diff options
Diffstat (limited to 'theories/Reals/Rfunctions.v')
-rw-r--r-- | theories/Reals/Rfunctions.v | 801 |
1 files changed, 801 insertions, 0 deletions
diff --git a/theories/Reals/Rfunctions.v b/theories/Reals/Rfunctions.v new file mode 100644 index 00000000..cdff9fcb --- /dev/null +++ b/theories/Reals/Rfunctions.v @@ -0,0 +1,801 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(*i $Id: Rfunctions.v,v 1.31.2.1 2004/07/16 19:31:12 herbelin Exp $ i*) + +(*i Some properties about pow and sum have been made with John Harrison i*) +(*i Some Lemmas (about pow and powerRZ) have been done by Laurent Thery i*) + +(********************************************************) +(** Definition of the sum functions *) +(* *) +(********************************************************) + +Require Import Rbase. +Require Export R_Ifp. +Require Export Rbasic_fun. +Require Export R_sqr. +Require Export SplitAbsolu. +Require Export SplitRmult. +Require Export ArithProp. +Require Import Omega. +Require Import Zpower. +Open Local Scope nat_scope. +Open Local Scope R_scope. + +(*******************************) +(** Lemmas about factorial *) +(*******************************) +(*********) +Lemma INR_fact_neq_0 : forall n:nat, INR (fact n) <> 0. +Proof. +intro; red in |- *; intro; apply (not_O_INR (fact n) (fact_neq_0 n)); + assumption. +Qed. + +(*********) +Lemma fact_simpl : forall n:nat, fact (S n) = (S n * fact n)%nat. +Proof. +intro; reflexivity. +Qed. + +(*********) +Lemma simpl_fact : + forall n:nat, / INR (fact (S n)) * / / INR (fact n) = / INR (S n). +Proof. +intro; rewrite (Rinv_involutive (INR (fact n)) (INR_fact_neq_0 n)); + unfold fact at 1 in |- *; cbv beta iota in |- *; fold fact in |- *; + rewrite (mult_INR (S n) (fact n)); + rewrite (Rinv_mult_distr (INR (S n)) (INR (fact n))). +rewrite (Rmult_assoc (/ INR (S n)) (/ INR (fact n)) (INR (fact n))); + rewrite (Rinv_l (INR (fact n)) (INR_fact_neq_0 n)); + apply (let (H1, H2) := Rmult_ne (/ INR (S n)) in H1). +apply not_O_INR; auto. +apply INR_fact_neq_0. +Qed. + +(*******************************) +(* Power *) +(*******************************) +(*********) +Fixpoint pow (r:R) (n:nat) {struct n} : R := + match n with + | O => 1 + | S n => r * pow r n + end. + +Infix "^" := pow : R_scope. + +Lemma pow_O : forall x:R, x ^ 0 = 1. +Proof. +reflexivity. +Qed. + +Lemma pow_1 : forall x:R, x ^ 1 = x. +Proof. +simpl in |- *; auto with real. +Qed. + +Lemma pow_add : forall (x:R) (n m:nat), x ^ (n + m) = x ^ n * x ^ m. +Proof. +intros x n; elim n; simpl in |- *; auto with real. +intros n0 H' m; rewrite H'; auto with real. +Qed. + +Lemma pow_nonzero : forall (x:R) (n:nat), x <> 0 -> x ^ n <> 0. +Proof. +intro; simple induction n; simpl in |- *. +intro; red in |- *; intro; apply R1_neq_R0; assumption. +intros; red in |- *; intro; elim (Rmult_integral x (x ^ n0) H1). +intro; auto. +apply H; assumption. +Qed. + +Hint Resolve pow_O pow_1 pow_add pow_nonzero: real. + +Lemma pow_RN_plus : + forall (x:R) (n m:nat), x <> 0 -> x ^ n = x ^ (n + m) * / x ^ m. +Proof. +intros x n; elim n; simpl in |- *; auto with real. +intros n0 H' m H'0. +rewrite Rmult_assoc; rewrite <- H'; auto. +Qed. + +Lemma pow_lt : forall (x:R) (n:nat), 0 < x -> 0 < x ^ n. +Proof. +intros x n; elim n; simpl in |- *; auto with real. +intros n0 H' H'0; replace 0 with (x * 0); auto with real. +Qed. +Hint Resolve pow_lt: real. + +Lemma Rlt_pow_R1 : forall (x:R) (n:nat), 1 < x -> (0 < n)%nat -> 1 < x ^ n. +Proof. +intros x n; elim n; simpl in |- *; auto with real. +intros H' H'0; elimtype False; omega. +intros n0; case n0. +simpl in |- *; rewrite Rmult_1_r; auto. +intros n1 H' H'0 H'1. +replace 1 with (1 * 1); auto with real. +apply Rlt_trans with (r2 := x * 1); auto with real. +apply Rmult_lt_compat_l; auto with real. +apply Rlt_trans with (r2 := 1); auto with real. +apply H'; auto with arith. +Qed. +Hint Resolve Rlt_pow_R1: real. + +Lemma Rlt_pow : forall (x:R) (n m:nat), 1 < x -> (n < m)%nat -> x ^ n < x ^ m. +Proof. +intros x n m H' H'0; replace m with (m - n + n)%nat. +rewrite pow_add. +pattern (x ^ n) at 1 in |- *; replace (x ^ n) with (1 * x ^ n); + auto with real. +apply Rminus_lt. +repeat rewrite (fun y:R => Rmult_comm y (x ^ n)); + rewrite <- Rmult_minus_distr_l. +replace 0 with (x ^ n * 0); auto with real. +apply Rmult_lt_compat_l; auto with real. +apply pow_lt; auto with real. +apply Rlt_trans with (r2 := 1); auto with real. +apply Rlt_minus; auto with real. +apply Rlt_pow_R1; auto with arith. +apply plus_lt_reg_l with (p := n); auto with arith. +rewrite le_plus_minus_r; auto with arith; rewrite <- plus_n_O; auto. +rewrite plus_comm; auto with arith. +Qed. +Hint Resolve Rlt_pow: real. + +(*********) +Lemma tech_pow_Rmult : forall (x:R) (n:nat), x * x ^ n = x ^ S n. +Proof. +simple induction n; simpl in |- *; trivial. +Qed. + +(*********) +Lemma tech_pow_Rplus : + forall (x:R) (a n:nat), x ^ a + INR n * x ^ a = INR (S n) * x ^ a. +Proof. +intros; pattern (x ^ a) at 1 in |- *; + rewrite <- (let (H1, H2) := Rmult_ne (x ^ a) in H1); + rewrite (Rmult_comm (INR n) (x ^ a)); + rewrite <- (Rmult_plus_distr_l (x ^ a) 1 (INR n)); + rewrite (Rplus_comm 1 (INR n)); rewrite <- (S_INR n); + apply Rmult_comm. +Qed. + +Lemma poly : forall (n:nat) (x:R), 0 < x -> 1 + INR n * x <= (1 + x) ^ n. +Proof. +intros; elim n. +simpl in |- *; cut (1 + 0 * x = 1). +intro; rewrite H0; unfold Rle in |- *; right; reflexivity. +ring. +intros; unfold pow in |- *; fold pow in |- *; + apply + (Rle_trans (1 + INR (S n0) * x) ((1 + x) * (1 + INR n0 * x)) + ((1 + x) * (1 + x) ^ n0)). +cut ((1 + x) * (1 + INR n0 * x) = 1 + INR (S n0) * x + INR n0 * (x * x)). +intro; rewrite H1; pattern (1 + INR (S n0) * x) at 1 in |- *; + rewrite <- (let (H1, H2) := Rplus_ne (1 + INR (S n0) * x) in H1); + apply Rplus_le_compat_l; elim n0; intros. +simpl in |- *; rewrite Rmult_0_l; unfold Rle in |- *; right; auto. +unfold Rle in |- *; left; generalize Rmult_gt_0_compat; unfold Rgt in |- *; + intro; fold (Rsqr x) in |- *; + apply (H3 (INR (S n1)) (Rsqr x) (lt_INR_0 (S n1) (lt_O_Sn n1))); + fold (x > 0) in H; + apply (Rlt_0_sqr x (Rlt_dichotomy_converse x 0 (or_intror (x < 0) H))). +rewrite (S_INR n0); ring. +unfold Rle in H0; elim H0; intro. +unfold Rle in |- *; left; apply Rmult_lt_compat_l. +rewrite Rplus_comm; apply (Rle_lt_0_plus_1 