summaryrefslogtreecommitdiff
path: root/theories/Reals/Rderiv.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Rderiv.v')
-rw-r--r--theories/Reals/Rderiv.v110
1 files changed, 55 insertions, 55 deletions
diff --git a/theories/Reals/Rderiv.v b/theories/Reals/Rderiv.v
index ba42bad9..55982aa5 100644
--- a/theories/Reals/Rderiv.v
+++ b/theories/Reals/Rderiv.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rderiv.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
+(*i $Id$ i*)
(*********************************************************)
(** Definition of the derivative,continuity *)
@@ -39,15 +39,15 @@ Lemma cont_deriv :
D_in f d D x0 -> continue_in f D x0.
Proof.
unfold continue_in in |- *; unfold D_in in |- *; unfold limit1_in in |- *;
- unfold limit_in in |- *; unfold Rdiv in |- *; simpl in |- *;
- intros; elim (H eps H0); clear H; intros; elim H;
+ unfold limit_in in |- *; unfold Rdiv in |- *; simpl in |- *;
+ intros; elim (H eps H0); clear H; intros; elim H;
clear H; intros; elim (Req_dec (d x0) 0); intro.
split with (Rmin 1 x); split.
elim (Rmin_Rgt 1 x 0); intros a b; apply (b (conj Rlt_0_1 H)).
intros; elim H3; clear H3; intros;
generalize (let (H1, H2) := Rmin_Rgt 1 x (R_dist x1 x0) in H1);
- unfold Rgt in |- *; intro; elim (H5 H4); clear H5;
- intros; generalize (H1 x1 (conj H3 H6)); clear H1;
+ unfold Rgt in |- *; intro; elim (H5 H4); clear H5;
+ intros; generalize (H1 x1 (conj H3 H6)); clear H1;
intro; unfold D_x in H3; elim H3; intros.
rewrite H2 in H1; unfold R_dist in |- *; unfold R_dist in H1;
cut (Rabs (f x1 - f x0) < eps * Rabs (x1 - x0)).
@@ -84,10 +84,10 @@ Proof.
generalize
(let (H1, H2) :=
Rmin_Rgt (Rmin (/ 2) x) (eps * / Rabs (2 * d x0)) (R_dist x1 x0) in
- H1); unfold Rgt in |- *; intro; elim (H5 H4); clear H5;
+ H1); unfold Rgt in |- *; intro; elim (H5 H4); clear H5;
intros; generalize (let (H1, H2) := Rmin_Rgt (/ 2) x (R_dist x1 x0) in H1);
- unfold Rgt in |- *; intro; elim (H7 H5); clear H7;
- intros; clear H4 H5; generalize (H1 x1 (conj H3 H8));
+ unfold Rgt in |- *; intro; elim (H7 H5); clear H7;
+ intros; clear H4 H5; generalize (H1 x1 (conj H3 H8));
clear H1; intro; unfold D_x in H3; elim H3; intros;
generalize (sym_not_eq H5); clear H5; intro H5;
generalize (Rminus_eq_contra x1 x0 H5); intro; generalize H1;
@@ -114,11 +114,11 @@ Proof.
rewrite (Rinv_r (Rabs (x1 - x0)) (Rabs_no_R0 (x1 - x0) H9));
rewrite
(let (H1, H2) := Rmult_ne (Rabs (f x1 - f x0 + (x1 - x0) * - d x0)) in H2)
- ; generalize (Rabs_triang_inv (f x1 - f x0) ((x1 - x0) * d x0));
+ ; generalize (Rabs_triang_inv (f x1 - f x0) ((x1 - x0) * d x0));
intro; rewrite (Rmult_comm (x1 - x0) (- d x0));
rewrite (Ropp_mult_distr_l_reverse (d x0) (x1 - x0));
fold (f x1 - f x0 - d x0 * (x1 - x0)) in |- *;
- rewrite (Rmult_comm (x1 - x0) (d x0)) in H10; clear H1;
+ rewrite (Rmult_comm (x1 - x0) (d x0)) in H10; clear H1;
intro;
generalize
(Rle_lt_trans (Rabs (f x1 - f x0) - Rabs (d x0 * (x1 - x0)))
@@ -132,15 +132,15 @@ Proof.
