assumption
+ | apply Rplus_le_compat_l; apply Rmin_r ]
+ | discrR ] ].
+unfold open_interval in |- *; simpl in |- *; unfold x in |- *; split.
+apply Rlt_trans with s2;
+ [ assumption
+ | apply Rmult_lt_reg_l with 2;
+ [ prove_sup0
+ | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2));
+ rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l;
+ unfold Rmin in |- *; case (Rle_dec r1 r0);
+ intro; assumption
+ | discrR ] ] ].
+apply Rmult_lt_reg_l with 2;
+ [ prove_sup0
+ | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_l; rewrite double;
+ apply Rlt_le_trans with (r1 + Rmin r1 r0);
+ [ do 2 rewrite <- (Rplus_comm (Rmin r1 r0)); apply Rplus_lt_compat_l;
+ assumption
+ | apply Rplus_le_compat_l; apply Rmin_l ]
+ | discrR ] ].
+elim H2; clear H2; intros; assert (H23 := H22 1%nat); simpl in H23;
+ assert (H24 := H23 (lt_n_S _ _ (lt_O_Sn _))); elim H24;
+ assumption.
+elim H2; intros; assert (H22 := H20 0%nat); simpl in H22;
+ assert (H23 := H22 (lt_O_Sn _)); elim H23; intro;
+ [ elim H24; rewrite <- H17; rewrite <- H19; reflexivity
+ | elim H24; rewrite <- H17; assumption ].
+elim H2; clear H2; intros; assert (H17 := H16 0%nat); simpl in H17;
+ elim (H17 (lt_O_Sn _)); assumption.
+rewrite <- H0; rewrite H12; apply (H7 0%nat); simpl in |- *; apply lt_O_Sn.
+Qed.
+
+Lemma StepFun_P12 :
+ forall (a b:R) (f:R -> R) (l lf:Rlist),
+ adapted_couple_opt f a b l lf -> adapted_couple_opt f b a l lf.
+unfold adapted_couple_opt in |- *; unfold adapted_couple in |- *; intros;
+ decompose [and] H; clear H; repeat split; try assumption.
+rewrite H0; unfold Rmin in |- *; case (Rle_dec a b); intro;
+ case (Rle_dec b a); intro; try reflexivity.
+apply Rle_antisym; assumption.
+apply Rle_antisym; auto with real.
+rewrite H3; unfold Rmax in |- *; case (Rle_dec a b); intro;
+ case (Rle_dec b a); intro; try reflexivity.
+apply Rle_antisym; assumption.
+apply Rle_antisym; auto with real.
+Qed.
+
+Lemma StepFun_P13 :
+ forall (a b r r1 r3 s1 s2 r4:R) (r2 lf1 s3 lf2:Rlist)
+ (f:R -> R),
+ a <> b ->
+ adapted_couple f a b (cons r (cons r1 r2)) (cons r3 lf1) ->
+ adapted_couple_opt f a b (cons s1 (cons s2 s3)) (cons r4 lf2) -> r1 <= s2.
+intros; case (total_order_T a b); intro.
+elim s; intro.
+eapply StepFun_P11; [ apply a0 | apply H0 | apply H1 ].
+elim H; assumption.
+eapply StepFun_P11;
+ [ apply r0 | apply StepFun_P2; apply H0 | apply StepFun_P12; apply H1 ].
+Qed.
+
+Lemma StepFun_P14 :
+ forall (f:R -> R) (l1 l2 lf1 lf2:Rlist) (a b:R),
+ a <= b ->
+ adapted_couple f a b l1 lf1 ->
+ adapted_couple_opt f a b l2 lf2 -> Int_SF lf1 l1 = Int_SF lf2 l2.
+simple induction l1.
+intros l2 lf1 lf2 a b Hyp H H0; unfold adapted_couple in H; decompose [and] H;
+ clear H H0 H2 H3 H1 H6; simpl in H4; discriminate.
+simple induction r0.
+intros; case (Req_dec a b); intro.
+unfold adapted_couple_opt in H2; elim H2; intros; rewrite (StepFun_P8 H4 H3);
+ rewrite (StepFun_P8 H1 H3); reflexivity.
+assert (H4 := StepFun_P9 H1 H3); simpl in H4;
+ elim (le_Sn_O _ (le_S_n _ _ H4)).
+intros; clear H; unfold adapted_couple_opt in H3; elim H3; clear H3; intros;
+ case (Req_dec a b); intro.
+rewrite (StepFun_P8 H2 H4); rewrite (StepFun_P8 H H4); reflexivity.
+assert (Hyp_min : Rmin a b = a).
+unfold Rmin in |- *; case (Rle_dec a b); intro;
+ [ reflexivity | elim n; assumption ].
+assert (Hyp_max : Rmax a b = b).
+unfold Rmax in |- *; case (Rle_dec a b); intro;
+ [ reflexivity | elim n; assumption ].
+elim (RList_P20 _ (StepFun_P9 H H4)); intros s1 [s2 [s3 H5]]; rewrite H5 in H;
+ rewrite H5; induction lf1 as [| r3 lf1 Hreclf1].
+unfold adapted_couple in H2; decompose [and] H2;
+ clear H H2 H4 H5 H3 H6 H8 H7 H11; simpl in H9; discriminate.
+clear Hreclf1; induction lf2 as [| r4 lf2 Hreclf2].
+unfold adapted_couple in H; decompose [and] H;
+ clear H H2 H4 H5 H3 H6 H8 H7 H11; simpl in H9; discriminate.
+clear Hreclf2; assert (H6 : r = s1).
+unfold adapted_couple in H, H2; decompose [and] H; decompose [and] H2;
+ clear H H2; simpl in H13; simpl in H8; rewrite H13;
+ rewrite H8; reflexivity.
+assert (H7 : r3 = r4 \/ r = r1).
+case (Req_dec r r1); intro.
+right; assumption.
+left; cut (r1 <= s2).
+intro; unfold adapted_couple in H2, H; decompose [and] H; decompose [and] H2;
+ clear H H2; set (x := (r + r1) / 2); assert (H18 := H14 0%nat);
+ assert (H20 := H19 0%nat); unfold constant_D_eq, open_interval in H18, H20;
+ simpl in H18; simpl in H20; rewrite <- (H18 (lt_O_Sn _) x).
+rewrite <- (H20 (lt_O_Sn _) x).
+reflexivity.
+assert (H21 := H13 0%nat (lt_O_Sn _)); simpl in H21; elim H21; intro;
+ [ idtac | elim H7; assumption ]; unfold x in |- *;
+ split.
+apply Rmult_lt_reg_l with 2;
+ [ prove_sup0
+ | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; apply H
+ | discrR ] ].
+apply Rmult_lt_reg_l with 2;
+ [ prove_sup0
+ | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_l; rewrite <- (Rplus_comm r1); rewrite double;
+ apply Rplus_lt_compat_l; apply H
+ | discrR ] ].
+rewrite <- H6; assert (H21 := H13 0%nat (lt_O_Sn _)); simpl in H21; elim H21;
+ intro; [ idtac | elim H7; assumption ]; unfold x in |- *;
+ split.
+apply Rmult_lt_reg_l with 2;
+ [ prove_sup0
+ | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; apply H
+ | discrR ] ].
+apply Rlt_le_trans with r1;
+ [ apply Rmult_lt_reg_l with 2;
+ [ prove_sup0
+ | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2));
+ rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_l; rewrite <- (Rplus_comm r1); rewrite double;
+ apply Rplus_lt_compat_l; apply H
+ | discrR ] ]
+ | assumption ].
+eapply StepFun_P13.
+apply H4.
+apply H2.
+unfold adapted_couple_opt in |- *; split.
+apply H.
+rewrite H5 in H3; apply H3.
+assert (H8 : r1 <= s2).
+eapply StepFun_P13.
+apply H4.
+apply H2.
+unfold adapted_couple_opt in |- *; split.
+apply H.
+rewrite H5 in H3; apply H3.
+elim H7; intro.
+simpl in |- *; elim H8; intro.
+replace (r4 * (s2 - s1)) with (r3 * (r1 - r) + r3 * (s2 - r1));
+ [ idtac | rewrite H9; rewrite H6; ring ].
+rewrite Rplus_assoc; apply Rplus_eq_compat_l;
+ change
+ (Int_SF lf1 (cons r1 r2) = Int_SF (cons r3 lf2) (cons r1 (cons s2 s3)))
+ in |- *; apply H0 with r1 b.
+unfold adapted_couple in H2; decompose [and] H2; clear H2;
+ replace b with (Rmax a b).
+rewrite <- H12; apply RList_P7;
+ [ assumption | simpl in |- *; right; left; reflexivity ].
+eapply StepFun_P7.
+apply H1.
+apply H2.
+unfold adapted_couple_opt in |- *; split.
+apply StepFun_P7 with a a r3.
+apply H1.
+unfold adapted_couple in H2, H; decompose [and] H2; decompose [and] H;
+ clear H H2; assert (H20 : r = a).
+simpl in H13; rewrite H13; apply Hyp_min.
+unfold adapted_couple in |- *; repeat split.
+unfold ordered_Rlist in |- *; intros; simpl in H; induction i as [| i Hreci].
+simpl in |- *; rewrite <- H20; apply (H11 0%nat).
+simpl in |- *; apply lt_O_Sn.
+induction i as [| i Hreci0].
+simpl in |- *; assumption.
+change (pos_Rl (cons s2 s3) i <= pos_Rl (cons s2 s3) (S i)) in |- *;
+ apply (H15 (S i)); simpl in |- *; apply lt_S_n; assumption.
+simpl in |- *; symmetry in |- *; apply Hyp_min.
+rewrite <- H17; reflexivity.
+simpl in H19; simpl in |- *; rewrite H19; reflexivity.
+intros; simpl in H; unfold constant_D_eq, open_interval in |- *; intros;
+ induction i as [| i Hreci].
+simpl in |- *; apply (H16 0%nat).
+simpl in |- *; apply lt_O_Sn.
+simpl in H2; rewrite <- H20 in H2; unfold open_interval in |- *;
+ simpl in |- *; apply H2.
+clear Hreci; induction i as [| i Hreci].
+simpl in |- *; simpl in H2; rewrite H9; apply (H21 0%nat).
+simpl in |- *; apply lt_O_Sn.
+unfold open_interval in |- *; simpl in |- *; elim H2; intros; split.
+apply Rle_lt_trans with r1; try assumption; rewrite <- H6; apply (H11 0%nat);
+ simpl in |- *; apply lt_O_Sn.
+assumption.
+clear Hreci; simpl in |- *; apply (H21 (S i)).
+simpl in |- *; apply lt_S_n; assumption.
+unfold open_interval in |- *; apply H2.
+elim H3; clear H3; intros; split.
+rewrite H9;
+ change
+ (forall i:nat,
+ (i < pred (Rlength (cons r4 lf2)))%nat ->
+ pos_Rl (cons r4 lf2) i <> pos_Rl (cons r4 lf2) (S i) \/
+ f (pos_Rl (cons s1 (cons s2 s3)) (S i)) <> pos_Rl (cons r4 lf2) i)
+ in |- *; rewrite <- H5; apply H3.
+rewrite H5 in H11; intros; simpl in H12; induction i as [| i Hreci].
+simpl in |- *; red in |- *; intro; rewrite H13 in H10;
+ elim (Rlt_irrefl _ H10).
+clear Hreci; apply (H11 (S i)); simpl in |- *; apply H12.
+rewrite H9; rewrite H10; rewrite H6; apply Rplus_eq_compat_l; rewrite <- H10;
+ apply H0 with r1 b.
+unfold adapted_couple in H2; decompose [and] H2; clear H2;
+ replace b with (Rmax a b).
+rewrite <- H12; apply RList_P7;
+ [ assumption | simpl in |- *; right; left; reflexivity ].
+eapply StepFun_P7.
+apply H1.
+apply H2.
+unfold adapted_couple_opt in |- *; split.
+apply StepFun_P7 with a a r3.
+apply H1.
+unfold adapted_couple in H2, H; decompose [and] H2; decompose [and] H;
+ clear H H2; assert (H20 : r = a).
+simpl in H13; rewrite H13; apply Hyp_min.
+unfold adapted_couple in |- *; repeat split.
+unfold ordered_Rlist in |- *; intros; simpl in H; induction i as [| i Hreci].
+simpl in |- *; rewrite <- H20; apply (H11 0%nat); simpl in |- *;
+ apply lt_O_Sn.
+rewrite H10; apply (H15 (S i)); simpl in |- *; assumption.
+simpl in |- *; symmetry in |- *; apply Hyp_min.
+rewrite <- H17; rewrite H10; reflexivity.
+simpl in H19; simpl in |- *; apply H19.
+intros; simpl in H; unfold constant_D_eq, open_interval in |- *; intros;
+ induction i as [| i Hreci].
+simpl in |- *; apply (H16 0%nat).
+simpl in |- *; apply lt_O_Sn.
+simpl in H2; rewrite <- H20 in H2; unfold open_interval in |- *;
+ simpl in |- *; apply H2.
+clear Hreci; simpl in |- *; apply (H21 (S i)).
+simpl in |- *; assumption.
+rewrite <- H10; unfold open_interval in |- *; apply H2.
+elim H3; clear H3; intros; split.
+rewrite H5 in H3; intros; apply (H3 (S i)).
+simpl in |- *; replace (Rlength lf2) with (S (pred (Rlength lf2))).
+apply lt_n_S; apply H12.
+symmetry in |- *; apply S_pred with 0%nat; apply neq_O_lt; red in |- *;
+ intro; rewrite <- H13 in H12; elim (lt_n_O _ H12).
+intros; simpl in H12; rewrite H10; rewrite H5 in H11; apply (H11 (S i));
+ simpl in |- *; apply lt_n_S; apply H12.
+simpl in |- *; rewrite H9; unfold Rminus in |- *; rewrite Rplus_opp_r;
+ rewrite Rmult_0_r; rewrite Rplus_0_l;
+ change
+ (Int_SF lf1 (cons r1 r2) = Int_SF (cons r4 lf2) (cons s1 (cons s2 s3)))
+ in |- *; eapply H0.