x (Rlt_le 0 x H)). +assumption. +rewrite H1; unfold Rle in |- *; right; trivial. +Qed. + +Lemma Power_monotonic : + forall (x:R) (m n:nat), + Rabs x > 1 -> (m <= n)%nat -> Rabs (x ^ m) <= Rabs (x ^ n). +Proof. +intros x m n H; induction n as [| n Hrecn]; intros; inversion H0. +unfold Rle in |- *; right; reflexivity. +unfold Rle in |- *; right; reflexivity. +apply (Rle_trans (Rabs (x ^ m)) (Rabs (x ^ n)) (Rabs (x ^ S n))). +apply Hrecn; assumption. +simpl in |- *; rewrite Rabs_mult. +pattern (Rabs (x ^ n)) at 1 in |- *. +rewrite <- Rmult_1_r. +rewrite (Rmult_comm (Rabs x) (Rabs (x ^ n))). +apply Rmult_le_compat_l. +apply Rabs_pos. +unfold Rgt in H. +apply Rlt_le; assumption. +Qed. + +Lemma RPow_abs : forall (x:R) (n:nat), Rabs x ^ n = Rabs (x ^ n). +Proof. +intro; simple induction n; simpl in |- *. +apply sym_eq; apply Rabs_pos_eq; apply Rlt_le; apply Rlt_0_1. +intros; rewrite H; apply sym_eq; apply Rabs_mult. +Qed. + + +Lemma Pow_x_infinity : + forall x:R, + Rabs x > 1 -> + forall b:R, + exists N : nat, (forall n:nat, (n >= N)%nat -> Rabs (x ^ n) >= b). +Proof. +intros; elim (archimed (b * / (Rabs x - 1))); intros; clear H1; + cut (exists N : nat, INR N >= b * / (Rabs x - 1)). +intro; elim H1; clear H1; intros; exists x0; intros; + apply (Rge_trans (Rabs (x ^ n)) (Rabs (x ^ x0)) b). +apply Rle_ge; apply Power_monotonic; assumption. +rewrite <- RPow_abs; cut (Rabs x = 1 + (Rabs x - 1)). +intro; rewrite H3; + apply (Rge_trans ((1 + (Rabs x - 1)) ^ x0) (1 + INR x0 * (Rabs x - 1)) b). +apply Rle_ge; apply poly; fold (Rabs x - 1 > 0) in |- *; apply Rgt_minus; + assumption. +apply (Rge_trans (1 + INR x0 * (Rabs x - 1)) (INR x0 * (Rabs x - 1)) b). +apply Rle_ge; apply Rlt_le; rewrite (Rplus_comm 1 (INR x0 * (Rabs x - 1))); + pattern (INR x0 * (Rabs x - 1)) at 1 in |- *; + rewrite <- (let (H1, H2) := Rplus_ne (INR x0 * (Rabs x - 1)) in H1); + apply Rplus_lt_compat_l; apply Rlt_0_1. +cut (b = b * / (Rabs x - 1) * (Rabs x - 1)). +intros; rewrite H4; apply Rmult_ge_compat_r. +apply Rge_minus; unfold Rge in |- *; left; assumption. +assumption. +rewrite Rmult_assoc; rewrite Rinv_l. +ring. +apply Rlt_dichotomy_converse; right; apply Rgt_minus; assumption. +ring. +cut ((0 <= up (b * / (Rabs x - 1)))%Z \/ (up (b * / (Rabs x - 1)) <= 0)%Z). +intros; elim H1; intro. +elim (IZN (up (b * / (Rabs x - 1))) H2); intros; exists x0; + apply + (Rge_trans (INR x0) (IZR (up (b * / (Rabs x - 1)))) (b * / (Rabs x - 1))). +rewrite INR_IZR_INZ; apply IZR_ge; omega. +unfold Rge in |- *; left; assumption. +exists 0%nat; + apply + (Rge_trans (INR 0) (IZR (up (b * / (Rabs x - 1)))) (b * / (Rabs x - 1))). +rewrite INR_IZR_INZ; apply IZR_ge; simpl in |- *; omega. +unfold Rge in |- *; left; assumption. +omega. +Qed. + +Lemma pow_ne_zero : forall n:nat, n <> 0%nat -> 0 ^ n = 0. +Proof. +simple induction n. +simpl in |- *; auto. +intros; elim H; reflexivity. +intros; simpl in |- *; apply Rmult_0_l. +Qed. + +Lemma Rinv_pow : forall (x:R) (n:nat), x <> 0 -> / x ^ n = (/ x) ^ n. +Proof. +intros; elim n; simpl in |- *. +apply Rinv_1. +intro m; intro; rewrite Rinv_mult_distr. +rewrite H0; reflexivity; assumption. +assumption. +apply