rewrite <-
(Rplus_assoc (Rabs (d x0 * (x1 - x0))) (- Rabs (d x0 * (x1 - x0)))
(Rabs (f x1 - f x0))); rewrite (Rplus_opp_r (Rabs (d x0 * (x1 - x0))));
- rewrite (let (H1, H2) := Rplus_ne (Rabs (f x1 - f x0)) in H2);
+ rewrite (let (H1, H2) := Rplus_ne (Rabs (f x1 - f x0)) in H2);
clear H1; intro; cut (Rabs (d x0 * (x1 - x0)) + Rabs (x1 - x0) * eps < eps).
intro;
apply
(Rlt_trans (Rabs (f x1 - f x0))
- (Rabs (d x0 * (x1 - x0)) + Rabs (x1 - x0) * eps) eps H1 H11).
+ (Rabs (d x0 * (x1 - x0)) + Rabs (x1 - x0) * eps) eps H1 H11).
clear H1 H5 H3 H10; generalize (Rabs_pos_lt (d x0) H2); intro;
unfold Rgt in H0;
- generalize (Rmult_lt_compat_l eps (R_dist x1 x0) (/ 2) H0 H7);
+ generalize (Rmult_lt_compat_l eps (R_dist x1 x0) (/ 2) H0 H7);
clear H7; intro;
generalize
(Rmult_lt_compat_l (Rabs (d x0)) (R_dist x1 x0) (
@@ -164,11 +164,11 @@ Proof.
intro; rewrite H7 in H5;
generalize
(Rplus_lt_compat (Rabs (d x0 * (x1 - x0))) (eps * / 2)
- (Rabs (x1 - x0) * eps) (eps * / 2) H5 H3); intro;
+ (Rabs (x1 - x0) * eps) (eps * / 2) H5 H3); intro;
rewrite eps2 in H10; assumption.
unfold Rabs in |- *; case (Rcase_abs 2); auto.
intro; cut (0 < 2).
- intro; generalize (Rlt_asym 0 2 H7); intro; elimtype False; auto.
+ intro; generalize (Rlt_asym 0 2 H7); intro; exfalso; auto.
fourier.
apply Rabs_no_R0.
discrR.
@@ -180,7 +180,7 @@ Lemma Dconst :
forall (D:R -> Prop) (y x0:R), D_in (fun x:R => y) (fun x:R => 0) D x0.
Proof.
unfold D_in in |- *; intros; unfold limit1_in in |- *;
- unfold limit_in in |- *; unfold Rdiv in |- *; intros;
+ unfold limit_in in |- *; unfold Rdiv in |- *; intros;
simpl in |- *; split with eps; split; auto.
intros; rewrite (Rminus_diag_eq y y (refl_equal y)); rewrite Rmult_0_l;
unfold R_dist in |- *; rewrite (Rminus_diag_eq 0 0 (refl_equal 0));
@@ -195,7 +195,7 @@ Lemma Dx :
forall (D:R -> Prop) (x0:R), D_in (fun x:R => x) (fun x:R => 1) D x0.
Proof.
unfold D_in in |- *; unfold Rdiv in |- *; intros; unfold limit1_in in |- *;
- unfold limit_in in |- *; intros; simpl in |- *; split with eps;
+ unfold limit_in in |- *; intros; simpl in |- *; split with eps;
split; auto.
intros; elim H0; clear H0; intros; unfold D_x in H0; elim H0; intros;
rewrite (Rinv_r (x - x0) (Rminus_eq_contra x x0 (sym_not_eq H3)));
@@ -204,7 +204,7 @@ Proof.
absurd (0 < 0); auto.
red in |- *; intro; apply (Rlt_irrefl 0 r).
unfold Rgt in H; assumption.