+apply H1.
+2: rewrite H5 in H3; unfold adapted_couple_opt in |- *; split; assumption.
+assert (H10 : r = a).
+unfold adapted_couple in H2; decompose [and] H2; clear H2; simpl in H12;
+ rewrite H12; apply Hyp_min.
+rewrite <- H9; rewrite H10; apply StepFun_P7 with a r r3;
+ [ apply H1
+ | pattern a at 2 in |- *; rewrite <- H10; pattern r at 2 in |- *; rewrite H9;
+ apply H2 ].
+Qed.
+
+Lemma StepFun_P15 :
+ forall (f:R -> R) (l1 l2 lf1 lf2:Rlist) (a b:R),
+ adapted_couple f a b l1 lf1 ->
+ adapted_couple_opt f a b l2 lf2 -> Int_SF lf1 l1 = Int_SF lf2 l2.
+intros; case (Rle_dec a b); intro;
+ [ apply (StepFun_P14 r H H0)
+ | assert (H1 : b <= a);
+ [ auto with real
+ | eapply StepFun_P14;
+ [ apply H1 | apply StepFun_P2; apply H | apply StepFun_P12; apply H0 ] ] ].
+Qed.
+
+Lemma StepFun_P16 :
+ forall (f:R -> R) (l lf:Rlist) (a b:R),
+ adapted_couple f a b l lf ->
+ exists l' : Rlist,
+ (exists lf' : Rlist, adapted_couple_opt f a b l' lf').
+intros; case (Rle_dec a b); intro;
+ [ apply (StepFun_P10 r H)
+ | assert (H1 : b <= a);
+ [ auto with real
+ | assert (H2 := StepFun_P10 H1 (StepFun_P2 H)); elim H2;
+ intros l' [lf' H3]; exists l'; exists lf'; apply StepFun_P12;
+ assumption ] ].
+Qed.
+
+Lemma StepFun_P17 :
+ forall (f:R -> R) (l1 l2 lf1 lf2:Rlist) (a b:R),
+ adapted_couple f a b l1 lf1 ->
+ adapted_couple f a b l2 lf2 -> Int_SF lf1 l1 = Int_SF lf2 l2.
+intros; elim (StepFun_P16 H); intros l' [lf' H1]; rewrite (StepFun_P15 H H1);
+ rewrite (StepFun_P15 H0 H1); reflexivity.
+Qed.
+
+Lemma StepFun_P18 :
+ forall a b c:R, RiemannInt_SF (mkStepFun (StepFun_P4 a b c)) = c * (b - a).
+intros; unfold RiemannInt_SF in |- *; case (Rle_dec a b); intro.
+replace
+ (Int_SF (subdivision_val (mkStepFun (StepFun_P4 a b c)))
+ (subdivision (mkStepFun (StepFun_P4 a b c)))) with
+ (Int_SF (cons c nil) (cons a (cons b nil)));
+ [ simpl in |- *; ring
+ | apply StepFun_P17 with (fct_cte c) a b;
+ [ apply StepFun_P3; assumption
+ | apply (StepFun_P1 (mkStepFun (StepFun_P4 a b c))) ] ].
+replace
+ (Int_SF (subdivision_val (mkStepFun (StepFun_P4 a b c)))
+ (subdivision (mkStepFun (StepFun_P4 a b c)))) with
+ (Int_SF (cons c nil) (cons b (cons a nil)));
+ [ simpl in |- *; ring
+ | apply StepFun_P17 with (fct_cte c) a b;
+ [ apply StepFun_P2; apply StepFun_P3; auto with real
+ | apply (StepFun_P1 (mkStepFun (StepFun_P4 a b c))) ] ].
+Qed.
+
+Lemma StepFun_P19 :
+ forall (l1:Rlist) (f g:R -> R) (l:R),
+ Int_SF (FF l1 (fun x:R => f x + l * g x)) l1 =
+ Int_SF (FF l1 f) l1 + l * Int_SF (FF l1 g) l1.
+intros; induction l1 as [| r l1 Hrecl1];
+ [ simpl in |- *; ring
+ | induction l1 as [| r0 l1 Hrecl0]; simpl in |- *;
+ [ ring | simpl in Hrecl1; rewrite Hrecl1; ring ] ].
+Qed.
+
+Lemma StepFun_P20 :
+ forall (l:Rlist) (f:R -> R),
+ (0 < Rlength l)%nat -> Rlength l = S (Rlength (FF l f)).
+intros l f H; induction l;
+ [ elim (lt_irrefl _ H)
+ | simpl in |- *; rewrite RList_P18; rewrite RList_P14; reflexivity ].
+Qed.
+
+Lemma StepFun_P21 :
+ forall (a b:R) (f:R -> R) (l:Rlist),
+ is_subdivision f a b l -> adapted_couple f a b l (FF l f).
+intros; unfold adapted_couple in |- *; unfold is_subdivision in X;
+ unfold adapted_couple in X; elim X; clear X; intros;
+ decompose [and] p; clear p; repeat split; try assumption.
+apply StepFun_P20; rewrite H2; apply lt_O_Sn.
+intros; assert (H5 := H4 _ H3); unfold constant_D_eq, open_interval in H5;
+ unfold constant_D_eq, open_interval in |- *; intros;
+ induction l as [| r l Hrecl].
+discriminate.
+unfold FF in |- *; rewrite RList_P12.
+simpl in |- *;
+ change (f x0 = f (pos_Rl (mid_Rlist (cons r l) r) (S i))) in |- *;
+ rewrite RList_P13; try assumption; rewrite (H5 x0 H6);
+ rewrite H5.
+reflexivity.
+split.
+apply Rmult_lt_reg_l with 2;
+ [ prove_sup0
+ | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; elim H6;
+ intros; apply Rlt_trans with x0; assumption
+ | discrR ] ].
+apply Rmult_lt_reg_l with 2;
+ [ prove_sup0
+ | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_l; rewrite double;
+ rewrite (Rplus_comm (pos_Rl (cons r l) i));
+ apply Rplus_lt_compat_l; elim H6; intros; apply Rlt_trans with x0;
+ assumption
+ | discrR ] ].
+rewrite RList_P14; simpl in H3; apply H3.
+Qed.
+
+Lemma StepFun_P22 :
+ forall (a b:R) (f g:R -> R) (lf lg:Rlist),
+ a <= b ->
+ is_subdivision f a b lf ->
+ is_subdivision g a b lg -> is_subdivision f a b (cons_ORlist lf lg).
+unfold is_subdivision in |- *; intros a b f g lf lg Hyp X X0; elim X; elim X0;
+ clear X X0; intros lg0 p lf0 p0; assert (Hyp_min : Rmin a b = a).
+unfold Rmin in |- *; case (Rle_dec a b); intro;
+ [ reflexivity | elim n; assumption ].
+assert (Hyp_max : Rmax a b = b).
+unfold Rmax in |- *; case (Rle_dec a b); intro;
+ [ reflexivity | elim n; assumption ].
+apply existT with (FF (cons_ORlist lf lg) f); unfold adapted_couple in p, p0;
+ decompose [and] p; decompose [and] p0; clear p p0;
+ rewrite Hyp_min in H6; rewrite Hyp_min in H1; rewrite Hyp_max in H0;
+ rewrite Hyp_max in H5; unfold adapted_couple in |- *;
+ repeat split.
+apply RList_P2; assumption.
+rewrite Hyp_min; symmetry in |- *; apply Rle_antisym.
+induction lf as [| r lf Hreclf].
+simpl in |- *; right; symmetry in |- *; assumption.
+assert
+ (H10 :
+ In (pos_Rl (cons_ORlist (cons r lf) lg) 0) (cons_ORlist (cons r lf) lg)).
+elim
+ (RList_P3 (cons_ORlist (cons r lf) lg)
+ (pos_Rl (cons_ORlist (cons r lf) lg) 0)); intros _ H10;
+ apply H10; exists 0%nat; split;
+ [ reflexivity | rewrite RList_P11; simpl in |- *; apply lt_O_Sn ].
+elim (RList_P9 (cons r lf) lg (pos_Rl (cons_ORlist (cons r lf) lg) 0));
+ intros H12 _; assert (H13 := H12 H10); elim H13; intro.
+elim (RList_P3 (cons r lf) (pos_Rl (cons_ORlist (cons r lf) lg) 0));
+ intros H11 _; assert (H14 := H11 H8); elim H14; intros;
+ elim H15; clear H15; intros; rewrite H15; rewrite <- H6;
+ elim (RList_P6 (cons r lf)); intros; apply H17;
+ [ assumption | apply le_O_n | assumption ].
+elim (RList_P3 lg (pos_Rl (cons_ORlist (cons r lf) lg) 0)); intros H11 _;
+ assert (H14 := H11 H8); elim H14; intros; elim H15;
+ clear H15; intros; rewrite H15; rewrite <- H1; elim (RList_P6 lg);
+ intros; apply H17; [ assumption | apply le_O_n | assumption ].
+induction lf as [| r lf Hreclf].
+simpl in |- *; right; assumption.
+assert (H8 : In a (cons_ORlist (cons r lf) lg)).
+elim (RList_P9 (cons r lf) lg a); intros; apply H10; left;
+ elim (RList_P3 (cons r lf) a); intros; apply H12;
+ exists 0%nat; split;
+ [ symmetry in |- *; assumption | simpl in |- *; apply lt_O_Sn ].
+apply RList_P5; [ apply RList_P2; assumption | assumption ].
+rewrite Hyp_max; apply Rle_antisym.
+induction lf as [| r lf Hreclf].
+simpl in |- *; right; assumption.
+assert
+ (H8 :
+ In
+ (pos_Rl (cons_ORlist (cons r lf) lg)
+ (pred (Rlength (cons_ORlist (cons r lf) lg))))
+ (cons_ORlist (cons r lf) lg)).
+elim
+ (RList_P3 (cons_ORlist (cons r lf) lg)
+ (pos_Rl (cons_ORlist (cons r lf) lg)
+ (pred (Rlength (cons_ORlist (cons r lf) lg)))));
+ intros _ H10; apply H10;
+ exists (pred (Rlength (cons_ORlist (cons r lf) lg)));
+ split; [ reflexivity | rewrite RList_P11; simpl in |- *; apply lt_n_Sn ].
+elim
+ (RList_P9 (cons r lf) lg
+ (pos_Rl (cons_ORlist (cons r lf) lg)
+ (pred (Rlength (cons_ORlist (cons r lf) lg)))));
+ intros H10 _.
+assert (H11 := H10 H8); elim H11; intro.
+elim
+ (RList_P3 (cons r lf)
+ (pos_Rl (cons_ORlist (cons r lf) lg)
+ (pred (Rlength (cons_ORlist (cons r lf) lg)))));
+ intros H13 _; assert (H14 := H13 H12); elim H14; intros;
+ elim H15; clear H15; intros; rewrite H15; rewrite <- H5;
+ elim (RList_P6 (cons r lf)); intros; apply H17;
+ [ assumption
+ | simpl in |- *; simpl in H14; apply lt_n_Sm_le; assumption
+ | simpl in |- *; apply lt_n_Sn ].
+elim
+ (RList_P3 lg
+ (pos_Rl (cons_ORlist (cons r lf) lg)
+ (pred (Rlength (cons_ORlist (cons r lf) lg)))));
+ intros H13 _; assert (H14 := H13 H12); elim H14; intros;
+ elim H15; clear H15; intros.
+rewrite H15; assert (H17 : Rlength lg = S (pred (Rlength lg))).
+apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro;
+ rewrite <- H17 in H16; elim (lt_n_O _ H16).
+rewrite <- H0; elim (RList_P6 lg); intros; apply H18;
+ [ assumption
+ | rewrite H17 in H16; apply lt_n_Sm_le; assumption
+ | apply lt_pred_n_n; rewrite H17; apply lt_O_Sn ].
+induction lf as [| r lf Hreclf].
+simpl in |- *; right; symmetry in |- *; assumption.
+assert (H8 : In b (cons_ORlist (cons r lf) lg)).
+elim (RList_P9 (cons r lf) lg b); intros; apply H10; left;
+ elim (RList_P3 (cons r lf) b); intros; apply H12;
+ exists (pred (Rlength (cons r lf))); split;
+ [ symmetry in |- *; assumption | simpl in |- *; apply lt_n_Sn ].
+apply RList_P7; [ apply RList_P2; assumption | assumption ].
+apply StepFun_P20; rewrite RList_P11; rewrite H2; rewrite H7; simpl in |- *;
+ apply lt_O_Sn.
+intros; unfold constant_D_eq, open_interval in |- *; intros;
+ cut
+ (exists l : R,
+ constant_D_eq f
+ (open_interval (pos_Rl (cons_ORlist lf lg) i)
+ (pos_Rl (cons_ORlist lf lg) (S i))) l).
+intros; elim H11; clear H11; intros; assert (H12 := H11);
+ assert
+ (Hyp_cons :
+ exists r : R, (exists r0 : Rlist, cons_ORlist lf lg = cons r r0)).
+apply RList_P19; red in |- *; intro; rewrite H13 in H8; elim (lt_n_O _ H8).
+elim Hyp_cons; clear Hyp_cons; intros r [r0 Hyp_cons]; rewrite Hyp_cons;
+ unfold FF in |- *; rewrite RList_P12.
+change (f x = f (pos_Rl (mid_Rlist (cons r r0) r) (S i))) in |- *;
+ rewrite <- Hyp_cons; rewrite RList_P13.
+assert (H13 := RList_P2 _ _ H _ H8); elim H13; intro.
+unfold constant_D_eq, open_interval in H11, H12; rewrite (H11 x H10);
+ assert
+ (H15 :
+ pos_Rl (cons_ORlist lf lg) i <
+ (pos_Rl (cons_ORlist lf lg) i + pos_Rl (cons_ORlist lf lg) (S i)) / 2 <
+ pos_Rl (cons_ORlist lf lg) (S i)).
+split.