pow_nonzero; assumption. +Qed. + +Lemma pow_lt_1_zero : + forall x:R, + Rabs x < 1 -> + forall y:R, + 0 < y -> + exists N : nat, (forall n:nat, (n >= N)%nat -> Rabs (x ^ n) < y). +Proof. +intros; elim (Req_dec x 0); intro. +exists 1%nat; rewrite H1; intros n GE; rewrite pow_ne_zero. +rewrite Rabs_R0; assumption. +inversion GE; auto. +cut (Rabs (/ x) > 1). +intros; elim (Pow_x_infinity (/ x) H2 (/ y + 1)); intros N. +exists N; intros; rewrite <- (Rinv_involutive y). +rewrite <- (Rinv_involutive (Rabs (x ^ n))). +apply Rinv_lt_contravar. +apply Rmult_lt_0_compat. +apply Rinv_0_lt_compat. +assumption. +apply Rinv_0_lt_compat. +apply Rabs_pos_lt. +apply pow_nonzero. +assumption. +rewrite <- Rabs_Rinv. +rewrite Rinv_pow. +apply (Rlt_le_trans (/ y) (/ y + 1) (Rabs ((/ x) ^ n))). +pattern (/ y) at 1 in |- *. +rewrite <- (let (H1, H2) := Rplus_ne (/ y) in H1). +apply Rplus_lt_compat_l. +apply Rlt_0_1. +apply Rge_le. +apply H3. +assumption. +assumption. +apply pow_nonzero. +assumption. +apply Rabs_no_R0. +apply pow_nonzero. +assumption. +apply Rlt_dichotomy_converse. +right; unfold Rgt in |- *; assumption. +rewrite <- (Rinv_involutive 1). +rewrite Rabs_Rinv. +unfold Rgt in |- *; apply Rinv_lt_contravar. +apply Rmult_lt_0_compat. +apply Rabs_pos_lt. +assumption. +rewrite Rinv_1; apply Rlt_0_1. +rewrite Rinv_1; assumption. +assumption. +red in |- *; intro; apply R1_neq_R0; assumption. +Qed. + +Lemma pow_R1 : forall (r:R) (n:nat), r ^ n = 1 -> Rabs r = 1 \/ n = 0%nat. +Proof. +intros r n H'. +case (Req_dec (Rabs r) 1); auto; intros H'1. +case (Rdichotomy _ _ H'1); intros H'2. +generalize H'; case n; auto. +intros n0 H'0. +cut (r <> 0); [ intros Eq1 | idtac ]. +cut (Rabs r <> 0); [ intros Eq2 | apply Rabs_no_R0 ]; auto. +absurd (Rabs (/ r) ^ 0 < Rabs (/ r) ^ S n0); auto. +replace (Rabs (/ r) ^ S n0) with 1. +simpl in |- *; apply Rlt_irrefl; auto. +rewrite Rabs_Rinv; auto. +rewrite <- Rinv_pow; auto. +rewrite RPow_abs; auto. +rewrite H'0; rewrite Rabs_right; auto with real. +apply Rle_ge; auto with real. +apply Rlt_pow; auto with arith. +rewrite Rabs_Rinv; auto. +apply Rmult_lt_reg_l with (r := Rabs r). +case (Rabs_pos r); auto. +intros H'3; case Eq2; auto. +rewrite Rmult_1_r; rewrite Rinv_r; auto with real. +red in |- *; intro; absurd (r ^ S n0 = 1); auto. +simpl in |- *; rewrite H; rewrite Rmult_0_l; auto with real. +generalize H'; case n; auto. +intros n0 H'0. +cut (r <> 0); [ intros Eq1 | auto with real ]. +cut (Rabs r <> 0); [ intros Eq2 | apply Rabs_no_R0 ]; auto. +absurd (Rabs r ^ 0 < Rabs r ^ S n0); auto with real arith. +repeat rewrite RPow_abs; rewrite H'0; simpl in |- *; auto with real. +red in |- *; intro; absurd (r ^ S n0 = 1); auto. +simpl in |- *; rewrite H; rewrite Rmult_0_l; auto with real. +Qed. + +Lemma pow_Rsqr : forall (x:R) (n:nat), x ^ (2 * n) = Rsqr x ^ n. +Proof. +intros; induction n as [| n Hrecn]. +reflexivity. +replace (2 * S n)%nat with (S (S (2 * n))). +replace (x ^ S (S (2 * n))) with (x * x * x ^ (2 * n)). +rewrite Hrecn; reflexivity. +simpl in |- *; ring. +apply INR_eq; do 2 rewrite S_INR; do 2 rewrite mult_INR; repeat rewrite S_INR; + ring. +Qed. + +Lemma pow_le : forall (a:R) (n:nat), 0 <= a -> 0 <= a ^ n. +Proof. +intros; induction n as [| n Hrecn]. +simpl in |- *; left; apply Rlt_0_1. +simpl in |- *; apply Rmult_le_pos; assumption. +Qed. + +(**********) +Lemma pow_1_even : forall n:nat, (-1) ^ (2 * n) = 1. +Proof. +intro; induction n as [| n Hrecn]. +reflexivity. +replace (2 * S n)%nat with (2 + 2 * n)%nat. +rewrite pow_add; rewrite Hrecn; simpl in |- *; ring. +replace (S n) with (n + 1)%nat; [ ring | ring ]. +Qed. + +(**********) +Lemma pow_1_odd : forall n:nat, (-1) ^ S (2 * n) = -1. +Proof. +intro; replace (S (2 * n)) with (2 * n + 1)%nat; [ idtac | ring ]. +rewrite pow_add; rewrite pow_1_even; simpl in |- *; ring. +Qed. + +(**********) +Lemma pow_1_abs : forall n:nat, Rabs ((-1) ^ n) = 1. +Proof. +intro; induction n as [| n Hrecn]. +simpl in |- *; apply Rabs_R1. +replace (S n) with (n + 1)%nat; [ rewrite pow_add | ring ]. +rewrite Rabs_mult. +rewrite Hrecn; rewrite Rmult_1_l; simpl in |- *; rewrite Rmult_1_r; + rewrite Rabs_Ropp; apply Rabs_R1. +Qed. + +Lemma pow_mult : forall (x:R) (n1 n2:nat), x ^ (n1 * n2) = (x ^ n1) ^ n2. +Proof. +intros; induction n2 as [| n2 Hrecn2]. +simpl in |- *; replace (n1 * 0)%nat with 0%nat; [ reflexivity | ring ]. +replace (n1 * S n2)%nat with (n1 * n2 + n1)%nat. +replace (S n2) with (n2 + 1)%nat; [ idtac | ring ]. +do 2 rewrite pow_add. +rewrite Hrecn2. +simpl in |- *. +ring. +apply INR_eq; rewrite plus_INR; do 2 rewrite mult_INR; rewrite S_INR; ring. +Qed. + +Lemma pow_incr : forall (x y:R) (n:nat), 0 <= x <= y -> x ^ n <= y ^ n. +Proof. +intros. +induction n as [| n Hrecn]. +right; reflexivity. +simpl in |- *. +elim H; intros. +apply Rle_trans with (y * x ^ n). +do 2 rewrite <- (Rmult_comm (x ^ n)). +apply Rmult_le_compat_l. +apply pow_le; assumption. +assumption. +apply Rmult_le_compat_l. +apply Rle_trans with x; assumption. +apply Hrecn. +Qed. + +Lemma pow_R1_Rle : forall (x:R) (k:nat), 1 <= x -> 1 <= x ^ k. +Proof. +intros. +induction k as [| k Hreck]. +right; reflexivity. +simpl in |- *. +apply Rle_trans with (x * 1). +rewrite Rmult_1_r; assumption. +apply Rmult_le_compat_l. +left; apply Rlt_le_trans with 1; [ apply Rlt_0_1 | assumption ]. +exact Hreck. +Qed. + +Lemma Rle_pow : + forall (x:R) (m n:nat), 1 <= x -> (m <= n)%nat -> x ^ m <= x ^ n. +Proof. +intros. +replace n with (n - m + m)%nat. +rewrite pow_add. +rewrite Rmult_comm. +pattern (x ^ m) at 1 in |- *; rewrite <- Rmult_1_r. +apply Rmult_le_compat_l. +apply pow_le; left; apply Rlt_le_trans with 1; [ apply Rlt_0_1 | assumption ]. +apply pow_R1_Rle; assumption. +rewrite plus_comm. +symmetry in |- *; apply le_plus_minus; assumption. +Qed. + +Lemma pow1 : forall n:nat, 1 ^ n = 1. +Proof. +intro; induction n as [| n Hrecn]. +reflexivity. +simpl in |- *; rewrite Hrecn; rewrite Rmult_1_r; reflexivity. +Qed. + +Lemma pow_Rabs : forall (x:R) (n:nat), x ^ n <= Rabs x ^ n. +Proof. +intros; induction n as [| n Hrecn]. +right; reflexivity. +simpl in |- *; case (Rcase_abs x); intro. +apply Rle_trans with (Rabs (x * x ^ n)). +apply RRle_abs. +rewrite Rabs_mult. +apply Rmult_le_compat_l. +apply Rabs_pos. +right; symmetry in |- *; apply RPow_abs. +pattern (Rabs x) at 1 in |- *; rewrite (Rabs_right x r); + apply Rmult_le_compat_l. +apply Rge_le; exact r. +apply Hrecn. +Qed. + +Lemma pow_maj_Rabs : forall (x y:R) (n:nat), Rabs y <= x -> y ^ n <= x ^ n. +Proof. +intros; cut (0 <= x). +intro; apply Rle_trans with (Rabs y ^ n). +apply pow_Rabs. +induction n as [| n Hrecn]. +right; reflexivity. +simpl in |- *; apply Rle_trans with (x * Rabs y ^ n). +do 2 rewrite <- (Rmult_comm (Rabs y ^ n)). +apply Rmult_le_compat_l. +apply pow_le; apply Rabs_pos. +assumption. +apply Rmult_le_compat_l. +apply H0. +apply Hrecn. +apply Rle_trans with (Rabs y); [ apply Rabs_pos | exact H ]. +Qed. + +(*******************************) +(** PowerRZ *) +(*******************************) +(*i Due to L.Thery i*) + +Ltac case_eq name := + generalize (refl_equal name); pattern name at -1 in |- *; case name. + +Definition powerRZ (x:R) (n:Z) := + match n with + | Z0 => 1 + | Zpos p => x ^ nat_of_P p + | Zneg p => / x ^ nat_of_P p + end. + +Infix Local "^Z" := powerRZ (at level 30, right associativity) : R_scope. + +Lemma Zpower_NR0 : + forall (x:Z) (n:nat), (0 <= x)%Z -> (0 <= Zpower_nat x n)%Z. +Proof. +induction n; unfold Zpower_nat in |- *; simpl in |- *; auto with zarith. +Qed. + +Lemma powerRZ_O : forall x:R, x ^Z 0 = 1. +Proof. +reflexivity. +Qed. + +Lemma powerRZ_1 : forall x:R, x ^Z Zsucc 0 = x. +Proof. +simpl in |- *; auto with real. +Qed. + +Lemma powerRZ_NOR : forall (x:R) (z:Z), x <> 0 -> x ^Z z <> 0. +Proof. +destruct z; simpl in |- *; auto with real. +Qed. + +Lemma powerRZ_add : + forall (x:R) (n m:Z), x <> 0 -> x ^Z (n + m) = x ^Z n * x ^Z m. +Proof. +intro x; destruct n as [| n1| n1]; destruct m as [| m1| m1]; simpl in |- *; + auto with real. +(* POS/POS *) +rewrite nat_of_P_plus_morphism; auto with real. +(* POS/NEG *) +case_eq ((n1 ?= m1)%positive Datatypes.Eq); simpl in |- *; auto with real. +intros H' H'0; rewrite Pcompare_Eq_eq with (1 := H'); auto with real. +intros H' H'0; rewrite (nat_of_P_minus_morphism m1 n1); auto with real. +rewrite (pow_RN_plus x (nat_of_P m1 - nat_of_P n1) (nat_of_P n1)); + auto with real. +rewrite plus_comm; rewrite le_plus_minus_r; auto with real. +rewrite Rinv_mult_distr; auto with real. +rewrite Rinv_involutive; auto with real. +apply lt_le_weak. +apply nat_of_P_lt_Lt_compare_morphism; auto. +apply ZC2; auto. +intros H' H'0; rewrite (nat_of_P_minus_morphism n1 m1); auto with real. +rewrite (pow_RN_plus x (nat_of_P n1 - nat_of_P m1) (nat_of_P m1)); + auto with real. +rewrite plus_comm; rewrite le_plus_minus_r; auto with real. +apply lt_le_weak. +change (nat_of_P n1 > nat_of_P m1)%nat in |- *. +apply nat_of_P_gt_Gt_compare_morphism; auto. +(* NEG/POS *) +case_eq ((n1 ?= m1)%positive Datatypes.Eq); simpl in |- *; auto with real. +intros H' H'0; rewrite Pcompare_Eq_eq with (1 := H'); auto with real. +intros H' H'0; rewrite (nat_of_P_minus_morphism m1 n1); auto with real. +rewrite (pow_RN_plus x (nat_of_P m1 - nat_of_P n1) (nat_of_P n1)); + auto with real. +rewrite plus_comm; rewrite le_plus_minus_r; auto with real. +apply lt_le_weak. +apply nat_of_P_lt_Lt_compare_morphism; auto. +apply ZC2; auto. +intros H' H'0; rewrite (nat_of_P_minus_morphism n1 