summaryrefslogtreecommitdiff
path: root/theories/Reals/Rfunctions.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Rfunctions.v')
-rw-r--r--theories/Reals/Rfunctions.v36
1 files changed, 24 insertions, 12 deletions
diff --git a/theories/Reals/Rfunctions.v b/theories/Reals/Rfunctions.v
index b9aec1ea..7371c8ac 100644
--- a/theories/Reals/Rfunctions.v
+++ b/theories/Reals/Rfunctions.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rfunctions.v 10762 2008-04-06 16:57:31Z herbelin $ i*)
+(*i $Id$ i*)
(*i Some properties about pow and sum have been made with John Harrison i*)
(*i Some Lemmas (about pow and powerRZ) have been done by Laurent Thery i*)
@@ -38,13 +38,13 @@ Lemma INR_fact_neq_0 : forall n:nat, INR (fact n) <> 0.
Proof.
intro; red in |- *; intro; apply (not_O_INR (fact n) (fact_neq_0 n));
assumption.
-Qed.
+Qed.
(*********)
Lemma fact_simpl : forall n:nat, fact (S n) = (S n * fact n)%nat.
Proof.
intro; reflexivity.
-Qed.
+Qed.
(*********)
Lemma simpl_fact :
@@ -113,7 +113,7 @@ Hint Resolve pow_lt: real.
Lemma Rlt_pow_R1 : forall (x:R) (n:nat), 1 < x -> (0 < n)%nat -> 1 < x ^ n.
Proof.
intros x n; elim n; simpl in |- *; auto with real.
- intros H' H'0; elimtype False; omega.
+ intros H' H'0; exfalso; omega.
intros n0; case n0.
simpl in |- *; rewrite Rmult_1_r; auto.
intros n1 H' H'0 H'1.
@@ -160,7 +160,7 @@ Proof.
rewrite <- (let (H1, H2) := Rmult_ne (x ^ a) in H1);
rewrite (Rmult_comm (INR n) (x ^ a));
rewrite <- (Rmult_plus_distr_l (x ^ a) 1 (INR n));
- rewrite (Rplus_comm 1 (INR n)); rewrite <- (S_INR n);
+ rewrite (Rplus_comm 1 (INR n)); rewrite <- (S_INR n);
apply Rmult_comm.
Qed.
@@ -185,7 +185,7 @@ Proof.
fold (x > 0) in H;
apply (Rlt_0_sqr x (Rlt_dichotomy_converse x 0 (or_intror (x < 0) H))).
rewrite (S_INR n0); ring.
- unfold Rle in H0; elim H0; intro.
+ unfold Rle in H0; elim H0; intro.
unfold Rle in |- *; left; apply Rmult_lt_compat_l.
rewrite Rplus_comm; apply (Rle_lt_0_plus_1 x (Rlt_le 0 x H)).
assumption.
@@ -288,7 +288,7 @@ Lemma pow_lt_1_zero :
0 < y ->
exists N : nat, (forall n:nat, (n >= N)%nat -> Rabs (x ^ n) < y).
Proof.
- intros; elim (Req_dec x 0); intro.
+ intros; elim (Req_dec x 0); intro.
exists 1%nat; rewrite H1; intros n GE; rewrite pow_ne_zero.
rewrite Rabs_R0; assumption.
inversion GE; auto.
@@ -619,6 +619,18 @@ Proof.
unfold Zpower_nat in |- *; auto.
Qed.
+Lemma Zpower_pos_powerRZ :
+ forall n m, IZR (Zpower_pos n m) = IZR n ^Z Zpos m.
+Proof.
+ intros.
+ rewrite Zpower_pos_nat; simpl.
+ induction (nat_of_P m).
+ easy.
+ unfold Zpower_nat; simpl.
+ rewrite mult_IZR.
+ now rewrite <- IHn0.
+Qed.
+
Lemma powerRZ_lt : forall (x:R) (z:Z), 0 < x -> 0 < x ^Z z.
Proof.
intros x z; case z; simpl in |- *; auto with real.
@@ -664,7 +676,7 @@ Definition decimal_exp (r:R) (z:Z) : R := (r * 10 ^Z z).
(** * Sum of n first naturals *)
(*******************************)
(*********)
-Boxed Fixpoint sum_nat_f_O (f:nat -> nat) (n:nat) {struct n} : nat :=
+Boxed Fixpoint sum_nat_f_O (f:nat -> nat) (n:nat) : nat :=
match n with
| O => f 0%nat
| S n' => (sum_nat_f_O f n' + f (S n'))%nat
@@ -684,7 +696,7 @@ Definition sum_nat (s n:nat) : nat := sum_nat_f s n (fun x:nat => x).
(** * Sum *)
(*******************************)
(*********)
-Fixpoint sum_f_R0 (f:nat -> R) (N:nat) {struct N} : R :=
+Fixpoint sum_f_R0 (f:nat -> R) (N:nat) : R :=
match N with
| O => f 0%nat
| S i => sum_f_R0 f i + f (S i)
@@ -744,9 +756,9 @@ Proof.
unfold R_dist in |- *; intros; split_Rabs; try ring.
generalize (Ropp_gt_lt_0_contravar (y - x) r); intro;
rewrite (Ropp_minus_distr y x) in H; generalize (Rlt_asym (x - y) 0 r0);
- intro; unfold Rgt in H; elimtype False; auto.
+ intro; unfold Rgt in H; exfalso; auto.
generalize (minus_Rge y x r); intro; generalize (minus_Rge x y r0); intro;
- generalize (Rge_antisym x y H0 H); intro; rewrite H1;
+ generalize (Rge_antisym x y H0 H); intro; rewrite H1;
ring.
Qed.
@@ -759,7 +771,7 @@ Proof.
rewrite (Ropp_minus_distr x y); generalize (sym_eq H); intro;
apply (Rminus_diag_eq y x H0).
apply (Rminus_diag_uniq x y H).
- apply (Rminus_diag_eq x y H).
+ apply (Rminus_diag_eq x y H).
Qed.
Lemma R_dist_eq : forall x:R, R_dist x x = 0.