diff options
Diffstat (limited to 'theories/Reals/RiemannInt.v')
-rw-r--r-- | theories/Reals/RiemannInt.v | 16 |
1 files changed, 8 insertions, 8 deletions
diff --git a/theories/Reals/RiemannInt.v b/theories/Reals/RiemannInt.v index 51323ac4..ce33afdb 100644 --- a/theories/Reals/RiemannInt.v +++ b/theories/Reals/RiemannInt.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: RiemannInt.v,v 1.18.2.1 2004/07/16 19:31:13 herbelin Exp $ i*) +(*i $Id: RiemannInt.v,v 1.18.2.2 2005/07/13 23:18:52 herbelin Exp $ i*) Require Import Rfunctions. Require Import SeqSeries. @@ -1593,13 +1593,12 @@ Lemma RiemannInt_P17 : intro f; intros; unfold RiemannInt in |- *; case (RiemannInt_exists pr1 RinvN RinvN_cv); case (RiemannInt_exists pr2 RinvN RinvN_cv); intros; - set (phi1 := phi_sequence RinvN pr1); + set (phi1 := phi_sequence RinvN pr1) in u0; set (phi2 := fun N:nat => mkStepFun (StepFun_P32 (phi1 N))); apply Rle_cv_lim with (fun N:nat => Rabs (RiemannInt_SF (phi1 N))) (fun N:nat => RiemannInt_SF (phi2 N)). intro; unfold phi2 in |- *; apply StepFun_P34; assumption. -fold phi1 in u0; apply (continuity_seq Rabs (fun N:nat => RiemannInt_SF (phi1 N)) x0); try assumption. apply Rcontinuity_abs. @@ -2372,10 +2371,11 @@ unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0; left; apply (cond_pos (RinvN n)). exists N0; intros; elim (H1 n); elim (H2 n); elim (H3 n); clear H1 H2 H3; intros; unfold R_dist in |- *; unfold Rminus in |- *; - rewrite Ropp_0; rewrite Rplus_0_r; set (phi1 := phi_sequence RinvN pr1 n); - fold phi1 in H8; set (phi2 := phi_sequence RinvN pr2 n); - fold phi2 in H3; set (phi3 := phi_sequence RinvN pr3 n); - fold phi2 in H1; assert (H10 : IsStepFun phi3 a b). + rewrite Ropp_0; rewrite Rplus_0_r; + set (phi1 := phi_sequence RinvN pr1 n) in H8 |- *; + set (phi2 := phi_sequence RinvN pr2 n) in H3 |- *; + set (phi3 := phi_sequence RinvN pr3 n) in H1 |- *; + assert (H10 : IsStepFun phi3 a b). apply StepFun_P44 with c. apply (pre phi3). split; assumption. @@ -2442,7 +2442,7 @@ rewrite <- (Rabs_Ropp (f x - phi3 x)); rewrite Ropp_minus_distr; replace (phi3 x + -1 * phi2 x) with (phi3 x - f x + (f x - phi2 x)); [ apply Rabs_triang | ring ]. apply Rplus_le_compat. -fold phi3 in H1; apply H1. +apply H1. elim H14; intros; split. replace (Rmin a c) with a. apply Rle_trans with b; try assumption. |