m1); auto with real. +rewrite (pow_RN_plus x (nat_of_P n1 - nat_of_P m1) (nat_of_P m1)); + auto with real. +rewrite plus_comm; rewrite le_plus_minus_r; auto with real. +rewrite Rinv_mult_distr; auto with real. +apply lt_le_weak. +change (nat_of_P n1 > nat_of_P m1)%nat in |- *. +apply nat_of_P_gt_Gt_compare_morphism; auto. +(* NEG/NEG *) +rewrite nat_of_P_plus_morphism; auto with real. +intros H'; rewrite pow_add; auto with real. +apply Rinv_mult_distr; auto. +apply pow_nonzero; auto. +apply pow_nonzero; auto. +Qed. +Hint Resolve powerRZ_O powerRZ_1 powerRZ_NOR powerRZ_add: real. + +Lemma Zpower_nat_powerRZ : + forall n m:nat, IZR (Zpower_nat (Z_of_nat n) m) = INR n ^Z Z_of_nat m. +Proof. +intros n m; elim m; simpl in |- *; auto with real. +intros m1 H'; rewrite nat_of_P_o_P_of_succ_nat_eq_succ; simpl in |- *. +replace (Zpower_nat (Z_of_nat n) (S m1)) with + (Z_of_nat n * Zpower_nat (Z_of_nat n) m1)%Z. +rewrite mult_IZR; auto with real. +repeat rewrite <- INR_IZR_INZ; simpl in |- *. +rewrite H'; simpl in |- *. +case m1; simpl in |- *; auto with real. +intros m2; rewrite nat_of_P_o_P_of_succ_nat_eq_succ; auto. +unfold Zpower_nat in |- *; auto. +Qed. + +Lemma powerRZ_lt : forall (x:R) (z:Z), 0 < x -> 0 < x ^Z z. +Proof. +intros x z; case z; simpl in |- *; auto with real. +Qed. +Hint Resolve powerRZ_lt: real. + +Lemma powerRZ_le : forall (x:R) (z:Z), 0 < x -> 0 <= x ^Z z. +Proof. +intros x z H'; apply Rlt_le; auto with real. +Qed. +Hint Resolve powerRZ_le: real. + +Lemma Zpower_nat_powerRZ_absolu : + forall n m:Z, (0 <= m)%Z -> IZR (Zpower_nat n (Zabs_nat m)) = IZR n ^Z m. +Proof. +intros n m; case m; simpl in |- *; auto with zarith. +intros p H'; elim (nat_of_P p); simpl in |- *; auto with zarith. +intros n0 H'0; rewrite <- H'0; simpl in |- *; auto with zarith. +rewrite <- mult_IZR; auto. +intros p H'; absurd (0 <= Zneg p)%Z; auto with zarith. +Qed. + +Lemma powerRZ_R1 : forall n:Z, 1 ^Z n = 1. +Proof. +intros n; case n; simpl in |- *; auto. +intros p; elim (nat_of_P p); simpl in |- *; auto; intros n0 H'; rewrite H'; + ring. +intros p; elim (nat_of_P p); simpl in |- *. +exact Rinv_1. +intros n1 H'; rewrite Rinv_mult_distr; try rewrite Rinv_1; try rewrite H'; + auto with real. +Qed. + +(*******************************) +(* For easy interface *) +(*******************************) +(* decimal_exp r z is defined as r 10^z *) + +Definition decimal_exp (r:R) (z:Z) : R := (r * 10 ^Z z). + + +(*******************************) +(** Sum of n first naturals *) +(*******************************) +(*********) +Fixpoint sum_nat_f_O (f:nat -> nat) (n:nat) {struct n} : nat := + match n with + | O => f 0%nat + | S n' => (sum_nat_f_O f n' + f (S n'))%nat + end. + +(*********) +Definition sum_nat_f (s n:nat) (f:nat -> nat) : nat := + sum_nat_f_O (fun x:nat => f (x + s)%nat) (n - s). + +(*********) +Definition sum_nat_O (n:nat) : nat := sum_nat_f_O (fun x:nat => x) n. + +(*********) +Definition sum_nat (s n:nat) : nat := sum_nat_f s n (fun x:nat => x). + +(*******************************) +(** Sum *) +(*******************************) +(*********) +Fixpoint sum_f_R0 (f:nat -> R) (N:nat) {struct N} : R := + match N with + | O => f 0%nat + | S i => sum_f_R0 f i + f (S i) + end. + +(*********) +Definition sum_f (s n:nat) (f:nat -> R) : R := + sum_f_R0 (fun x:nat => f (x + s)%nat) (n - s). + +Lemma GP_finite : + forall (x:R) (n:nat), + sum_f_R0 (fun n:nat => x ^ n) n * (x - 1) = x ^ (n + 1) - 1. +Proof. +intros; induction n as [| n Hrecn]; simpl in |- *. +ring. +rewrite Rmult_plus_distr_r; rewrite Hrecn; cut ((n + 1)%nat = S n). +intro H; rewrite H; simpl in |- *; ring. +omega. +Qed. + +Lemma sum_f_R0_triangle : + forall (x:nat -> R) (n:nat), + Rabs (sum_f_R0 x n) <= sum_f_R0 (fun i:nat => Rabs (x i)) n. +Proof. +intro; simple induction n; simpl in |- *. +unfold Rle in |- *; right; reflexivity. +intro m; intro; + apply + (Rle_trans (Rabs (sum_f_R0 x m + x (S m))) + (Rabs (sum_f_R0 x m) + Rabs (x (S m))) + (sum_f_R0 (fun i:nat => Rabs (x i)) m + Rabs (x (S m)))). +apply Rabs_triang. +rewrite Rplus_comm; + rewrite (Rplus_comm (sum_f_R0 (fun i:nat => Rabs (x i)) m) (Rabs (x (S m)))); + apply Rplus_le_compat_l; assumption. +Qed. + +(*******************************) +(* Distance in R *) +(*******************************) + +(*********) +Definition R_dist (x y:R) : R := Rabs (x - y). + +(*********) +Lemma R_dist_pos : forall x y:R, R_dist x y >= 0. +Proof. +intros; unfold R_dist in |- *; unfold Rabs in |- *; case (Rcase_abs (x - y)); + intro l. +unfold Rge in |- *; left; apply (Ropp_gt_lt_0_contravar (x - y) l). +trivial. +Qed. + +(*********) +Lemma R_dist_sym : forall x y:R, R_dist x y = R_dist y x. +Proof. +unfold R_dist in |- *; intros; split_Rabs; ring. +generalize (Ropp_gt_lt_0_contravar (y - x) r); intro; + rewrite (Ropp_minus_distr y x) in H; generalize (Rlt_asym (x - y) 0 r0); + intro; unfold Rgt in H; elimtype False; auto. +generalize (minus_Rge y x r); intro; generalize (minus_Rge x y r0); intro; + generalize (Rge_antisym x y H0 H); intro; rewrite H1; + ring. +Qed. + +(*********) +Lemma R_dist_refl : forall x y:R, R_dist x y = 0 <-> x = y. +Proof. +unfold R_dist in |- *; intros; split_Rabs; split; intros. +rewrite (Ropp_minus_distr x y) in H; apply sym_eq; + apply (Rminus_diag_uniq y x H). +rewrite (Ropp_minus_distr x y); generalize (sym_eq H); intro; + apply (Rminus_diag_eq y x H0). +apply (Rminus_diag_uniq x y H). +apply (Rminus_diag_eq x y H). +Qed. + +Lemma R_dist_eq : forall x:R, R_dist x x = 0. +Proof. +unfold R_dist in |- *; intros; split_Rabs; intros; ring. +Qed. + +(***********) +Lemma R_dist_tri : forall x y z:R, R_dist x y <= R_dist x z + R_dist z y. +Proof. +intros; unfold R_dist in |- *; replace (x - y) with (x - z + (z - y)); + [ apply (Rabs_triang (x - z) (z - y)) | ring ]. +Qed. + +(*********) +Lemma R_dist_plus : + forall a b c d:R, R_dist (a + c) (b + d) <= R_dist a b + R_dist c d. +Proof. +intros; unfold R_dist in |- *; + replace (a + c - (b + d)) with (a - b + (c - d)). +exact (Rabs_triang (a - b) (c - d)). +ring. +Qed. + +(*******************************) +(** Infinit Sum *) +(*******************************) +(*********) +Definition infinit_sum (s:nat -> R) (l:R) : Prop := + forall eps:R, + eps > 0 -> + exists N : nat, + (forall n:nat, (n >= N)%nat -> R_dist (sum_f_R0 s n) l < eps). |