summaryrefslogtreecommitdiff
path: root/theories/Reals/Rcomplete.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Rcomplete.v')
-rw-r--r--theories/Reals/Rcomplete.v198
1 files changed, 198 insertions, 0 deletions
diff --git a/theories/Reals/Rcomplete.v b/theories/Reals/Rcomplete.v
new file mode 100644
index 00000000..dd8379cb
--- /dev/null
+++ b/theories/Reals/Rcomplete.v
@@ -0,0 +1,198 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Rcomplete.v,v 1.10.2.1 2004/07/16 19:31:12 herbelin Exp $ i*)
+
+Require Import Rbase.
+Require Import Rfunctions.
+Require Import Rseries.
+Require Import SeqProp.
+Require Import Max.
+Open Local Scope R_scope.
+
+(****************************************************)
+(* R is complete : *)
+(* Each sequence which satisfies *)
+(* the Cauchy's criterion converges *)
+(* *)
+(* Proof with adjacent sequences (Vn and Wn) *)
+(****************************************************)
+
+Theorem R_complete :
+ forall Un:nat -> R, Cauchy_crit Un -> sigT (fun l:R => Un_cv Un l).
+intros.
+set (Vn := sequence_minorant Un (cauchy_min Un H)).
+set (Wn := sequence_majorant Un (cauchy_maj Un H)).
+assert (H0 := maj_cv Un H).
+fold Wn in H0.
+assert (H1 := min_cv Un H).
+fold Vn in H1.
+elim H0; intros.
+elim H1; intros.
+cut (x = x0).
+intros.
+apply existT with x.
+rewrite <- H2 in p0.
+unfold Un_cv in |- *.
+intros.
+unfold Un_cv in p; unfold Un_cv in p0.
+cut (0 < eps / 3).
+intro.
+elim (p (eps / 3) H4); intros.
+elim (p0 (eps / 3) H4); intros.
+exists (max x1 x2).
+intros.
+unfold R_dist in |- *.
+apply Rle_lt_trans with (Rabs (Un n - Vn n) + Rabs (Vn n - x)).
+replace (Un n - x) with (Un n - Vn n + (Vn n - x));
+ [ apply Rabs_triang | ring ].
+apply Rle_lt_trans with (Rabs (Wn n - Vn n) + Rabs (Vn n - x)).
+do 2 rewrite <- (Rplus_comm (Rabs (Vn n - x))).
+apply Rplus_le_compat_l.
+repeat rewrite Rabs_right.
+unfold Rminus in |- *; do 2 rewrite <- (Rplus_comm (- Vn n));
+ apply Rplus_le_compat_l.
+assert (H8 := Vn_Un_Wn_order Un (cauchy_maj Un H) (cauchy_min Un H)).
+fold Vn Wn in H8.
+elim (H8 n); intros.
+assumption.
+apply Rle_ge.
+unfold Rminus in |- *; apply Rplus_le_reg_l with (Vn n).
+rewrite Rplus_0_r.
+replace (Vn n + (Wn n + - Vn n)) with (Wn n); [ idtac | ring ].
+assert (H8 := Vn_Un_Wn_order Un (cauchy_maj Un H) (cauchy_min Un H)).
+fold Vn Wn in H8.
+elim (H8 n); intros.
+apply Rle_trans with (Un n); assumption.
+apply Rle_ge.
+unfold Rminus in |- *; apply Rplus_le_reg_l with (Vn n).
+rewrite Rplus_0_r.
+replace (Vn n + (Un n + - Vn n)) with (Un n); [ idtac | ring ].
+assert (H8 := Vn_Un_Wn_order Un (cauchy_maj Un H) (cauchy_min Un H)).
+fold Vn Wn in H8.
+elim (H8 n); intros.
+assumption.
+apply Rle_lt_trans with (Rabs (Wn n - x) + Rabs (x - Vn n) + Rabs (Vn n - x)).
+do 2 rewrite <- (Rplus_comm (Rabs (Vn n - x))).
+apply Rplus_le_compat_l.
+replace (Wn n - Vn n) with (Wn n - x + (x - Vn n));
+ [ apply Rabs_triang | ring ].
+apply Rlt_le_trans with (eps / 3 + eps / 3 + eps / 3).
+repeat apply Rplus_lt_compat.
+unfold R_dist in H5.
+apply H5.
+unfold ge in |- *; apply le_trans with (max x1 x2).
+apply le_max_l.
+assumption.
+rewrite <- Rabs_Ropp.
+replace (- (x - Vn n)) with (Vn n - x); [ idtac | ring ].
+unfold R_dist in H6.
+apply H6.
+unfold ge in |- *; apply le_trans with (max x1 x2).
+apply le_max_r.
+assumption.
+unfold R_dist in H6.
+apply H6.
+unfold ge in |- *; apply le_trans with (max x1 x2).
+apply le_max_r.
