summaryrefslogtreecommitdiff
path: root/theories/Reals/RiemannInt.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/RiemannInt.v')
-rw-r--r--theories/Reals/RiemannInt.v16
1 files changed, 8 insertions, 8 deletions
diff --git a/theories/Reals/RiemannInt.v b/theories/Reals/RiemannInt.v
index 51323ac4..ce33afdb 100644
--- a/theories/Reals/RiemannInt.v
+++ b/theories/Reals/RiemannInt.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: RiemannInt.v,v 1.18.2.1 2004/07/16 19:31:13 herbelin Exp $ i*)
+(*i $Id: RiemannInt.v,v 1.18.2.2 2005/07/13 23:18:52 herbelin Exp $ i*)
Require Import Rfunctions.
Require Import SeqSeries.
@@ -1593,13 +1593,12 @@ Lemma RiemannInt_P17 :
intro f; intros; unfold RiemannInt in |- *;
case (RiemannInt_exists pr1 RinvN RinvN_cv);
case (RiemannInt_exists pr2 RinvN RinvN_cv); intros;
- set (phi1 := phi_sequence RinvN pr1);
+ set (phi1 := phi_sequence RinvN pr1) in u0;
set (phi2 := fun N:nat => mkStepFun (StepFun_P32 (phi1 N)));
apply Rle_cv_lim with
(fun N:nat => Rabs (RiemannInt_SF (phi1 N)))
(fun N:nat => RiemannInt_SF (phi2 N)).
intro; unfold phi2 in |- *; apply StepFun_P34; assumption.
-fold phi1 in u0;
apply (continuity_seq Rabs (fun N:nat => RiemannInt_SF (phi1 N)) x0);
try assumption.
apply Rcontinuity_abs.
@@ -2372,10 +2371,11 @@ unfold R_dist in |- *; unfold Rminus in |- *; rewrite Ropp_0;
left; apply (cond_pos (RinvN n)).
exists N0; intros; elim (H1 n); elim (H2 n); elim (H3 n); clear H1 H2 H3;
intros; unfold R_dist in |- *; unfold Rminus in |- *;
- rewrite Ropp_0; rewrite Rplus_0_r; set (phi1 := phi_sequence RinvN pr1 n);
- fold phi1 in H8; set (phi2 := phi_sequence RinvN pr2 n);
- fold phi2 in H3; set (phi3 := phi_sequence RinvN pr3 n);
- fold phi2 in H1; assert (H10 : IsStepFun phi3 a b).
+ rewrite Ropp_0; rewrite Rplus_0_r;
+ set (phi1 := phi_sequence RinvN pr1 n) in H8 |- *;
+ set (phi2 := phi_sequence RinvN pr2 n) in H3 |- *;
+ set (phi3 := phi_sequence RinvN pr3 n) in H1 |- *;
+ assert (H10 : IsStepFun phi3 a b).
apply StepFun_P44 with c.
apply (pre phi3).
split; assumption.
@@ -2442,7 +2442,7 @@ rewrite <- (Rabs_Ropp (f x - phi3 x)); rewrite Ropp_minus_distr;
replace (phi3 x + -1 * phi2 x) with (phi3 x - f x + (f x - phi2 x));
[ apply Rabs_triang | ring ].
apply Rplus_le_compat.
-fold phi3 in H1; apply H1.
+apply H1.
elim H14; intros; split.
replace (Rmin a c) with a.
apply Rle_trans with b; try assumption.