diff options
Diffstat (limited to 'theories/Reals/Rbasic_fun.v')
-rw-r--r-- | theories/Reals/Rbasic_fun.v | 272 |
1 files changed, 202 insertions, 70 deletions
diff --git a/theories/Reals/Rbasic_fun.v b/theories/Reals/Rbasic_fun.v index a5cc9f19..7588020c 100644 --- a/theories/Reals/Rbasic_fun.v +++ b/theories/Reals/Rbasic_fun.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Rbasic_fun.v 10710 2008-03-23 09:24:09Z herbelin $ i*) +(*i $Id$ i*) (*********************************************************) (** Complements for the real numbers *) @@ -16,7 +16,7 @@ Require Import Rbase. Require Import R_Ifp. Require Import Fourier. -Open Local Scope R_scope. +Local Open Scope R_scope. Implicit Type r : R. @@ -32,6 +32,19 @@ Definition Rmin (x y:R) : R := end. (*********) +Lemma Rmin_case : forall r1 r2 (P:R -> Type), P r1 -> P r2 -> P (Rmin r1 r2). +Proof. + intros r1 r2 P H1 H2; unfold Rmin; case (Rle_dec r1 r2); auto. +Qed. + +(*********) +Lemma Rmin_case_strong : forall r1 r2 (P:R -> Type), + (r1 <= r2 -> P r1) -> (r2 <= r1 -> P r2) -> P (Rmin r1 r2). +Proof. + intros r1 r2 P H1 H2; unfold Rmin; destruct (Rle_dec r1 r2); auto with real. +Qed. + +(*********) Lemma Rmin_Rgt_l : forall r1 r2 r, Rmin r1 r2 > r -> r1 > r /\ r2 > r. Proof. intros r1 r2 r; unfold Rmin in |- *; case (Rle_dec r1 r2); intros. @@ -73,9 +86,33 @@ Proof. Qed. (*********) -Lemma Rmin_comm : forall a b:R, Rmin a b = Rmin b a. +Lemma Rmin_left : forall x y, x <= y -> Rmin x y = x. +Proof. + intros; apply Rmin_case_strong; auto using Rle_antisym. +Qed. + +(*********) +Lemma Rmin_right : forall x y, y <= x -> Rmin x y = y. +Proof. + intros; apply Rmin_case_strong; auto using Rle_antisym. +Qed. + +(*********) +Lemma Rle_min_compat_r : forall x y z, x <= y -> Rmin x z <= Rmin y z. +Proof. + intros; do 2 (apply Rmin_case_strong; intro); eauto using Rle_trans, Rle_refl. +Qed. + +(*********) +Lemma Rle_min_compat_l : forall x y z, x <= y -> Rmin z x <= Rmin z y. +Proof. + intros; do 2 (apply Rmin_case_strong; intro); eauto using Rle_trans, Rle_refl. +Qed. + +(*********) +Lemma Rmin_comm : forall x y:R, Rmin x y = Rmin y x. Proof. - intros; unfold Rmin in |- *; case (Rle_dec a b); case (Rle_dec b a); intros; + intros; unfold Rmin; case (Rle_dec x y); case (Rle_dec y x); intros; try reflexivity || (apply Rle_antisym; assumption || auto with real). Qed. @@ -85,6 +122,25 @@ Proof. intros; apply Rmin_Rgt_r; split; [ apply (cond_pos x) | apply (cond_pos y) ]. Qed. +(*********) +Lemma Rmin_pos : forall x y:R, 0 < x -> 0 < y -> 0 < Rmin x y. +Proof. + intros; unfold Rmin in |- *. + case (Rle_dec x y); intro; assumption. +Qed. + +(*********) +Lemma Rmin_glb : forall x y z:R, z <= x -> z <= y -> z <= Rmin x y. +Proof. + intros; unfold Rmin in |- *; case (Rle_dec x y); intro; assumption. +Qed. + +(*********) +Lemma Rmin_glb_lt : forall x y z:R, z < x -> z < y -> z < Rmin x y. +Proof. + intros; unfold Rmin in |- *; case (Rle_dec x y); intro; assumption. +Qed. + (*******************************) (** * Rmax *) (*******************************) @@ -97,6 +153,19 @@ Definition Rmax (x y:R) : R := end. (*********) +Lemma Rmax_case : forall r1 r2 (P:R -> Type), P r1 -> P r2 -> P (Rmax r1 r2). +Proof. + intros r1 r2 P H1 H2; unfold Rmax; case (Rle_dec r1 r2); auto. +Qed. + +(*********) +Lemma Rmax_case_strong : forall r1 r2 (P:R -> Type), + (r2 <= r1 -> P r1) -> (r1 <= r2 -> P r2) -> P (Rmax r1 r2). +Proof. + intros r1 r2 P H1 H2; unfold Rmax; case (Rle_dec r1 r2); auto with real. +Qed. + +(*********) Lemma Rmax_Rle : forall r1 r2 r, r <= Rmax r1 r2 <-> r <= r1 \/ r <= r2. Proof. intros; split. @@ -108,24 +177,60 @@ Proof. apply (Rlt_le r r1 (Rle_lt_trans r r2 r1 H H0)). Qed. -Lemma RmaxLess1 : forall r1 r2, r1 <= Rmax r1 r2. +Lemma Rmax_comm : forall