+assumption.
+right.
+pattern eps at 4 in |- *; replace eps with (3 * (eps / 3)).
+ring.
+unfold Rdiv in |- *; rewrite <- Rmult_assoc; apply Rinv_r_simpl_m; discrR.
+unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ [ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
+apply cond_eq.
+intros.
+cut (0 < eps / 5).
+intro.
+unfold Un_cv in p; unfold Un_cv in p0.
+unfold R_dist in p; unfold R_dist in p0.
+elim (p (eps / 5) H3); intros N1 H4.
+elim (p0 (eps / 5) H3); intros N2 H5.
+unfold Cauchy_crit in H.
+unfold R_dist in H.
+elim (H (eps / 5) H3); intros N3 H6.
+set (N := max (max N1 N2) N3).
+apply Rle_lt_trans with (Rabs (x - Wn N) + Rabs (Wn N - x0)).
+replace (x - x0) with (x - Wn N + (Wn N - x0)); [ apply Rabs_triang | ring ].
+apply Rle_lt_trans with
+ (Rabs (x - Wn N) + Rabs (Wn N - Vn N) + Rabs (Vn N - x0)).
+rewrite Rplus_assoc.
+apply Rplus_le_compat_l.
+replace (Wn N - x0) with (Wn N - Vn N + (Vn N - x0));
+ [ apply Rabs_triang | ring ].
+replace eps with (eps / 5 + 3 * (eps / 5) + eps / 5).
+repeat apply Rplus_lt_compat.
+rewrite <- Rabs_Ropp.
+replace (- (x - Wn N)) with (Wn N - x); [ apply H4 | ring ].
+unfold ge, N in |- *.
+apply le_trans with (max N1 N2); apply le_max_l.
+unfold Wn, Vn in |- *.
+unfold sequence_majorant, sequence_minorant in |- *.
+assert
+ (H7 :=
+ approx_maj (fun k:nat => Un (N + k)%nat) (maj_ss Un N (cauchy_maj Un H))).
+assert
+ (H8 :=
+ approx_min (fun k:nat => Un (N + k)%nat) (min_ss Un N (cauchy_min Un H))).
+cut
+ (Wn N =
+ majorant (fun k:nat => Un (N + k)%nat) (maj_ss Un N (cauchy_maj Un H))).
+cut
+ (Vn N =
+ minorant (fun k:nat => Un (N + k)%nat) (min_ss Un N (cauchy_min Un H))).
+intros.
+rewrite <- H9; rewrite <- H10.
+rewrite <- H9 in H8.
+rewrite <- H10 in H7.
+elim (H7 (eps / 5) H3); intros k2 H11.
+elim (H8 (eps / 5) H3); intros k1 H12.
+apply Rle_lt_trans with
+ (Rabs (Wn N - Un (N + k2)%nat) + Rabs (Un (N + k2)%nat - Vn N)).
+replace (Wn N - Vn N) with
+ (Wn N - Un (N + k2)%nat + (Un (N + k2)%nat - Vn N));
+ [ apply Rabs_triang | ring ].
+apply Rle_lt_trans with
+ (Rabs (Wn N - Un (N + k2)%nat) + Rabs (Un (N + k2)%nat - Un (N + k1)%nat) +
+ Rabs (Un (N + k1)%nat - Vn N)).
+rewrite Rplus_assoc.
+apply Rplus_le_compat_l.
+replace (Un (N + k2)%nat - Vn N) with
+ (Un (N + k2)%nat - Un (N + k1)%nat + (Un (N + k1)%nat - Vn N));
+ [ apply Rabs_triang | ring ].
+replace (3 * (eps / 5)) with (eps / 5 + eps / 5 + eps / 5);
+ [ repeat apply Rplus_lt_compat | ring ].
+assumption.
+apply H6.
+unfold ge in |- *.
+apply le_trans with N.
+unfold N in |- *; apply le_max_r.
+apply le_plus_l.
+unfold ge in |- *.
+apply le_trans with N.
+unfold N in |- *; apply le_max_r.
+apply le_plus_l.
+rewrite <- Rabs_Ropp.
+replace (- (Un (N + k1)%nat - Vn N)) with (Vn N - Un (N + k1)%nat);
+ [ assumption | ring ].
+reflexivity.
+reflexivity.
+apply H5.
+unfold ge in |- *; apply le_trans with (max N1 N2).
+apply le_max_r.
+unfold N in |- *; apply le_max_l.
+pattern eps at 4 in |- *; replace eps with (5 * (eps / 5)).
+ring.
+unfold Rdiv in |- *; rewrite <- Rmult_assoc; apply Rinv_r_simpl_m.
+discrR.
+unfold Rdiv in |- *; apply Rmult_lt_0_compat.
+assumption.
+apply Rinv_0_lt_compat.
+prove_sup0; try apply lt_O_Sn.
+Qed. \ No newline at end of file