+apply Rmult_lt_reg_l with 2;
+ [ prove_sup0
+ | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; assumption
+ | discrR ] ].
+apply Rmult_lt_reg_l with 2;
+ [ prove_sup0
+ | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_l; rewrite double;
+ rewrite (Rplus_comm (pos_Rl (cons_ORlist lf lg) i));
+ apply Rplus_lt_compat_l; assumption
+ | discrR ] ].
+rewrite (H11 _ H15); reflexivity.
+elim H10; intros; rewrite H14 in H15;
+ elim (Rlt_irrefl _ (Rlt_trans _ _ _ H16 H15)).
+apply H8.
+rewrite RList_P14; rewrite Hyp_cons in H8; simpl in H8; apply H8.
+assert (H11 : a < b).
+apply Rle_lt_trans with (pos_Rl (cons_ORlist lf lg) i).
+rewrite <- H6; rewrite <- (RList_P15 lf lg).
+elim (RList_P6 (cons_ORlist lf lg)); intros; apply H11.
+apply RList_P2; assumption.
+apply le_O_n.
+apply lt_trans with (pred (Rlength (cons_ORlist lf lg)));
+ [ assumption
+ | apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro;
+ rewrite <- H13 in H8; elim (lt_n_O _ H8) ].
+assumption.
+assumption.
+rewrite H1; assumption.
+apply Rlt_le_trans with (pos_Rl (cons_ORlist lf lg) (S i)).
+elim H10; intros; apply Rlt_trans with x; assumption.
+rewrite <- H5; rewrite <- (RList_P16 lf lg); try assumption.
+elim (RList_P6 (cons_ORlist lf lg)); intros; apply H11.
+apply RList_P2; assumption.
+apply lt_n_Sm_le; apply lt_n_S; assumption.
+apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H13 in H8;
+ elim (lt_n_O _ H8).
+rewrite H0; assumption.
+set
+ (I :=
+ fun j:nat =>
+ pos_Rl lf j <= pos_Rl (cons_ORlist lf lg) i /\ (j < Rlength lf)%nat);
+ assert (H12 : Nbound I).
+unfold Nbound in |- *; exists (Rlength lf); intros; unfold I in H12; elim H12;
+ intros; apply lt_le_weak; assumption.
+assert (H13 : exists n : nat, I n).
+exists 0%nat; unfold I in |- *; split.
+apply Rle_trans with (pos_Rl (cons_ORlist lf lg) 0).
+right; symmetry in |- *.
+apply RList_P15; try assumption; rewrite H1; assumption.
+elim (RList_P6 (cons_ORlist lf lg)); intros; apply H13.
+apply RList_P2; assumption.
+apply le_O_n.
+apply lt_trans with (pred (Rlength (cons_ORlist lf lg))).
+assumption.
+apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H15 in H8;
+ elim (lt_n_O _ H8).
+apply neq_O_lt; red in |- *; intro; rewrite <- H13 in H5;
+ rewrite <- H6 in H11; rewrite <- H5 in H11; elim (Rlt_irrefl _ H11).
+assert (H14 := Nzorn H13 H12); elim H14; clear H14; intros x0 H14;
+ exists (pos_Rl lf0 x0); unfold constant_D_eq, open_interval in |- *;
+ intros; assert (H16 := H9 x0); assert (H17 : (x0 < pred (Rlength lf))%nat).
+elim H14; clear H14; intros; unfold I in H14; elim H14; clear H14; intros;
+ apply lt_S_n; replace (S (pred (Rlength lf))) with (Rlength lf).
+inversion H18.
+2: apply lt_n_S; assumption.
+cut (x0 = pred (Rlength lf)).
+intro; rewrite H19 in H14; rewrite H5 in H14;
+ cut (pos_Rl (cons_ORlist lf lg) i < b).
+intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H14 H21)).
+apply Rlt_le_trans with (pos_Rl (cons_ORlist lf lg) (S i)).
+elim H10; intros; apply Rlt_trans with x; assumption.
+rewrite <- H5;
+ apply Rle_trans with
+ (pos_Rl (cons_ORlist lf lg) (pred (Rlength (cons_ORlist lf lg)))).
+elim (RList_P6 (cons_ORlist lf lg)); intros; apply H21.
+apply RList_P2; assumption.
+apply lt_n_Sm_le; apply lt_n_S; assumption.
+apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H23 in H8;
+ elim (lt_n_O _ H8).
+right; apply RList_P16; try assumption; rewrite H0; assumption.
+rewrite <- H20; reflexivity.
+apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro;
+ rewrite <- H19 in H18; elim (lt_n_O _ H18).
+assert (H18 := H16 H17); unfold constant_D_eq, open_interval in H18;
+ rewrite (H18 x1).
+reflexivity.
+elim H15; clear H15; intros; elim H14; clear H14; intros; unfold I in H14;
+ elim H14; clear H14; intros; split.
+apply Rle_lt_trans with (pos_Rl (cons_ORlist lf lg) i); assumption.
+apply Rlt_le_trans with (pos_Rl (cons_ORlist lf lg) (S i)); try assumption.
+assert (H22 : (S x0 < Rlength lf)%nat).
+replace (Rlength lf) with (S (pred (Rlength lf)));
+ [ apply lt_n_S; assumption
+ | symmetry in |- *; apply S_pred with 0%nat; apply neq_O_lt; red in |- *;
+ intro; rewrite <- H22 in H21; elim (lt_n_O _ H21) ].
+elim (Rle_dec (pos_Rl lf (S x0)) (pos_Rl (cons_ORlist lf lg) i)); intro.
+assert (H23 : (S x0 <= x0)%nat).
+apply H20; unfold I in |- *; split; assumption.
+elim (le_Sn_n _ H23).
+assert (H23 : pos_Rl (cons_ORlist lf lg) i < pos_Rl lf (S x0)).
+auto with real.
+clear b0; apply RList_P17; try assumption.
+apply RList_P2; assumption.
+elim (RList_P9 lf lg (pos_Rl lf (S x0))); intros; apply H25; left;
+ elim (RList_P3 lf (pos_Rl lf (S x0))); intros; apply H27;
+ exists (S x0); split; [ reflexivity | apply H22 ].
+Qed.
+
+Lemma StepFun_P23 :
+ forall (a b:R) (f g:R -> R) (lf lg:Rlist),
+ is_subdivision f a b lf ->
+ is_subdivision g a b lg -> is_subdivision f a b (cons_ORlist lf lg).
+intros; case (Rle_dec a b); intro;
+ [ apply StepFun_P22 with g; assumption
+ | apply StepFun_P5; apply StepFun_P22 with g;
+ [ auto with real
+ | apply StepFun_P5; assumption
+ | apply StepFun_P5; assumption ] ].
+Qed.
+
+Lemma StepFun_P24 :
+ forall (a b:R) (f g:R -> R) (lf lg:Rlist),
+ a <= b ->
+ is_subdivision f a b lf ->
+ is_subdivision g a b lg -> is_subdivision g a b (cons_ORlist lf lg).
+unfold is_subdivision in |- *; intros a b f g lf lg Hyp X X0; elim X; elim X0;
+ clear X X0; intros lg0 p lf0 p0; assert (Hyp_min : Rmin a b = a).
+unfold Rmin in |- *; case (Rle_dec a b); intro;
+ [ reflexivity | elim n; assumption ].
+assert (Hyp_max : Rmax a b = b).
+unfold Rmax in |- *; case (Rle_dec a b); intro;
+ [ reflexivity | elim n; assumption ].
+apply existT with (FF (cons_ORlist lf lg) g); unfold adapted_couple in p, p0;
+ decompose [and] p; decompose [and] p0; clear p p0;
+ rewrite Hyp_min in H1; rewrite Hyp_min in H6; rewrite Hyp_max in H0;
+ rewrite Hyp_max in H5; unfold adapted_couple in |- *;
+ repeat split.
+apply RList_P2; assumption.
+rewrite Hyp_min; symmetry in |- *; apply Rle_antisym.
+induction lf as [| r lf Hreclf].
+simpl in |- *; right; symmetry in |- *; assumption.
+assert
+ (H10 :
+ In (pos_Rl (cons_ORlist (cons r lf) lg) 0) (cons_ORlist (cons r lf) lg)).
+elim
+ (RList_P3 (cons_ORlist (cons r lf) lg)
+ (pos_Rl (cons_ORlist (cons r lf) lg) 0)); intros _ H10;
+ apply H10; exists 0%nat; split;
+ [ reflexivity | rewrite RList_P11; simpl in |- *; apply lt_O_Sn ].
+elim (RList_P9 (cons r lf) lg (pos_Rl (cons_ORlist (cons r lf) lg) 0));
+ intros H12 _; assert (H13 := H12 H10); elim H13; intro.
+elim (RList_P3 (cons r lf) (pos_Rl (cons_ORlist (cons r lf) lg) 0));
+ intros H11 _; assert (H14 := H11 H8); elim H14; intros;
+ elim H15; clear H15; intros; rewrite H15; rewrite <- H6;
+ elim (RList_P6 (cons r lf)); intros; apply H17;
+ [ assumption | apply le_O_n | assumption ].
+elim (RList_P3 lg (pos_Rl (cons_ORlist (cons r lf) lg) 0)); intros H11 _;
+ assert (H14 := H11 H8); elim H14; intros; elim H15;
+ clear H15; intros; rewrite H15; rewrite <- H1; elim (RList_P6 lg);
+ intros; apply H17; [ assumption | apply le_O_n | assumption ].
+induction lf as [| r lf Hreclf].
+simpl in |- *; right; assumption.
+assert (H8 : In a (cons_ORlist (cons r lf) lg)).
+elim (RList_P9 (cons r lf) lg a); intros; apply H10; left;
+ elim (RList_P3 (cons r lf) a); intros; apply H12;
+ exists 0%nat; split;
+ [ symmetry in |- *; assumption | simpl in |- *; apply lt_O_Sn ].
+apply RList_P5; [ apply RList_P2; assumption | assumption ].
+rewrite Hyp_max; apply Rle_antisym.
+induction lf as [| r lf Hreclf].
+simpl in |- *; right; assumption.
+assert
+ (H8 :
+ In
+ (pos_Rl (cons_ORlist (cons r lf) lg)
+ (pred (Rlength (cons_ORlist (cons r lf) lg))))
+ (cons_ORlist (cons r lf) lg)).
+elim
+ (RList_P3 (cons_ORlist (cons r lf) lg)
+ (pos_Rl (cons_ORlist (cons r lf) lg)
+ (pred (Rlength (cons_ORlist (cons r lf) lg)))));
+ intros _ H10; apply H10;
+ exists (pred (Rlength (cons_ORlist (cons r lf) lg)));
+ split; [ reflexivity | rewrite RList_P11; simpl in |- *; apply lt_n_Sn ].
+elim
+ (RList_P9 (cons r lf) lg
+ (pos_Rl (cons_ORlist (cons r lf) lg)
+ (pred (Rlength (cons_ORlist (cons r lf) lg)))));
+ intros H10 _; assert (H11 := H10 H8); elim H11; intro.
+elim
+ (RList_P3 (cons r lf)
+ (pos_Rl (cons_ORlist (cons r lf) lg)
+ (pred (Rlength (cons_ORlist (cons r lf) lg)))));
+ intros H13 _; assert (H14 := H13 H12); elim H14; intros;
+ elim H15; clear H15; intros; rewrite H15; rewrite <- H5;
+ elim (RList_P6 (cons r lf)); intros; apply H17;
+ [ assumption
+ | simpl in |- *; simpl in H14; apply lt_n_Sm_le; assumption
+ | simpl in |- *; apply lt_n_Sn ].
+elim
+ (RList_P3 lg
+ (pos_Rl (cons_ORlist (cons r lf) lg)
+ (pred (Rlength (cons_ORlist (cons r lf) lg)))));
+ intros H13 _; assert (H14 := H13 H12); elim H14; intros;
+ elim H15; clear H15; intros; rewrite H15;
+ assert (H17 : Rlength lg = S (pred (Rlength lg))).
+apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro;
+ rewrite <- H17 in H16; elim (lt_n_O _ H16).
+rewrite <- H0; elim (RList_P6 lg); intros; apply H18;
+ [ assumption
+ | rewrite H17 in H16; apply lt_n_Sm_le; assumption
+ | apply lt_pred_n_n; rewrite H17; apply lt_O_Sn ].
+induction lf as [| r lf Hreclf].
+simpl in |- *; right; symmetry in |- *; assumption.
+assert (H8 : In b (cons_ORlist (cons r lf) lg)).
+elim (RList_P9 (cons r lf) lg b); intros; apply H10; left;
+ elim (RList_P3 (cons r lf) b); intros; apply H12;
+ exists (pred (Rlength (cons r lf))); split;
+ [ symmetry in |- *; assumption | simpl in |- *; apply lt_n_Sn ].
+apply RList_P7; [ apply RList_P2; assumption | assumption ].
+apply StepFun_P20; rewrite RList_P11; rewrite H7; rewrite H2; simpl in |- *;
+ apply lt_O_Sn.
+unfold constant_D_eq, open_interval in |- *; intros;
+ cut
+ (exists l : R,
+ constant_D_eq g
+ (open_interval (pos_Rl (cons_ORlist lf lg) i)
+ (pos_Rl (cons_ORlist lf lg) (S i))) l).
+intros; elim H11; clear H11; intros; assert (H12 := H11);
+ assert
+ (Hyp_cons :
+ exists r : R, (exists r0 : Rlist, cons_ORlist lf lg = cons r r0)).
+apply RList_P19; red in |- *; intro; rewrite H13 in H8; elim (lt_n_O _ H8).
+elim Hyp_cons; clear Hyp_cons; intros r [r0 Hyp_cons]; rewrite Hyp_cons;
+ unfold FF in |- *; rewrite RList_P12.
+change (g x = g (pos_Rl (mid_Rlist (cons r r0) r) (S i))) in |- *;
+ rewrite <- Hyp_cons; rewrite RList_P13.
+assert (H13 := RList_P2 _ _ H _ H8); elim H13; intro.