-Qed.
+Qed.
(*********)
Lemma Dadd :
@@ -218,9 +218,9 @@ Proof.
(limit_plus (fun x:R => (f x - f x0) * / (x - x0))
(fun x:R => (g x - g x0) * / (x - x0)) (D_x D x0) (
df x0) (dg x0) x0 H H0); clear H H0; unfold limit1_in in |- *;
- unfold limit_in in |- *; simpl in |- *; intros; elim (H eps H0);
- clear H; intros; elim H; clear H; intros; split with x;
- split; auto; intros; generalize (H1 x1 H2); clear H1;
+ unfold limit_in in |- *; simpl in |- *; intros; elim (H eps H0);
+ clear H; intros; elim H; clear H; intros; split with x;
+ split; auto; intros; generalize (H1 x1 H2); clear H1;
intro; rewrite (Rmult_comm (f x1 - f x0) (/ (x1 - x0))) in H1;
rewrite (Rmult_comm (g x1 - g x0) (/ (x1 - x0))) in H1;
rewrite <- (Rmult_plus_distr_l (/ (x1 - x0)) (f x1 - f x0) (g x1 - g x0))
@@ -239,11 +239,11 @@ Lemma Dmult :
D_in (fun x:R => f x * g x) (fun x:R => df x * g x + f x * dg x) D x0.
Proof.
intros; unfold D_in in |- *; generalize H H0; intros; unfold D_in in H, H0;
- generalize (cont_deriv f df D x0 H1); unfold continue_in in |- *;
+ generalize (cont_deriv f df D x0 H1); unfold continue_in in |- *;
intro;
generalize
(limit_mul (fun x:R => (g x - g x0) * / (x - x0)) (
- fun x:R => f x) (D_x D x0) (dg x0) (f x0) x0 H0 H3);
+ fun x:R => f x) (D_x D x0) (dg x0) (f x0) x0 H0 H3);
intro; cut (limit1_in (fun x:R => g x0) (D_x D x0) (g x0) x0).
intro;
generalize
@@ -253,11 +253,11 @@ Proof.
generalize
(limit_plus (fun x:R => (f x - f x0) * / (x - x0) * g x0)
(fun x:R => (g x - g x0) * / (x - x0) * f x) (
- D_x D x0) (df x0 * g x0) (dg x0 * f x0) x0 H H4);
- clear H4 H; intro; unfold limit1_in in H; unfold limit_in in H;
- simpl in H; unfold limit1_in in |- *; unfold limit_in in |- *;
- simpl in |- *; intros; elim (H eps H0); clear H; intros;
- elim H; clear H; intros; split with x; split; auto;
+ D_x D x0) (df x0 * g x0) (dg x0 * f x0) x0 H H4);
+ clear H4 H; intro; unfold limit1_in in H; unfold limit_in in H;
+ simpl in H; unfold limit1_in in |- *; unfold limit_in in |- *;
+ simpl in |- *; intros; elim (H eps H0); clear H; intros;
+ elim H; clear H; intros; split with x; split; auto;
intros; generalize (H1 x1 H2); clear H1; intro;
rewrite (Rmult_comm (f x1 - f x0) (/ (x1 - x0))) in H1;
rewrite (Rmult_comm (g x1 - g x0) (/ (x1 - x0))) in H1;
@@ -275,7 +275,7 @@ Proof.
ring.
unfold limit1_in in |- *; unfold limit_in in |- *; simpl in |- *; intros;
split with eps; split; auto; intros; elim (R_dist_refl (g x0) (g x0));
- intros a b; rewrite (b (refl_equal (g x0))); unfold Rgt in H;
+ intros a b; rewrite (b (refl_equal (g x0))); unfold Rgt in H;
assumption.
Qed.
@@ -287,7 +287,7 @@ Proof.
intros;
generalize (Dmult D (fun _:R => 0) df (fun _:R => a) f x0 (Dconst D a x0) H);
unfold D_in in |- *; intros; rewrite (Rmult_0_l (f x0)) in H0;
- rewrite (let (H1, H2) := Rplus_ne (a * df x0) in H2) in H0;
+ rewrite (let (H1, H2) := Rplus_ne (a * df x0) in H2) in H0;
assumption.
Qed.
@@ -297,9 +297,9 @@ Lemma Dopp :
D_in f df D x0 -> D_in (fun x:R => - f x) (fun x:R => - df x) D x0.
Proof.
intros; generalize (Dmult_const D f df x0 (-1) H); unfold D_in in |- *;
- unfold limit1_in in |- *; unfold limit_in in |- *;
- intros; generalize (H0 eps H1); clear H0; intro; elim H0;
- clear H0; intros; elim H0; clear H0; simpl in |- *;
+ unfold limit1_in in |- *; unfold limit_in in |- *;
+ intros; generalize (H0 eps H1); clear H0; intro; elim H0;
+ clear H0; intros; elim H0; clear H0; simpl in |- *;
intros; split with x; split; auto.
intros; generalize (H2 x1 H3); clear H2; intro;
rewrite Ropp_mult_distr_l_reverse in H2;
@@ -307,7 +307,7 @@ Proof.
rewrite Ropp_mult_distr_l_reverse in H2;
rewrite (let (H1, H2) := Rmult_ne (f x1) in H2) in H2;
rewrite (let (H1, H2) := Rmult_ne (f x0) in H2) in H2;
- rewrite (let (H1, H2) := Rmult_ne (df x0) in H2) in H2;
+ rewrite (let (H1, H2) := Rmult_ne (df x0) in H2) in H2;
assumption.
Qed.
@@ -319,8 +319,8 @@ Lemma Dminus :
D_in (fun x:R => f x - g x) (fun x:R => df x - dg x) D x0.
Proof.
unfold Rminus in |- *; intros; generalize (Dopp D g dg x0 H0); intro;
- apply (Dadd D df (fun x:R => - dg x) f (fun x:R => - g x) x0);
- assumption.
+ apply (Dadd D df (fun x:R => - dg x) f (fun x:R => - g x) x0);
+ assumption.
Qed.
(*********)
@@ -336,8 +336,8 @@ Proof.
(Dmult D (fun _:R => 1) (fun x:R => INR n0 * x ^ (n0 - 1)) (
fun x:R => x) (fun x:R => x ^ n0) x0 (Dx D x0) (
H D x0)); unfold D_in in |- *; unfold limit1_in in |- *;
- unfold limit_in in |- *; simpl in |- *; intros; elim (H0 eps H1);
- clear H0; intros; elim H0; clear H0; intros; split with x;
+ unfold limit_in in |- *; simpl in |- *; intros; elim (H0 eps H1);
+ clear H0; intros; elim H0; clear H0; intros; split with x;
split; auto.
intros; generalize (H2 x1 H3); clear H2 H3; intro;
rewrite (let (H1, H2) := Rmult_ne (x0 ^ n0) in H2) in H2;
@@ -365,9 +365,9 @@ Proof.
unfold Rdiv in |- *; intros;
generalize
(limit_comp f (fun x:R => (g x - g (f x0)) * / (x - f x0)) (
- D_x Df x0) (D_x Dg (f x0)) (f x0) (dg (f x0)) x0);
- intro; generalize (cont_deriv f df Df x0 H); intro;
- unfold continue_in in H4; generalize (H3 H4 H2); clear H3;
+ D_x Df x0) (D_x Dg (f x0)) (f x0) (dg (f x0)) x0);
+ intro; generalize (cont_deriv f df Df x0 H); intro;
+ unfold continue_in in H4; generalize (H3 H4 H2); clear H3;
intro;
generalize
(limit_mul (fun x:R => (g (f x) - g (f x0)) * / (f x - f x0))
@@ -381,16 +381,16 @@ Proof.