+unfold constant_D_eq, open_interval in H11, H12; rewrite (H11 x H10);
+ assert
+ (H15 :
+ pos_Rl (cons_ORlist lf lg) i <
+ (pos_Rl (cons_ORlist lf lg) i + pos_Rl (cons_ORlist lf lg) (S i)) / 2 <
+ pos_Rl (cons_ORlist lf lg) (S i)).
+split.
+apply Rmult_lt_reg_l with 2;
+ [ prove_sup0
+ | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; assumption
+ | discrR ] ].
+apply Rmult_lt_reg_l with 2;
+ [ prove_sup0
+ | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_l; rewrite double;
+ rewrite (Rplus_comm (pos_Rl (cons_ORlist lf lg) i));
+ apply Rplus_lt_compat_l; assumption
+ | discrR ] ].
+rewrite (H11 _ H15); reflexivity.
+elim H10; intros; rewrite H14 in H15;
+ elim (Rlt_irrefl _ (Rlt_trans _ _ _ H16 H15)).
+apply H8.
+rewrite RList_P14; rewrite Hyp_cons in H8; simpl in H8; apply H8.
+assert (H11 : a < b).
+apply Rle_lt_trans with (pos_Rl (cons_ORlist lf lg) i).
+rewrite <- H6; rewrite <- (RList_P15 lf lg); try assumption.
+elim (RList_P6 (cons_ORlist lf lg)); intros; apply H11.
+apply RList_P2; assumption.
+apply le_O_n.
+apply lt_trans with (pred (Rlength (cons_ORlist lf lg)));
+ [ assumption
+ | apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro;
+ rewrite <- H13 in H8; elim (lt_n_O _ H8) ].
+rewrite H1; assumption.
+apply Rlt_le_trans with (pos_Rl (cons_ORlist lf lg) (S i)).
+elim H10; intros; apply Rlt_trans with x; assumption.
+rewrite <- H5; rewrite <- (RList_P16 lf lg); try assumption.
+elim (RList_P6 (cons_ORlist lf lg)); intros; apply H11.
+apply RList_P2; assumption.
+apply lt_n_Sm_le; apply lt_n_S; assumption.
+apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H13 in H8;
+ elim (lt_n_O _ H8).
+rewrite H0; assumption.
+set
+ (I :=
+ fun j:nat =>
+ pos_Rl lg j <= pos_Rl (cons_ORlist lf lg) i /\ (j < Rlength lg)%nat);
+ assert (H12 : Nbound I).
+unfold Nbound in |- *; exists (Rlength lg); intros; unfold I in H12; elim H12;
+ intros; apply lt_le_weak; assumption.
+assert (H13 : exists n : nat, I n).
+exists 0%nat; unfold I in |- *; split.
+apply Rle_trans with (pos_Rl (cons_ORlist lf lg) 0).
+right; symmetry in |- *; rewrite H1; rewrite <- H6; apply RList_P15;
+ try assumption; rewrite H1; assumption.
+elim (RList_P6 (cons_ORlist lf lg)); intros; apply H13;
+ [ apply RList_P2; assumption
+ | apply le_O_n
+ | apply lt_trans with (pred (Rlength (cons_ORlist lf lg)));
+ [ assumption
+ | apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro;
+ rewrite <- H15 in H8; elim (lt_n_O _ H8) ] ].
+apply neq_O_lt; red in |- *; intro; rewrite <- H13 in H0;
+ rewrite <- H1 in H11; rewrite <- H0 in H11; elim (Rlt_irrefl _ H11).
+assert (H14 := Nzorn H13 H12); elim H14; clear H14; intros x0 H14;
+ exists (pos_Rl lg0 x0); unfold constant_D_eq, open_interval in |- *;
+ intros; assert (H16 := H4 x0); assert (H17 : (x0 < pred (Rlength lg))%nat).
+elim H14; clear H14; intros; unfold I in H14; elim H14; clear H14; intros;
+ apply lt_S_n; replace (S (pred (Rlength lg))) with (Rlength lg).
+inversion H18.
+2: apply lt_n_S; assumption.
+cut (x0 = pred (Rlength lg)).
+intro; rewrite H19 in H14; rewrite H0 in H14;
+ cut (pos_Rl (cons_ORlist lf lg) i < b).
+intro; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H14 H21)).
+apply Rlt_le_trans with (pos_Rl (cons_ORlist lf lg) (S i)).
+elim H10; intros; apply Rlt_trans with x; assumption.
+rewrite <- H0;
+ apply Rle_trans with
+ (pos_Rl (cons_ORlist lf lg) (pred (Rlength (cons_ORlist lf lg)))).
+elim (RList_P6 (cons_ORlist lf lg)); intros; apply H21.
+apply RList_P2; assumption.
+apply lt_n_Sm_le; apply lt_n_S; assumption.
+apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H23 in H8;
+ elim (lt_n_O _ H8).
+right; rewrite H0; rewrite <- H5; apply RList_P16; try assumption.
+rewrite H0; assumption.
+rewrite <- H20; reflexivity.
+apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro;
+ rewrite <- H19 in H18; elim (lt_n_O _ H18).
+assert (H18 := H16 H17); unfold constant_D_eq, open_interval in H18;
+ rewrite (H18 x1).
+reflexivity.
+elim H15; clear H15; intros; elim H14; clear H14; intros; unfold I in H14;
+ elim H14; clear H14; intros; split.
+apply Rle_lt_trans with (pos_Rl (cons_ORlist lf lg) i); assumption.
+apply Rlt_le_trans with (pos_Rl (cons_ORlist lf lg) (S i)); try assumption.
+assert (H22 : (S x0 < Rlength lg)%nat).
+replace (Rlength lg) with (S (pred (Rlength lg))).
+apply lt_n_S; assumption.
+symmetry in |- *; apply S_pred with 0%nat; apply neq_O_lt; red in |- *;
+ intro; rewrite <- H22 in H21; elim (lt_n_O _ H21).
+elim (Rle_dec (pos_Rl lg (S x0)) (pos_Rl (cons_ORlist lf lg) i)); intro.
+assert (H23 : (S x0 <= x0)%nat);
+ [ apply H20; unfold I in |- *; split; assumption | elim (le_Sn_n _ H23) ].
+assert (H23 : pos_Rl (cons_ORlist lf lg) i < pos_Rl lg (S x0)).
+auto with real.
+clear b0; apply RList_P17; try assumption;
+ [ apply RList_P2; assumption
+ | elim (RList_P9 lf lg (pos_Rl lg (S x0))); intros; apply H25; right;
+ elim (RList_P3 lg (pos_Rl lg (S x0))); intros;
+ apply H27; exists (S x0); split; [ reflexivity | apply H22 ] ].
+Qed.
+
+Lemma StepFun_P25 :
+ forall (a b:R) (f g:R -> R) (lf lg:Rlist),
+ is_subdivision f a b lf ->
+ is_subdivision g a b lg -> is_subdivision g a b (cons_ORlist lf lg).
+intros a b f g lf lg H H0; case (Rle_dec a b); intro;
+ [ apply StepFun_P24 with f; assumption
+ | apply StepFun_P5; apply StepFun_P24 with f;
+ [ auto with real
+ | apply StepFun_P5; assumption
+ | apply StepFun_P5; assumption ] ].
+Qed.
+
+Lemma StepFun_P26 :
+ forall (a b l:R) (f g:R -> R) (l1:Rlist),
+ is_subdivision f a b l1 ->
+ is_subdivision g a b l1 ->
+ is_subdivision (fun x:R => f x + l * g x) a b l1.
+intros a b l f g l1; unfold is_subdivision in |- *; intros; elim X; elim X0;
+ intros; clear X X0; unfold adapted_couple in p, p0;
+ decompose [and] p; decompose [and] p0; clear p p0;
+ apply existT with (FF l1 (fun x:R => f x + l * g x));
+ unfold adapted_couple in |- *; repeat split; try assumption.
+apply StepFun_P20; apply neq_O_lt; red in |- *; intro; rewrite <- H8 in H7;
+ discriminate.
+intros; unfold constant_D_eq, open_interval in |- *;
+ unfold constant_D_eq, open_interval in H9, H4; intros;
+ rewrite (H9 _ H8 _ H10); rewrite (H4 _ H8 _ H10);
+ assert (H11 : l1 <> nil).
+red in |- *; intro; rewrite H11 in H8; elim (lt_n_O _ H8).
+assert (H12 := RList_P19 _ H11); elim H12; clear H12; intros r [r0 H12];
+ rewrite H12; unfold FF in |- *;
+ change
+ (pos_Rl x0 i + l * pos_Rl x i =
+ pos_Rl
+ (app_Rlist (mid_Rlist (cons r r0) r) (fun x2:R => f x2 + l * g x2))
+ (S i)) in |- *; rewrite RList_P12.
+rewrite RList_P13.
+rewrite <- H12; rewrite (H9 _ H8); try rewrite (H4 _ H8);
+ reflexivity ||
+ (elim H10; clear H10; intros; split;
+ [ apply Rmult_lt_reg_l with 2;
+ [ prove_sup0
+ | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2));
+ rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l;
+ apply Rlt_trans with x1; assumption
+ | discrR ] ]
+ | apply Rmult_lt_reg_l with 2;
+ [ prove_sup0
+ | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2));
+ rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_l; rewrite double;
+ rewrite (Rplus_comm (pos_Rl l1 i)); apply Rplus_lt_compat_l;
+ apply Rlt_trans with x1; assumption
+ | discrR ] ] ]).
+rewrite <- H12; assumption.
+rewrite RList_P14; simpl in |- *; rewrite H12 in H8; simpl in H8;
+ apply lt_n_S; apply H8.
+Qed.
+
+Lemma StepFun_P27 :
+ forall (a b l:R) (f g:R -> R) (lf lg:Rlist),
+ is_subdivision f a b lf ->
+ is_subdivision g a b lg ->
+ is_subdivision (fun x:R => f x + l * g x) a b (cons_ORlist lf lg).
+intros a b l f g lf lg H H0; apply StepFun_P26;
+ [ apply StepFun_P23 with g; assumption
+ | apply StepFun_P25 with f; assumption ].
+Qed.
+
+(* The set of step functions on [a,b] is a vectorial space *)
+Lemma StepFun_P28 :
+ forall (a b l:R) (f g:StepFun a b), IsStepFun (fun x:R => f x + l * g x) a b.
+intros a b l f g; unfold IsStepFun in |- *; assert (H := pre f);
+ assert (H0 := pre g); unfold IsStepFun in H, H0; elim H;
+ elim H0; intros; apply existT with (cons_ORlist x0 x);
+ apply StepFun_P27; assumption.
+Qed.
+
+Lemma StepFun_P29 :
+ forall (a b:R) (f:StepFun a b), is_subdivision f a b (subdivision f).
+intros a b f; unfold is_subdivision in |- *;
+ apply existT with (subdivision_val f); apply StepFun_P1.
+Qed.
+
+Lemma StepFun_P30 :
+ forall (a b l:R) (f g:StepFun a b),
+ RiemannInt_SF (mkStepFun (StepFun_P28 l f g)) =
+ RiemannInt_SF f + l * RiemannInt_SF g.
+intros a b l f g; unfold RiemannInt_SF in |- *; case (Rle_dec a b);
+ (intro;
+ replace
+ (Int_SF (subdivision_val (mkStepFun (StepFun_P28 l f g)))
+ (subdivision (mkStepFun (StepFun_P28 l f g)))) with
+ (Int_SF
+ (FF (cons_ORlist (subdivision f) (subdivision g))
+ (fun x:R => f x + l * g x))
+ (cons_ORlist (subdivision f) (subdivision g)));
+ [ rewrite StepFun_P19;
+ replace
+ (Int_SF (FF (cons_ORlist (subdivision f) (subdivision g)) f)
+ (cons_ORlist (subdivision f) (subdivision g))) with
+ (Int_SF (subdivision_val f) (subdivision f));
+ [ replace
+ (Int_SF (FF (cons_ORlist (subdivision f) (subdivision g)) g)
+ (cons_ORlist (subdivision f) (subdivision g))) with
+ (Int_SF (subdivision_val g) (subdivision g));
+ [ ring
+ | apply StepFun_P17 with (fe g) a b;
+ [ apply StepFun_P1
+ | apply StepFun_P21; apply StepFun_P25 with (fe f);
+ apply StepFun_P29 ] ]
+ | apply StepFun_P17 with (fe f) a b;
+ [ apply StepFun_P1
+ | apply StepFun_P21; apply StepFun_P23 with (fe g);
+ apply StepFun_P29 ] ]
+ | apply StepFun_P17 with (fun x:R => f x + l * g x) a b;
+ [ apply StepFun_P21; apply StepFun_P27; apply StepFun_P29
+ | apply (StepFun_P1 (mkStepFun (StepFun_P28 l f g))) ] ]).
+Qed.
+
+Lemma StepFun_P31 :
+ forall (a b:R) (f:R -> R) (l lf:Rlist),
+ adapted_couple f a b l lf ->
+ adapted_couple (fun x:R => Rabs (f x)) a b l (app_Rlist lf Rabs).
+unfold adapted_couple in |- *; intros; decompose [and] H; clear H;
+ repeat split; try assumption.
+symmetry in |- *; rewrite H3; rewrite RList_P18; reflexivity.
+intros; unfold constant_D_eq, open_interval in |- *;
+ unfold constant_D_eq, open_interval in H5; intros;
+ rewrite (H5 _ H _ H4); rewrite RList_P12;
+ [ reflexivity | rewrite H3 in H; simpl in H; apply H ].
+Qed.
+
+Lemma StepFun_P32 :
+ forall (a b:R) (f:StepFun a b), IsStepFun (fun x:R => Rabs (f x)) a b.
+intros a b f; unfold IsStepFun in |- *; apply existT with (subdivision f);
+ unfold is_subdivision in |- *;
+ apply existT with (app_Rlist (subdivision_val f) Rabs);
+ apply StepFun_P31; apply StepFun_P1.
+Qed.
+
+Lemma StepFun_P33 :
+ forall l2 l1:Rlist,
+ ordered_Rlist l1 -> Rabs (Int_SF l2 l1) <= Int_SF (app_Rlist l2 Rabs) l1.
+simple induction l2; intros.
+simpl in |- *; rewrite Rabs_R0; right; reflexivity.
+simpl in |- *; induction l1 as [| r1 l1 Hrecl1].
+rewrite Rabs_R0; right; reflexivity.
+induction l1 as [| r2 l1 Hrecl0].
+rewrite Rabs_R0; right; reflexivity.
+apply Rle_trans with (Rabs (r * (r2 - r1)) + Rabs (Int_SF r0 (cons r2 l1))).
+apply Rabs_triang.
+rewrite Rabs_mult; rewrite (Rabs_right (r2 - r1));
+ [ apply Rplus_le_compat_l; apply H; apply RList_P4 with r1; assumption
+ | apply Rge_minus; apply Rle_ge; apply (H0 0%nat); simpl in |- *;
+ apply lt_O_Sn ].
+Qed.
+
+Lemma StepFun_P34 :
+ forall (a b:R) (f:StepFun a b),
+ a <= b ->
+ Rabs (RiemannInt_SF f) <= RiemannInt_SF (mkStepFun (StepFun_P32 f)).
+intros; unfold RiemannInt_SF in |- *; case (Rle_dec a b); intro.
+replace
+ (Int_SF (subdivision_val (mkStepFun (StepFun_P32 f)))
+ (subdivision (mkStepFun (StepFun_P32 f)))) with
+ (Int_SF (app_Rlist (subdivision_val f) Rabs) (subdivision f)).
+apply StepFun_P33; assert (H0 := StepFun_P29 f); unfold is_subdivision in H0;
+ elim H0; intros; unfold adapted_couple in p; decompose [and] p;
+ assumption.
+apply StepFun_P17 with (fun x:R => Rabs (f x)) a b;
+ [ apply StepFun_P31; apply StepFun_P1
+ | apply (StepFun_P1 (mkStepFun (StepFun_P32 f))) ].
+elim n; assumption.
+Qed.
+
+Lemma StepFun_P35 :
+ forall (l:Rlist) (a b:R) (f g:R -> R),
+ ordered_Rlist l ->
+ pos_Rl l 0 = a ->
+ pos_Rl l (pred (Rlength l)) = b ->
+ (forall x:R, a < x < b -> f x <= g x) ->
+ Int_SF (FF l f) l <= Int_SF (FF l g) l.
+simple induction l; intros.
+right; reflexivity.
+simpl in |- *; induction r0 as [| r0 r1 Hrecr0].
+right; reflexivity.
+simpl in |- *; apply Rplus_le_compat.
+case (Req_dec r r0); intro.
+rewrite H4; right; ring.
+do 2 rewrite <- (Rmult_comm (r0 - r)); apply Rmult_le_compat_l.
+apply Rge_le; apply Rge_minus; apply Rle_ge; apply (H0 0%nat); simpl in |- *;
+ apply lt_O_Sn.
+apply H3; split.
+apply Rmult_lt_reg_l with 2.
+prove_sup0.
+unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ rewrite <- Rinv_r_sym.
+assert (H5 : r = a).
+apply H1.
+rewrite H5; rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l.
+assert (H6 := H0 0%nat (lt_O_Sn _)).
+simpl in H6.
+elim H6; intro.
+rewrite H5 in H7; apply H7.
+elim H4; assumption.
+discrR.
+apply Rmult_lt_reg_l with 2.
+prove_sup0.
+unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ rewrite <- Rinv_r_sym.
+rewrite Rmult_1_l; rewrite double; assert (H5 : r0 <= b).
+replace b with
+ (pos_Rl (cons r (cons r0 r1)) (pred (Rlength (cons r (cons r0 r1))))).
+replace r0 with (pos_Rl (cons r (cons r0 r1)) 1).
+elim (RList_P6 (cons r (cons r0 r1))); intros; apply H5.
+assumption.
+simpl in |- *; apply le_n_S.
+apply le_O_n.
+simpl in |- *; apply lt_n_Sn.
+reflexivity.
+apply Rle_lt_trans with (r + b).
+apply Rplus_le_compat_l; assumption.
+rewrite (Rplus_comm r); apply Rplus_lt_compat_l.
+apply Rlt_le_trans with r0.
+assert (H6 := H0 0%nat (lt_O_Sn _)).
+simpl in H6.
+elim H6; intro.
+apply H7.
+elim H4; assumption.
+assumption.
+discrR.
+simpl in H; apply H with r0 b.
+apply RList_P4 with r; assumption.
+reflexivity.
+rewrite <- H2; reflexivity.
+intros; apply H3; elim H4; intros; split; try assumption.
+apply Rle_lt_trans with r0; try assumption.
+rewrite <- H1.
+simpl in |- *; apply (H0 0%nat); simpl in |- *; apply lt_O_Sn.
+Qed.
+
+Lemma StepFun_P36 :
+ forall (a b:R) (f g:StepFun a b) (l:Rlist),
+ a <= b ->
+ is_subdivision f a b l ->
+ is_subdivision g a b l ->
+ (forall x:R, a < x < b -> f x <= g x) ->
+ RiemannInt_SF f <= RiemannInt_SF g.
+intros; unfold RiemannInt_SF in |- *; case (Rle_dec a b); intro.
+replace (Int_SF (subdivision_val f) (subdivision f)) with (Int_SF (FF l f) l).
+replace (Int_SF (subdivision_val g) (subdivision g)) with (Int_SF (FF l g) l).
+unfold is_subdivision in X; elim X; clear X; intros;
+ unfold adapted_couple in p; decompose [and] p; clear p;
+ assert (H5 : Rmin a b = a);
+ [ unfold Rmin in |- *; case (Rle_dec a b); intro;
+ [ reflexivity | elim n; assumption ]
+ | assert (H7 : Rmax a b = b);
+ [ unfold Rmax in |- *; case (Rle_dec a b); intro;
+ [ reflexivity | elim n; assumption ]
+ | rewrite H5 in H3; rewrite H7 in H2; eapply StepFun_P35 with a b;
+ assumption ] ].
+apply StepFun_P17 with (fe g) a b;
+ [ apply StepFun_P21; assumption | apply StepFun_P1 ].
+apply StepFun_P17 with (fe f) a b;
+ [ apply StepFun_P21; assumption | apply StepFun_P1 ].
+elim n; assumption.
+Qed.
+
+Lemma StepFun_P37 :
+ forall (a b:R) (f g:StepFun a b),
+ a <= b ->
+ (forall x:R, a < x < b -> f x <= g x) ->
+ RiemannInt_SF f <= RiemannInt_SF g.
+intros; eapply StepFun_P36; try assumption.
+eapply StepFun_P25; apply StepFun_P29.
+eapply StepFun_P23; apply StepFun_P29.
+Qed.
+
+Lemma StepFun_P38 :
+ forall (l:Rlist) (a b:R) (f:R -> R),
+ ordered_Rlist l ->
+ pos_Rl l 0 = a ->
+ pos_Rl l (pred (Rlength l)) = b ->
+ sigT
+ (fun g:StepFun a b =>
+ g b = f b /\
+ (forall i:nat,
+ (i < pred (Rlength l))%nat ->
+ constant_D_eq g (co_interval (pos_Rl l i) (pos_Rl l (S i)))
+ (f (pos_Rl l i)))).
+intros l a b f; generalize a; clear a; induction l.
+intros a H H0 H1; simpl in H0; simpl in H1;
+ exists (mkStepFun (StepFun_P4 a b (f b))); split.
+reflexivity.
+intros; elim (lt_n_O _ H2).
+intros; destruct l as [| r1 l].
+simpl in H1; simpl in H0; exists (mkStepFun (StepFun_P4 a b (f b))); split.
+reflexivity.
+intros i H2; elim (lt_n_O _ H2).
+intros; assert (H2 : ordered_Rlist (cons r1 l)).
+apply RList_P4 with r; assumption.
+assert (H3 : pos_Rl (cons r1 l) 0 = r1).
+reflexivity.
+assert (H4 : pos_Rl (cons r1 l) (pred (Rlength (cons r1 l))) = b).
+rewrite <- H1; reflexivity.
+elim (IHl r1 H2 H3 H4); intros g [H5 H6].
+set
+ (g' :=
+ fun x:R => match Rle_dec r1 x with
+ | left _ => g x
+ | right _ => f a
+ end).
+assert (H7 : r1 <= b).
+rewrite <- H4; apply RList_P7; [ assumption | left; reflexivity ].
+assert (H8 : IsStepFun g' a b).
+unfold IsStepFun in |- *; assert (H8 := pre g); unfold IsStepFun in H8;
+ elim H8; intros lg H9; unfold is_subdivision in H9;
+ elim H9; clear H9; intros lg2 H9; split with (cons a lg);
+ unfold is_subdivision in |- *; split with (cons (f a) lg2);
+ unfold adapted_couple in H9; decompose [and] H9; clear H9;
+ unfold adapted_couple in |- *; repeat split.
+unfold ordered_Rlist in |- *; intros; simpl in H9;
+ induction i as [| i Hreci].
+simpl in |- *; rewrite H12; replace (Rmin r1 b) with r1.
+simpl in H0; rewrite <- H0; apply (H 0%nat); simpl in |- *; apply lt_O_Sn.
+unfold Rmin in |- *; case (Rle_dec r1 b); intro;
+ [ reflexivity | elim n; assumption ].
+apply (H10 i); apply lt_S_n.
+replace (S (pred (Rlength lg))) with (Rlength lg).
+apply H9.
+apply S_pred with 0%nat; apply neq_O_lt; intro; rewrite <- H14 in H9;
+ elim (lt_n_O _ H9).
+simpl in |- *; assert (H14 : a <= b).
+rewrite <- H1; simpl in H0; rewrite <- H0; apply RList_P7;
+ [ assumption | left; reflexivity ].
+unfold Rmin in |- *; case (Rle_dec a b); intro;
+ [ reflexivity | elim n; assumption ].
+assert (H14 : a <= b).
+rewrite <- H1; simpl in H0; rewrite <- H0; apply RList_P7;
+ [ assumption | left; reflexivity ].
+replace (Rmax a b) with (Rmax r1 b).
+rewrite <- H11; induction lg as [| r0 lg Hreclg].
+simpl in H13; discriminate.
+reflexivity.
+unfold Rmax in |- *; case (Rle_dec a b); case (Rle_dec r1 b); intros;
+ reflexivity || elim n; assumption.
+simpl in |- *; rewrite H13; reflexivity.
+intros; simpl in H9; induction i as [| i Hreci].
+unfold constant_D_eq, open_interval in |- *; simpl in |- *; intros;
+ assert (H16 : Rmin r1 b = r1).
+unfold Rmin in |- *; case (Rle_dec r1 b); intro;
+ [ reflexivity | elim n; assumption ].
+rewrite H16 in H12; rewrite H12 in H14; elim H14; clear H14; intros _ H14;
+ unfold g' in |- *; case (Rle_dec r1 x); intro r3.
+elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r3 H14)).
+reflexivity.
+change
+ (constant_D_eq g' (open_interval (pos_Rl lg i) (pos_Rl lg (S i)))
+ (pos_Rl lg2 i)) in |- *; clear Hreci; assert (H16 := H15 i);
+ assert (H17 : (i < pred (Rlength lg))%nat).
+apply lt_S_n.
+replace (S (pred (Rlength lg))) with (Rlength lg).
+assumption.
+apply S_pred with 0%nat; apply neq_O_lt; red in |- *; intro;
+ rewrite <- H14 in H9; elim (lt_n_O _ H9).
+assert (H18 := H16 H17); unfold constant_D_eq, open_interval in H18;
+ unfold constant_D_eq, open_interval in |- *; intros;
+ assert (H19 := H18 _ H14); rewrite <- H19; unfold g' in |- *;
+ case (Rle_dec r1 x); intro.
+reflexivity.
+elim n; replace r1 with (Rmin r1 b).
+rewrite <- H12; elim H14; clear H14; intros H14 _; left;
+ apply Rle_lt_trans with (pos_Rl lg i); try assumption.
+apply RList_P5.
+assumption.
+elim (RList_P3 lg (pos_Rl lg i)); intros; apply H21; exists i; split.
+reflexivity.
+apply lt_trans with (pred (Rlength lg)); try assumption.
+apply lt_pred_n_n; apply neq_O_lt; red in |- *; intro; rewrite <- H22 in H17;
+ elim (lt_n_O _ H17).
+unfold Rmin in |- *; case (Rle_dec r1 b); intro;
+ [ reflexivity | elim n0; assumption ].
+exists (mkStepFun H8); split.
+simpl in |- *; unfold g' in |- *; case (Rle_dec r1 b); intro.
+assumption.
+elim n; assumption.
+intros; simpl in H9; induction i as [| i Hreci].
+unfold constant_D_eq, co_interval in |- *; simpl in |- *; intros; simpl in H0;
+ rewrite H0; elim H10; clear H10; intros; unfold g' in |- *;
+ case (Rle_dec r1 x); intro r3.
+elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ r3 H11)).
+reflexivity.
+clear Hreci;
+ change
+ (constant_D_eq (mkStepFun H8)
+ (co_interval (pos_Rl (cons r1 l) i) (pos_Rl (cons r1 l) (S i)))
+ (f (pos_Rl (cons r1 l) i))) in |- *; assert (H10 := H6 i);
+ assert (H11 : (i < pred (Rlength (cons r1 l)))%nat).
+simpl in |- *; apply lt_S_n; assumption.
+assert (H12 := H10 H11); unfold constant_D_eq, co_interval in H12;
+ unfold constant_D_eq, co_interval in |- *; intros;
+ rewrite <- (H12 _ H13); simpl in |- *; unfold g' in |- *;
+ case (Rle_dec r1 x); intro.
+reflexivity.