generalize
(limit_mul (fun x:R => (f x - f x0) * / (x - x0)) (
fun x:R => dg (f x0)) (D_x Df x0) (df x0) (dg (f x0)) x0 H1
- (limit_free (fun x:R => dg (f x0)) (D_x Df x0) x0 x0));
- intro; unfold limit1_in in |- *; unfold limit_in in |- *;
+ (limit_free (fun x:R => dg (f x0)) (D_x Df x0) x0 x0));
+ intro; unfold limit1_in in |- *; unfold limit_in in |- *;
simpl in |- *; unfold limit1_in in H5, H7; unfold limit_in in H5, H7;
- simpl in H5, H7; intros; elim (H5 eps H8); elim (H7 eps H8);
- clear H5 H7; intros; elim H5; elim H7; clear H5 H7;
+ simpl in H5, H7; intros; elim (H5 eps H8); elim (H7 eps H8);
+ clear H5 H7; intros; elim H5; elim H7; clear H5 H7;
intros; split with (Rmin x x1); split.
elim (Rmin_Rgt x x1 0); intros a b; apply (b (conj H9 H5)); clear a b.
intros; elim H11; clear H11; intros; elim (Rmin_Rgt x x1 (R_dist x2 x0));
- intros a b; clear b; unfold Rgt in a; elim (a H12);
- clear H5 a; intros; unfold D_x, Dgf in H11, H7, H10;
+ intros a b; clear b; unfold Rgt in a; elim (a H12);
+ clear H5 a; intros; unfold D_x, Dgf in H11, H7, H10;
clear H12; elim (classic (f x2 = f x0)); intro.
elim H11; clear H11; intros; elim H11; clear H11; intros;
generalize (H10 x2 (conj (conj H11 H14) H5)); intro;
@@ -412,12 +412,12 @@ Proof.
rewrite (let (H1, H2) := Rmult_ne (/ (x2 - x0)) in H2) in H15;
rewrite (Rmult_comm (df x0) (dg (f x0))); assumption.
clear H5 H3 H4 H2; unfold limit1_in in |- *; unfold limit_in in |- *;
- simpl in |- *; unfold limit1_in in H1; unfold limit_in in H1;
- simpl in H1; intros; elim (H1 eps H2); clear H1; intros;
- elim H1; clear H1; intros; split with x; split; auto;
- intros; unfold D_x, Dgf in H4, H3; elim H4; clear H4;
+ simpl in |- *; unfold limit1_in in H1; unfold limit_in in H1;
+ simpl in H1; intros; elim (H1 eps H2); clear H1; intros;
+ elim H1; clear H1; intros; split with x; split; auto;
+ intros; unfold D_x, Dgf in H4, H3; elim H4; clear H4;
intros; elim H4; clear H4; intros; exact (H3 x1 (conj H4 H5)).
-Qed.
+Qed.
(*********)
Lemma D_pow_n :
@@ -430,11 +430,11 @@ Proof.
intros n D x0 expr dexpr H;
generalize
(Dcomp D D dexpr (fun x:R => INR n * x ^ (n - 1)) expr (
- fun x:R => x ^ n) x0 H (Dx_pow_n n D (expr x0)));
+ fun x:R => x ^ n) x0 H (Dx_pow_n n D (expr x0)));
intro; unfold D_in in |- *; unfold limit1_in in |- *;
unfold limit_in in |- *; simpl in |- *; intros; unfold D_in in H0;
- unfold limit1_in in H0; unfold limit_in in H0; simpl in H0;
- elim (H0 eps H1); clear H0; intros; elim H0; clear H0;
+ unfold limit1_in in H0; unfold limit_in in H0; simpl in H0;
+ elim (H0 eps H1); clear H0; intros; elim H0; clear H0;
intros; split with x; split; intros; auto.
cut
(dexpr x0 * (INR n * expr x0 ^ (n - 1)) =