+elim n; elim H13; clear H13; intros;
+ apply Rle_trans with (pos_Rl (cons r1 l) i); try assumption;
+ change (pos_Rl (cons r1 l) 0 <= pos_Rl (cons r1 l) i) in |- *;
+ elim (RList_P6 (cons r1 l)); intros; apply H15;
+ [ assumption
+ | apply le_O_n
+ | simpl in |- *; apply lt_trans with (Rlength l);
+ [ apply lt_S_n; assumption | apply lt_n_Sn ] ].
+Qed.
+
+Lemma StepFun_P39 :
+ forall (a b:R) (f:StepFun a b),
+ RiemannInt_SF f = - RiemannInt_SF (mkStepFun (StepFun_P6 (pre f))).
+intros; unfold RiemannInt_SF in |- *; case (Rle_dec a b); case (Rle_dec b a);
+ intros.
+assert (H : adapted_couple f a b (subdivision f) (subdivision_val f));
+ [ apply StepFun_P1
+ | assert
+ (H0 :
+ adapted_couple (mkStepFun (StepFun_P6 (pre f))) b a
+ (subdivision (mkStepFun (StepFun_P6 (pre f))))
+ (subdivision_val (mkStepFun (StepFun_P6 (pre f)))));
+ [ apply StepFun_P1
+ | assert (H1 : a = b);
+ [ apply Rle_antisym; assumption
+ | rewrite (StepFun_P8 H H1); assert (H2 : b = a);
+ [ symmetry in |- *; apply H1 | rewrite (StepFun_P8 H0 H2); ring ] ] ] ].
+rewrite Ropp_involutive; eapply StepFun_P17;
+ [ apply StepFun_P1
+ | apply StepFun_P2; set (H := StepFun_P6 (pre f)); unfold IsStepFun in H;
+ elim H; intros; unfold is_subdivision in |- *;
+ elim p; intros; apply p0 ].
+apply Ropp_eq_compat; eapply StepFun_P17;
+ [ apply StepFun_P1
+ | apply StepFun_P2; set (H := StepFun_P6 (pre f)); unfold IsStepFun in H;
+ elim H; intros; unfold is_subdivision in |- *;
+ elim p; intros; apply p0 ].
+assert (H : a < b);
+ [ auto with real
+ | assert (H0 : b < a);
+ [ auto with real | elim (Rlt_irrefl _ (Rlt_trans _ _ _ H H0)) ] ].
+Qed.
+
+Lemma StepFun_P40 :
+ forall (f:R -> R) (a b c:R) (l1 l2 lf1 lf2:Rlist),
+ a < b ->
+ b < c ->
+ adapted_couple f a b l1 lf1 ->
+ adapted_couple f b c l2 lf2 ->
+ adapted_couple f a c (cons_Rlist l1 l2) (FF (cons_Rlist l1 l2) f).
+intros f a b c l1 l2 lf1 lf2 H H0 H1 H2; unfold adapted_couple in H1, H2;
+ unfold adapted_couple in |- *; decompose [and] H1;
+ decompose [and] H2; clear H1 H2; repeat split.
+apply RList_P25; try assumption.
+rewrite H10; rewrite H4; unfold Rmin, Rmax in |- *; case (Rle_dec a b);
+ case (Rle_dec b c); intros;
+ (right; reflexivity) || (elim n; left; assumption).
+rewrite RList_P22.
+rewrite H5; unfold Rmin, Rmax in |- *; case (Rle_dec a b); case (Rle_dec a c);
+ intros;
+ [ reflexivity
+ | elim n; apply Rle_trans with b; left; assumption
+ | elim n; left; assumption
+ | elim n0; left; assumption ].
+red in |- *; intro; rewrite H1 in H6; discriminate.
+rewrite RList_P24.
+rewrite H9; unfold Rmin, Rmax in |- *; case (Rle_dec b c); case (Rle_dec a c);
+ intros;
+ [ reflexivity
+ | elim n; apply Rle_trans with b; left; assumption
+ | elim n; left; assumption
+ | elim n0; left; assumption ].
+red in |- *; intro; rewrite H1 in H11; discriminate.
+apply StepFun_P20.
+rewrite RList_P23; apply neq_O_lt; red in |- *; intro.
+assert (H2 : (Rlength l1 + Rlength l2)%nat = 0%nat).
+symmetry in |- *; apply H1.
+elim (plus_is_O _ _ H2); intros; rewrite H12 in H6; discriminate.
+unfold constant_D_eq, open_interval in |- *; intros;
+ elim (le_or_lt (S (S i)) (Rlength l1)); intro.
+assert (H14 : pos_Rl (cons_Rlist l1 l2) i = pos_Rl l1 i).
+apply RList_P26; apply lt_S_n; apply le_lt_n_Sm; apply le_S_n;
+ apply le_trans with (Rlength l1); [ assumption | apply le_n_Sn ].
+assert (H15 : pos_Rl (cons_Rlist l1 l2) (S i) = pos_Rl l1 (S i)).
+apply RList_P26; apply lt_S_n; apply le_lt_n_Sm; assumption.
+rewrite H14 in H2; rewrite H15 in H2; assert (H16 : (2 <= Rlength l1)%nat).
+apply le_trans with (S (S i));
+ [ repeat apply le_n_S; apply le_O_n | assumption ].
+elim (RList_P20 _ H16); intros r1 [r2 [r3 H17]]; rewrite H17;
+ change
+ (f x = pos_Rl (app_Rlist (mid_Rlist (cons_Rlist (cons r2 r3) l2) r1) f) i)
+ in |- *; rewrite RList_P12.
+induction i as [| i Hreci].
+simpl in |- *; assert (H18 := H8 0%nat);
+ unfold constant_D_eq, open_interval in H18;
+ assert (H19 : (0 < pred (Rlength l1))%nat).
+rewrite H17; simpl in |- *; apply lt_O_Sn.
+assert (H20 := H18 H19); repeat rewrite H20.
+reflexivity.
+assert (H21 : r1 <= r2).
+rewrite H17 in H3; apply (H3 0%nat).
+simpl in |- *; apply lt_O_Sn.
+elim H21; intro.
+split.
+rewrite H17; simpl in |- *; apply Rmult_lt_reg_l with 2;
+ [ prove_sup0
+ | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; assumption
+ | discrR ] ].
+rewrite H17; simpl in |- *; apply Rmult_lt_reg_l with 2;
+ [ prove_sup0
+ | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_l; rewrite (Rplus_comm r1); rewrite double;
+ apply Rplus_lt_compat_l; assumption
+ | discrR ] ].
+elim H2; intros; rewrite H17 in H23; rewrite H17 in H24; simpl in H24;
+ simpl in H23; rewrite H22 in H23;
+ elim (Rlt_irrefl _ (Rlt_trans _ _ _ H23 H24)).
+assumption.
+clear Hreci; rewrite RList_P13.
+rewrite H17 in H14; rewrite H17 in H15;
+ change
+ (pos_Rl (cons_Rlist (cons r2 r3) l2) i =
+ pos_Rl (cons r1 (cons r2 r3)) (S i)) in H14; rewrite H14;
+ change
+ (pos_Rl (cons_Rlist (cons r2 r3) l2) (S i) =
+ pos_Rl (cons r1 (cons r2 r3)) (S (S i))) in H15;
+ rewrite H15; assert (H18 := H8 (S i));
+ unfold constant_D_eq, open_interval in H18;
+ assert (H19 : (S i < pred (Rlength l1))%nat).
+apply lt_pred; apply lt_S_n; apply le_lt_n_Sm; assumption.
+assert (H20 := H18 H19); repeat rewrite H20.
+reflexivity.
+rewrite <- H17; assert (H21 : pos_Rl l1 (S i) <= pos_Rl l1 (S (S i))).
+apply (H3 (S i)); apply lt_pred; apply lt_S_n; apply le_lt_n_Sm; assumption.
+elim H21; intro.
+split.
+apply Rmult_lt_reg_l with 2;
+ [ prove_sup0
+ | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; assumption
+ | discrR ] ].
+apply Rmult_lt_reg_l with 2;
+ [ prove_sup0
+ | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_l; rewrite (Rplus_comm (pos_Rl l1 (S i)));
+ rewrite double; apply Rplus_lt_compat_l; assumption
+ | discrR ] ].
+elim H2; intros; rewrite H22 in H23;
+ elim (Rlt_irrefl _ (Rlt_trans _ _ _ H23 H24)).
+assumption.
+simpl in |- *; rewrite H17 in H1; simpl in H1; apply lt_S_n; assumption.
+rewrite RList_P14; rewrite H17 in H1; simpl in H1; apply H1.
+inversion H12.
+assert (H16 : pos_Rl (cons_Rlist l1 l2) (S i) = b).
+rewrite RList_P29.
+rewrite H15; rewrite <- minus_n_n; rewrite H10; unfold Rmin in |- *;
+ case (Rle_dec b c); intro; [ reflexivity | elim n; left; assumption ].
+rewrite H15; apply le_n.
+induction l1 as [| r l1 Hrecl1].
+simpl in H15; discriminate.
+clear Hrecl1; simpl in H1; simpl in |- *; apply lt_n_S; assumption.
+assert (H17 : pos_Rl (cons_Rlist l1 l2) i = b).
+rewrite RList_P26.
+replace i with (pred (Rlength l1));
+ [ rewrite H4; unfold Rmax in |- *; case (Rle_dec a b); intro;
+ [ reflexivity | elim n; left; assumption ]
+ | rewrite H15; reflexivity ].
+rewrite H15; apply lt_n_Sn.
+rewrite H16 in H2; rewrite H17 in H2; elim H2; intros;
+ elim (Rlt_irrefl _ (Rlt_trans _ _ _ H14 H18)).
+assert (H16 : pos_Rl (cons_Rlist l1 l2) i = pos_Rl l2 (i - Rlength l1)).
+apply RList_P29.
+apply le_S_n; assumption.
+apply lt_le_trans with (pred (Rlength (cons_Rlist l1 l2)));
+ [ assumption | apply le_pred_n ].
+assert
+ (H17 : pos_Rl (cons_Rlist l1 l2) (S i) = pos_Rl l2 (S (i - Rlength l1))).
+replace (S (i - Rlength l1)) with (S i - Rlength l1)%nat.
+apply RList_P29.
+apply le_S_n; apply le_trans with (S i); [ assumption | apply le_n_Sn ].
+induction l1 as [| r l1 Hrecl1].
+simpl in H6; discriminate.
+clear Hrecl1; simpl in H1; simpl in |- *; apply lt_n_S; assumption.
+symmetry in |- *; apply minus_Sn_m; apply le_S_n; assumption.
+assert (H18 : (2 <= Rlength l1)%nat).
+clear f c l2 lf2 H0 H3 H8 H7 H10 H9 H11 H13 i H1 x H2 H12 m H14 H15 H16 H17;
+ induction l1 as [| r l1 Hrecl1].
+discriminate.
+clear Hrecl1; induction l1 as [| r0 l1 Hrecl1].
+simpl in H5; simpl in H4; assert (H0 : Rmin a b < Rmax a b).
+unfold Rmin, Rmax in |- *; case (Rle_dec a b); intro;
+ [ assumption | elim n; left; assumption ].
+rewrite <- H5 in H0; rewrite <- H4 in H0; elim (Rlt_irrefl _ H0).
+clear Hrecl1; simpl in |- *; repeat apply le_n_S; apply le_O_n.
+elim (RList_P20 _ H18); intros r1 [r2 [r3 H19]]; rewrite H19;
+ change
+ (f x = pos_Rl (app_Rlist (mid_Rlist (cons_Rlist (cons r2 r3) l2) r1) f) i)
+ in |- *; rewrite RList_P12.
+induction i as [| i Hreci].
+assert (H20 := le_S_n _ _ H15); assert (H21 := le_trans _ _ _ H18 H20);
+ elim (le_Sn_O _ H21).
+clear Hreci; rewrite RList_P13.
+rewrite H19 in H16; rewrite H19 in H17;
+ change
+ (pos_Rl (cons_Rlist (cons r2 r3) l2) i =
+ pos_Rl l2 (S i - Rlength (cons r1 (cons r2 r3))))
+ in H16; rewrite H16;
+ change
+ (pos_Rl (cons_Rlist (cons r2 r3) l2) (S i) =
+ pos_Rl l2 (S (S i - Rlength (cons r1 (cons r2 r3)))))
+ in H17; rewrite H17; assert (H20 := H13 (S i - Rlength l1)%nat);
+ unfold constant_D_eq, open_interval in H20;
+ assert (H21 : (S i - Rlength l1 < pred (Rlength l2))%nat).
+apply lt_pred; rewrite minus_Sn_m.
+apply plus_lt_reg_l with (Rlength l1); rewrite <- le_plus_minus.
+rewrite H19 in H1; simpl in H1; rewrite H19; simpl in |- *;
+ rewrite RList_P23 in H1; apply lt_n_S; assumption.
+apply le_trans with (S i); [ apply le_S_n; assumption | apply le_n_Sn ].
+apply le_S_n; assumption.
+assert (H22 := H20 H21); repeat rewrite H22.
+reflexivity.
+rewrite <- H19;
+ assert
+ (H23 : pos_Rl l2 (S i - Rlength l1) <= pos_Rl l2 (S (S i - Rlength l1))).
+apply H7; apply lt_pred.
+rewrite minus_Sn_m.
+apply plus_lt_reg_l with (Rlength l1); rewrite <- le_plus_minus.
+rewrite H19 in H1; simpl in H1; rewrite H19; simpl in |- *;
+ rewrite RList_P23 in H1; apply lt_n_S; assumption.
+apply le_trans with (S i); [ apply le_S_n; assumption | apply le_n_Sn ].
+apply le_S_n; assumption.
+elim H23; intro.
+split.
+apply Rmult_lt_reg_l with 2;
+ [ prove_sup0
+ | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_l; rewrite double; apply Rplus_lt_compat_l; assumption
+ | discrR ] ].
+apply Rmult_lt_reg_l with 2;
+ [ prove_sup0
+ | unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2)); rewrite <- Rmult_assoc;
+ rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_l; rewrite (Rplus_comm (pos_Rl l2 (S i - Rlength l1)));
+ rewrite double; apply Rplus_lt_compat_l; assumption
+ | discrR ] ].
+rewrite <- H19 in H16; rewrite <- H19 in H17; elim H2; intros;
+ rewrite H19 in H25; rewrite H19 in H26; simpl in H25;
+ simpl in H16; rewrite H16 in H25; simpl in H26; simpl in H17;
+ rewrite H17 in H26; simpl in H24; rewrite H24 in H25;
+ elim (Rlt_irrefl _ (Rlt_trans _ _ _ H25 H26)).
+assert (H23 : pos_Rl (cons_Rlist l1 l2) (S i) = pos_Rl l2 (S i - Rlength l1)).
+rewrite H19; simpl in |- *; simpl in H16; apply H16.
+assert
+ (H24 :
+ pos_Rl (cons_Rlist l1 l2) (S (S i)) = pos_Rl l2 (S (S i - Rlength l1))).
+rewrite H19; simpl in |- *; simpl in H17; apply H17.
+rewrite <- H23; rewrite <- H24; assumption.
+simpl in |- *; rewrite H19 in H1; simpl in H1; apply lt_S_n; assumption.
+rewrite RList_P14; rewrite H19 in H1; simpl in H1; simpl in |- *; apply H1.
+Qed.
+
+Lemma StepFun_P41 :
+ forall (f:R -> R) (a b c:R),
+ a <= b -> b <= c -> IsStepFun f a b -> IsStepFun f b c -> IsStepFun f a c.
+unfold IsStepFun in |- *; unfold is_subdivision in |- *; intros; elim X;
+ clear X; intros l1 [lf1 H1]; elim X0; clear X0; intros l2 [lf2 H2];
+ case (total_order_T a b); intro.
+elim s; intro.
+case (total_order_T b c); intro.
+elim s0; intro.
+split with (cons_Rlist l1 l2); split with (FF (cons_Rlist l1 l2) f);
+ apply StepFun_P40 with b lf1 lf2; assumption.
+split with l1; split with lf1; rewrite b0 in H1; assumption.
+elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H0 r)).
+split with l2; split with lf2; rewrite <- b0 in H2; assumption.
+elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H r)).
+Qed.
+
+Lemma StepFun_P42 :
+ forall (l1 l2:Rlist) (f:R -> R),
+ pos_Rl l1 (pred (Rlength l1)) = pos_Rl l2 0 ->
+ Int_SF (FF (cons_Rlist l1 l2) f) (cons_Rlist l1 l2) =
+ Int_SF (FF l1 f) l1 + Int_SF (FF l2 f) l2.
+intros l1 l2 f; induction l1 as [| r l1 IHl1]; intros H;
+ [ simpl in |- *; ring
+ | destruct l1 as [| r0 r1];
+ [ simpl in H; simpl in |- *; destruct l2 as [| r0 r1];
+ [ simpl in |- *; ring | simpl in |- *; simpl in H; rewrite H; ring ]
+ | simpl in |- *; rewrite Rplus_assoc; apply Rplus_eq_compat_l; apply IHl1;
+ rewrite <- H; reflexivity ] ].
+Qed.
+
+Lemma StepFun_P43 :
+ forall (f:R -> R) (a b c:R) (pr1:IsStepFun f a b)
+ (pr2:IsStepFun f b c) (pr3:IsStepFun f a c),
+ RiemannInt_SF (mkStepFun pr1) + RiemannInt_SF (mkStepFun pr2) =
+ RiemannInt_SF (mkStepFun pr3).
+intros f; intros;
+ assert
+ (H1 :
+ sigT (fun l:Rlist => sigT (fun l0:Rlist => adapted_couple f a b l l0))).
+apply pr1.
+assert
+ (H2 :
+ sigT (fun l:Rlist => sigT (fun l0:Rlist => adapted_couple f b c l l0))).
+apply pr2.
+assert
+ (H3 :
+ sigT (fun l:Rlist => sigT (fun l0:Rlist => adapted_couple f a c l l0))).
+apply pr3.
+elim H1; clear H1; intros l1 [lf1 H1]; elim H2; clear H2; intros l2 [lf2 H2];
+ elim H3; clear H3; intros l3 [lf3 H3].
+replace (RiemannInt_SF (mkStepFun pr1)) with
+ match Rle_dec a b with
+ | left _ => Int_SF lf1 l1
+ | right _ => - Int_SF lf1 l1
+ end.
+replace (RiemannInt_SF (mkStepFun pr2)) with
+ match Rle_dec b c with
+ | left _ => Int_SF lf2 l2
+ | right _ => - Int_SF lf2 l2
+ end.
+replace (RiemannInt_SF (mkStepFun pr3)) with
+ match Rle_dec a c with
+ | left _ => Int_SF lf3 l3
+ | right _ => - Int_SF lf3 l3
+ end.
+case (Rle_dec a b); case (Rle_dec b c); case (Rle_dec a c); intros.
+elim r1; intro.
+elim r0; intro.
+replace (Int_SF lf3 l3) with
+ (Int_SF (FF (cons_Rlist l1 l2) f) (cons_Rlist l1 l2)).
+replace (Int_SF lf1 l1) with (Int_SF (FF l1 f) l1).
+replace (Int_SF lf2 l2) with (Int_SF (FF l2 f) l2).
+symmetry in |- *; apply StepFun_P42.
+unfold adapted_couple in H1, H2; decompose [and] H1; decompose [and] H2;
+ clear H1 H2; rewrite H11; rewrite H5; unfold Rmax, Rmin in |- *;
+ case (Rle_dec a b); case (Rle_dec b c); intros; reflexivity || elim n;
+ assumption.
+eapply StepFun_P17;
+ [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf2; apply H2;
+ assumption
+ | assumption ].
+eapply StepFun_P17;
+ [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf1; apply H1
+ | assumption ].
+eapply StepFun_P17; [ apply (StepFun_P40 H H0 H1 H2) | apply H3 ].
+replace (Int_SF lf2 l2) with 0.
+rewrite Rplus_0_r; eapply StepFun_P17;
+ [ apply H1 | rewrite <- H0 in H3; apply H3 ].
+symmetry in |- *; eapply StepFun_P8; [ apply H2 | assumption ].
+replace (Int_SF lf1 l1) with 0.
+rewrite Rplus_0_l; eapply StepFun_P17;
+ [ apply H2 | rewrite H in H3; apply H3 ].
+symmetry in |- *; eapply StepFun_P8; [ apply H1 | assumption ].
+elim n; apply Rle_trans with b; assumption.
+apply Rplus_eq_reg_l with (Int_SF lf2 l2);
+ replace (Int_SF lf2 l2 + (Int_SF lf1 l1 + - Int_SF lf2 l2)) with
+ (Int_SF lf1 l1); [ idtac | ring ].
+assert (H : c < b).
+auto with real.
+elim r; intro.
+rewrite Rplus_comm;
+ replace (Int_SF lf1 l1) with
+ (Int_SF (FF (cons_Rlist l3 l2) f) (cons_Rlist l3 l2)).
+replace (Int_SF lf3 l3) with (Int_SF (FF l3 f) l3).
+replace (Int_SF lf2 l2) with (Int_SF (FF l2 f) l2).
+apply StepFun_P42.
+unfold adapted_couple in H2, H3; decompose [and] H2; decompose [and] H3;
+ clear H3 H2; rewrite H10; rewrite H6; unfold Rmax, Rmin in |- *;
+ case (Rle_dec a c); case (Rle_dec b c); intros;
+ [ elim n; assumption
+ | reflexivity
+ | elim n0; assumption
+ | elim n1; assumption ].
+eapply StepFun_P17;
+ [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf2; apply H2
+ | assumption ].
+eapply StepFun_P17;
+ [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf3; apply H3
+ | assumption ].
+eapply StepFun_P17;
+ [ apply (StepFun_P40 H0 H H3 (StepFun_P2 H2)) | apply H1 ].
+replace (Int_SF lf3 l3) with 0.
+rewrite Rplus_0_r; eapply StepFun_P17;
+ [ apply H1 | apply StepFun_P2; rewrite <- H0 in H2; apply H2 ].
+symmetry in |- *; eapply StepFun_P8; [ apply H3 | assumption ].
+replace (Int_SF lf2 l2) with (Int_SF lf3 l3 + Int_SF lf1 l1).
+ring.
+elim r; intro.
+replace (Int_SF lf2 l2) with
+ (Int_SF (FF (cons_Rlist l3 l1) f) (cons_Rlist l3 l1)).
+replace (Int_SF lf3 l3) with (Int_SF (FF l3 f) l3).
+replace (Int_SF lf1 l1) with (Int_SF (FF l1 f) l1).
+symmetry in |- *; apply StepFun_P42.
+unfold adapted_couple in H1, H3; decompose [and] H1; decompose [and] H3;
+ clear H3 H1; rewrite H9; rewrite H5; unfold Rmax, Rmin in |- *;
+ case (Rle_dec a c); case (Rle_dec a b); intros;
+ [ elim n; assumption
+ | elim n1; assumption
+ | reflexivity
+ | elim n1; assumption ].
+eapply StepFun_P17;
+ [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf1; apply H1
+ | assumption ].
+eapply StepFun_P17;
+ [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf3; apply H3
+ | assumption ].
+eapply StepFun_P17.
+assert (H0 : c < a).
+auto with real.
+apply (StepFun_P40 H0 H (StepFun_P2 H3) H1).
+apply StepFun_P2; apply H2.
+replace (Int_SF lf1 l1) with 0.
+rewrite Rplus_0_r; eapply StepFun_P17;
+ [ apply H3 | rewrite <- H in H2; apply H2 ].
+symmetry in |- *; eapply StepFun_P8; [ apply H1 | assumption ].
+assert (H : b < a).
+auto with real.
+replace (Int_SF lf2 l2) with (Int_SF lf3 l3 + Int_SF lf1 l1).
+ring.
+rewrite Rplus_comm; elim r; intro.
+replace (Int_SF lf2 l2) with
+ (Int_SF (FF (cons_Rlist l1 l3) f) (cons_Rlist l1 l3)).
+replace (Int_SF lf3 l3) with (Int_SF (FF l3 f) l3).
+replace (Int_SF lf1 l1) with (Int_SF (FF l1 f) l1).
+symmetry in |- *; apply StepFun_P42.
+unfold adapted_couple in H1, H3; decompose [and] H1; decompose [and] H3;
+ clear H3 H1; rewrite H11; rewrite H5; unfold Rmax, Rmin in |- *;
+ case (Rle_dec a c); case (Rle_dec a b); intros;
+ [ elim n; assumption
+ | reflexivity
+ | elim n0; assumption
+ | elim n1; assumption ].
+eapply StepFun_P17;
+ [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf1; apply H1
+ | assumption ].
+eapply StepFun_P17;
+ [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf3; apply H3
+ | assumption ].
+eapply StepFun_P17.
+apply (StepFun_P40 H H0 (StepFun_P2 H1) H3).
+apply H2.
+replace (Int_SF lf3 l3) with 0.
+rewrite Rplus_0_r; eapply StepFun_P17;
+ [ apply H1 | rewrite <- H0 in H2; apply StepFun_P2; apply H2 ].
+symmetry in |- *; eapply StepFun_P8; [ apply H3 | assumption ].
+assert (H : c < a).
+auto with real.
+replace (Int_SF lf1 l1) with (Int_SF lf2 l2 + Int_SF lf3 l3).
+ring.
+elim r; intro.
+replace (Int_SF lf1 l1) with
+ (Int_SF (FF (cons_Rlist l2 l3) f) (cons_Rlist l2 l3)).
+replace (Int_SF lf3 l3) with (Int_SF (FF l3 f) l3).
+replace (Int_SF lf2 l2) with (Int_SF (FF l2 f) l2).
+symmetry in |- *; apply StepFun_P42.
+unfold adapted_couple in H2, H3; decompose [and] H2; decompose [and] H3;
+ clear H3 H2; rewrite H11; rewrite H5; unfold Rmax, Rmin in |- *;
+ case (Rle_dec a c); case (Rle_dec b c); intros;
+ [ elim n; assumption
+ | elim n1; assumption
+ | reflexivity
+ | elim n1; assumption ].
+eapply StepFun_P17;
+ [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf2; apply H2
+ | assumption ].
+eapply StepFun_P17;
+ [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf3; apply H3
+ | assumption ].
+eapply StepFun_P17.
+apply (StepFun_P40 H0 H H2 (StepFun_P2 H3)).
+apply StepFun_P2; apply H1.
+replace (Int_SF lf2 l2) with 0.
+rewrite Rplus_0_l; eapply StepFun_P17;
+ [ apply H3 | rewrite H0 in H1; apply H1 ].
+symmetry in |- *; eapply StepFun_P8; [ apply H2 | assumption ].
+elim n; apply Rle_trans with a; try assumption.
+auto with real.
+assert (H : c < b).
+auto with real.
+assert (H0 : b < a).
+auto with real.
+replace (Int_SF lf3 l3) with (Int_SF lf2 l2 + Int_SF lf1 l1).
+ring.
+replace (Int_SF lf3 l3) with
+ (Int_SF (FF (cons_Rlist l2 l1) f) (cons_Rlist l2 l1)).
+replace (Int_SF lf1 l1) with (Int_SF (FF l1 f) l1).
+replace (Int_SF lf2 l2) with (Int_SF (FF l2 f) l2).
+symmetry in |- *; apply StepFun_P42.
+unfold adapted_couple in H2, H1; decompose [and] H2; decompose [and] H1;
+ clear H1 H2; rewrite H11; rewrite H5; unfold Rmax, Rmin in |- *;
+ case (Rle_dec a b); case (Rle_dec b c); intros;
+ [ elim n1; assumption
+ | elim n1; assumption
+ | elim n0; assumption
+ | reflexivity ].
+eapply StepFun_P17;
+ [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf2; apply H2
+ | assumption ].
+eapply StepFun_P17;
+ [ apply StepFun_P21; unfold is_subdivision in |- *; split with lf1; apply H1
+ | assumption ].
+eapply StepFun_P17.
+apply (StepFun_P40 H H0 (StepFun_P2 H2) (StepFun_P2 H1)).
+apply StepFun_P2; apply H3.
+unfold RiemannInt_SF in |- *; case (Rle_dec a c); intro.
+eapply StepFun_P17.
+apply H3.
+change
+ (adapted_couple (mkStepFun pr3) a c (subdivision (mkStepFun pr3))
+ (subdivision_val (mkStepFun pr3))) in |- *; apply StepFun_P1.
+apply Ropp_eq_compat; eapply StepFun_P17.
+apply H3.
+change
+ (adapted_couple (mkStepFun pr3) a c (subdivision (mkStepFun pr3))
+ (subdivision_val (mkStepFun pr3))) in |- *; apply StepFun_P1.
+unfold RiemannInt_SF in |- *; case (Rle_dec b c); intro.
+eapply StepFun_P17.
+apply H2.
+change
+ (adapted_couple (mkStepFun pr2) b c (subdivision (mkStepFun pr2))
+ (subdivision_val (mkStepFun pr2))) in |- *; apply StepFun_P1.
+apply Ropp_eq_compat; eapply StepFun_P17.
+apply H2.
+change
+ (adapted_couple (mkStepFun pr2) b c (subdivision (mkStepFun pr2))
+ (subdivision_val (mkStepFun pr2))) in |- *; apply StepFun_P1.
+unfold RiemannInt_SF in |- *; case (Rle_dec a b); intro.
+eapply StepFun_P17.
+apply H1.
+change
+ (adapted_couple (mkStepFun pr1) a b (subdivision (mkStepFun pr1))
+ (subdivision_val (mkStepFun pr1))) in |- *; apply StepFun_P1.
+apply Ropp_eq_compat; eapply StepFun_P17.
+apply H1.
+change
+ (adapted_couple (mkStepFun pr1) a b (subdivision (mkStepFun pr1))
+ (subdivision_val (mkStepFun pr1))) in |- *; apply StepFun_P1.
+Qed.
+
+Lemma StepFun_P44 :
+ forall (f:R -> R) (a b c:R),
+ IsStepFun f a b -> a <= c <= b -> IsStepFun f a c.
+intros f; intros; assert (H0 : a <= b).
+elim H; intros; apply Rle_trans with c; assumption.
+elim H; clear H; intros; unfold IsStepFun in X; unfold is_subdivision in X;
+ elim X; clear X; intros l1 [lf1 H2];
+ cut
+ (forall (l1 lf1:Rlist) (a b c:R) (f:R -> R),
+ adapted_couple f a b l1 lf1 ->
+ a <= c <= b ->
+ sigT (fun l:Rlist => sigT (fun l0:Rlist => adapted_couple f a c l l0))).
+intros; unfold IsStepFun in |- *; unfold is_subdivision in |- *; eapply X.
+apply H2.
+split; assumption.
+clear f a b c H0 H H1 H2 l1 lf1; simple induction l1.
+intros; unfold adapted_couple in H; decompose [and] H; clear H; simpl in H4;
+ discriminate.
+simple induction r0.
+intros; assert (H1 : a = b).
+unfold adapted_couple in H; decompose [and] H; clear H; simpl in H3;
+ simpl in H2; assert (H7 : a <= b).
+elim H0; intros; apply Rle_trans with c; assumption.
+replace a with (Rmin a b).
+pattern b at 2 in |- *; replace b with (Rmax a b).
+rewrite <- H2; rewrite H3; reflexivity.
+unfold Rmax in |- *; case (Rle_dec a b); intro;
+ [ reflexivity | elim n; assumption ].
+unfold Rmin in |- *; case (Rle_dec a b); intro;
+ [ reflexivity | elim n; assumption ].
+split with (cons r nil); split with lf1; assert (H2 : c = b).
+rewrite H1 in H0; elim H0; intros; apply Rle_antisym; assumption.
+rewrite H2; assumption.
+intros; clear X; induction lf1 as [| r3 lf1 Hreclf1].
+unfold adapted_couple in H; decompose [and] H; clear H; simpl in H4;
+ discriminate.
+clear Hreclf1; assert (H1 : {c <= r1} + {r1 < c}).
+case (Rle_dec c r1); intro; [ left; assumption | right; auto with real ].
+elim H1; intro.
+split with (cons r (cons c nil)); split with (cons r3 nil);
+ unfold adapted_couple in H; decompose [and] H; clear H;
+ assert (H6 : r = a).
+simpl in H4; rewrite H4; unfold Rmin in |- *; case (Rle_dec a b); intro;
+ [ reflexivity
+ | elim n; elim H0; intros; apply Rle_trans with c; assumption ].
+elim H0; clear H0; intros; unfold adapted_couple in |- *; repeat split.
+rewrite H6; unfold ordered_Rlist in |- *; intros; simpl in H8; inversion H8;
+ [ simpl in |- *; assumption | elim (le_Sn_O _ H10) ].
+simpl in |- *; unfold Rmin in |- *; case (Rle_dec a c); intro;
+ [ assumption | elim n; assumption ].
+simpl in |- *; unfold Rmax in |- *; case (Rle_dec a c); intro;
+ [ reflexivity | elim n; assumption ].
+unfold constant_D_eq, open_interval in |- *; intros; simpl in H8;
+ inversion H8.
+simpl in |- *; assert (H10 := H7 0%nat);
+ assert (H12 : (0 < pred (Rlength (cons r (cons r1 r2))))%nat).
+simpl in |- *; apply lt_O_Sn.
+apply (H10 H12); unfold open_interval in |- *; simpl in |- *;
+ rewrite H11 in H9; simpl in H9; elim H9; clear H9;
+ intros; split; try assumption.
+apply Rlt_le_trans with c; assumption.
+elim (le_Sn_O _ H11).
+cut (adapted_couple f r1 b (cons r1 r2) lf1).
+cut (r1 <= c <= b).
+intros.
+elim (X0 _ _ _ _ _ H3 H2); intros l1' [lf1' H4]; split with (cons r l1');
+ split with (cons r3 lf1'); unfold adapted_couple in H, H4;
+ decompose [and] H; decompose [and] H4; clear H H4 X0;
+ assert (H14 : a <= b).
+elim H0; intros; apply Rle_trans with c; assumption.
+assert (H16 : r = a).
+simpl in H7; rewrite H7; unfold Rmin in |- *; case (Rle_dec a b); intro;
+ [ reflexivity | elim n; assumption ].
+induction l1' as [| r4 l1' Hrecl1'].
+simpl in H13; discriminate.
+clear Hrecl1'; unfold adapted_couple in |- *; repeat split.
+unfold ordered_Rlist in |- *; intros; simpl in H; induction i as [| i Hreci].
+simpl in |- *; replace r4 with r1.
+apply (H5 0%nat).
+simpl in |- *; apply lt_O_Sn.
+simpl in H12; rewrite H12; unfold Rmin in |- *; case (Rle_dec r1 c); intro;
+ [ reflexivity | elim n; left; assumption ].
+apply (H9 i); simpl in |- *; apply lt_S_n; assumption.
+simpl in |- *; unfold Rmin in |- *; case (Rle_dec a c); intro;
+ [ assumption | elim n; elim H0; intros; assumption ].
+replace (Rmax a c) with (Rmax r1 c).
+rewrite <- H11; reflexivity.
+unfold Rmax in |- *; case (Rle_dec r1 c); case (Rle_dec a c); intros;
+ [ reflexivity
+ | elim n; elim H0; intros; assumption
+ | elim n; left; assumption
+ | elim n0; left; assumption ].
+simpl in |- *; simpl in H13; rewrite H13; reflexivity.
+intros; simpl in H; unfold constant_D_eq, open_interval in |- *; intros;
+ induction i as [| i Hreci].
+simpl in |- *; assert (H17 := H10 0%nat);
+ assert (H18 : (0 < pred (Rlength (cons r (cons r1 r2))))%nat).
+simpl in |- *; apply lt_O_Sn.
+apply (H17 H18); unfold open_interval in |- *; simpl in |- *; simpl in H4;
+ elim H4; clear H4; intros; split; try assumption;
+ replace r1 with r4.
+assumption.
+simpl in H12; rewrite H12; unfold Rmin in |- *; case (Rle_dec r1 c); intro;
+ [ reflexivity | elim n; left; assumption ].
+clear Hreci; simpl in |- *; apply H15.
+simpl in |- *; apply lt_S_n; assumption.
+unfold open_interval in |- *; apply H4.
+split.
+left; assumption.
+elim H0; intros; assumption.
+eapply StepFun_P7;
+ [ elim H0; intros; apply Rle_trans with c; [ apply H2 | apply H3 ]
+ | apply H ].
+Qed.
+
+Lemma StepFun_P45 :
+ forall (f:R -> R) (a b c:R),
+ IsStepFun f a b -> a <= c <= b -> IsStepFun f c b.
+intros f; intros; assert (H0 : a <= b).
+elim H; intros; apply Rle_trans with c; assumption.
+elim H; clear H; intros; unfold IsStepFun in X; unfold is_subdivision in X;
+ elim X; clear X; intros l1 [lf1 H2];
+ cut
+ (forall (l1 lf1:Rlist) (a b c:R) (f:R -> R),
+ adapted_couple f a b l1 lf1 ->
+ a <= c <= b ->
+ sigT (fun l:Rlist => sigT (fun l0:Rlist => adapted_couple f c b l l0))).
+intros; unfold IsStepFun in |- *; unfold is_subdivision in |- *; eapply X;
+ [ apply H2 | split; assumption ].
+clear f a b c H0 H H1 H2 l1 lf1; simple induction l1.
+intros; unfold adapted_couple in H; decompose [and] H; clear H; simpl in H4;
+ discriminate.
+simple induction r0.
+intros; assert (H1 : a = b).
+unfold adapted_couple in H; decompose [and] H; clear H; simpl in H3;
+ simpl in H2; assert (H7 : a <= b).
+elim H0; intros; apply Rle_trans with c; assumption.
+replace a with (Rmin a b).
+pattern b at 2 in |- *; replace b with (Rmax a b).
+rewrite <- H2; rewrite H3; reflexivity.
+unfold Rmax in |- *; case (Rle_dec a b); intro;
+ [ reflexivity | elim n; assumption ].
+unfold Rmin in |- *; case (Rle_dec a b); intro;
+ [ reflexivity | elim n; assumption ].
+split with (cons r nil); split with lf1; assert (H2 : c = b).
+rewrite H1 in H0; elim H0; intros; apply Rle_antisym; assumption.
+rewrite <- H2 in H1; rewrite <- H1; assumption.
+intros; clear X; induction lf1 as [| r3 lf1 Hreclf1].
+unfold adapted_couple in H; decompose [and] H; clear H; simpl in H4;
+ discriminate.
+clear Hreclf1; assert (H1 : {c <= r1} + {r1 < c}).
+case (Rle_dec c r1); intro; [ left; assumption | right; auto with real ].
+elim H1; intro.
+split with (cons c (cons r1 r2)); split with (cons r3 lf1);
+ unfold adapted_couple in H; decompose [and] H; clear H;
+ unfold adapted_couple in |- *; repeat split.
+unfold ordered_Rlist in |- *; intros; simpl in H; induction i as [| i Hreci].
+simpl in |- *; assumption.
+clear Hreci; apply (H2 (S i)); simpl in |- *; assumption.
+simpl in |- *; unfold Rmin in |- *; case (Rle_dec c b); intro;
+ [ reflexivity | elim n; elim H0; intros; assumption ].
+replace (Rmax c b) with (Rmax a b).
+rewrite <- H3; reflexivity.
+unfold Rmax in |- *; case (Rle_dec a b); case (Rle_dec c b); intros;
+ [ reflexivity
+ | elim n; elim H0; intros; assumption
+ | elim n; elim H0; intros; apply Rle_trans with c; assumption
+ | elim n0; elim H0; intros; apply Rle_trans with c; assumption ].
+simpl in |- *; simpl in H5; apply H5.
+intros; simpl in H; induction i as [| i Hreci].
+unfold constant_D_eq, open_interval in |- *; intros; simpl in |- *;
+ apply (H7 0%nat).
+simpl in |- *; apply lt_O_Sn.
+unfold open_interval in |- *; simpl in |- *; simpl in H6; elim H6; clear H6;
+ intros; split; try assumption; apply Rle_lt_trans with c;
+ try assumption; replace r with a.
+elim H0; intros; assumption.
+simpl in H4; rewrite H4; unfold Rmin in |- *; case (Rle_dec a b); intros;
+ [ reflexivity
+ | elim n; elim H0; intros; apply Rle_trans with c; assumption ].
+clear Hreci; apply (H7 (S i)); simpl in |- *; assumption.
+cut (adapted_couple f r1 b (cons r1 r2) lf1).
+cut (r1 <= c <= b).
+intros; elim (X0 _ _ _ _ _ H3 H2); intros l1' [lf1' H4]; split with l1';
+ split with lf1'; assumption.
+split; [ left; assumption | elim H0; intros; assumption ].
+eapply StepFun_P7;
+ [ elim H0; intros; apply Rle_trans with c; [ apply H2 | apply H3 ]
+ | apply H ].
+Qed.
+
+Lemma StepFun_P46 :
+ forall (f:R -> R) (a b c:R),
+ IsStepFun f a b -> IsStepFun f b c -> IsStepFun f a c.
+intros f; intros; case (Rle_dec a b); case (Rle_dec b c); intros.
+apply StepFun_P41 with b; assumption.
+case (Rle_dec a c); intro.
+apply StepFun_P44 with b; try assumption.
+split; [ assumption | auto with real ].
+apply StepFun_P6; apply StepFun_P44 with b.
+apply StepFun_P6; assumption.
+split; auto with real.
+case (Rle_dec a c); intro.
+apply StepFun_P45 with b; try assumption.
+split; auto with real.
+apply StepFun_P6; apply StepFun_P45 with b.
+apply StepFun_P6; assumption.
+split; [ assumption | auto with real ].
+apply StepFun_P6; apply StepFun_P41 with b;
+ auto with real || apply StepFun_P6; assumption.
+Qed.