x y:R, Rmax x y = Rmax y x. Proof. - intros r1 r2; unfold Rmax in |- *; case (Rle_dec r1 r2); auto with real. + intros p q; unfold Rmax in |- *; case (Rle_dec p q); case (Rle_dec q p); auto; + intros H1 H2; apply Rle_antisym; auto with real. Qed. -Lemma RmaxLess2 : forall r1 r2, r2 <= Rmax r1 r2. +(* begin hide *) +Notation RmaxSym := Rmax_comm (only parsing). +(* end hide *) + +(*********) +Lemma Rmax_l : forall x y:R, x <= Rmax x y. Proof. - intros r1 r2; unfold Rmax in |- *; case (Rle_dec r1 r2); auto with real. + intros; unfold Rmax in |- *; case (Rle_dec x y); intro H1; + [ assumption | auto with real ]. Qed. -Lemma Rmax_comm : forall p q:R, Rmax p q = Rmax q p. +(*********) +Lemma Rmax_r : forall x y:R, y <= Rmax x y. Proof. - intros p q; unfold Rmax in |- *; case (Rle_dec p q); case (Rle_dec q p); auto; - intros H1 H2; apply Rle_antisym; auto with real. + intros; unfold Rmax in |- *; case (Rle_dec x y); intro H1; + [ right; reflexivity | auto with real ]. Qed. -Notation RmaxSym := Rmax_comm (only parsing). +(* begin hide *) +Notation RmaxLess1 := Rmax_l (only parsing). +Notation RmaxLess2 := Rmax_r (only parsing). +(* end hide *) +(*********) +Lemma Rmax_left : forall x y, y <= x -> Rmax x y = x. +Proof. + intros; apply Rmax_case_strong; auto using Rle_antisym. +Qed. + +(*********) +Lemma Rmax_right : forall x y, x <= y -> Rmax x y = y. +Proof. + intros; apply Rmax_case_strong; auto using Rle_antisym. +Qed. + +(*********) +Lemma Rle_max_compat_r : forall x y z, x <= y -> Rmax x z <= Rmax y z. +Proof. + intros; do 2 (apply Rmax_case_strong; intro); eauto using Rle_trans, Rle_refl. +Qed. + +(*********) +Lemma Rle_max_compat_l : forall x y z, x <= y -> Rmax z x <= Rmax z y. +Proof. + intros; do 2 (apply Rmax_case_strong; intro); eauto using Rle_trans, Rle_refl. +Qed. + +(*********) Lemma RmaxRmult : forall (p q:R) r, 0 <= r -> Rmax (r * p) (r * q) = r * Rmax p q. Proof. @@ -140,18 +245,38 @@ Proof. rewrite <- E1; repeat rewrite Rmult_0_l; auto. Qed. +(*********) Lemma Rmax_stable_in_negreal : forall x y:negreal, Rmax x y < 0. Proof. intros; unfold Rmax in |- *; case (Rle_dec x y); intro; [ apply (cond_neg y) | apply (cond_neg x) ]. Qed. +(*********) +Lemma Rmax_lub : forall x y z:R, x <= z -> y <= z -> Rmax x y <= z. +Proof. + intros; unfold Rmax; case (Rle_dec x y); intro; assumption. +Qed. + +(*********) +Lemma Rmax_lub_lt : forall x y z:R, x < z -> y < z -> Rmax x y < z. +Proof. + intros; unfold Rmax; case (Rle_dec x y); intro; assumption. +Qed. + +(*********) +Lemma Rmax_neg : forall x y:R, x < 0 -> y < 0 -> Rmax x y < 0. +Proof. + intros; unfold Rmax in |- *. + case (Rle_dec x y); intro; assumption. +Qed. + (*******************************) (** * Rabsolu *) (*******************************) (*********) -Lemma Rcase_abs : forall r, {r < 0} + {r >= 0}. +Lemma Rcase_abs : forall r, {r < 0} + {r >= 0}. Proof. intro; generalize (Rle_dec 0 r); intro X; elim X; intro; clear X. right; apply (Rle_ge 0 r a). @@ -169,7 +294,7 @@ Definition Rabs r : R := Lemma Rabs_R0 : Rabs 0 = 0. Proof. unfold Rabs in |- *; case (Rcase_abs 0); auto; intro. - generalize (Rlt_irrefl 0); intro; elimtype False; auto. + generalize (Rlt_irrefl 0); intro; exfalso; auto. Qed. Lemma Rabs_R1 : Rabs 1 = 1. @@ -220,16 +345,18 @@ Proof. apply Rge_le; assumption. Qed. -Lemma RRle_abs : forall x:R, x <= Rabs x. +Lemma Rle_abs : forall x:R, x <= Rabs x. Proof. intro; unfold Rabs in |- *; case (Rcase_abs x); intros; fourier. Qed. +Definition RRle_abs := Rle_abs. + (*********) Lemma Rabs_pos_eq : forall x:R, 0 <= x -> Rabs x = x. Proof. intros; unfold Rabs in |- *; case (Rcase_abs x); intro; - [ generalize (Rgt_not_le 0 x r); intro; elimtype False; auto | trivial ]. + [ generalize (Rgt_not_le 0 x r); intro; exfalso; auto | trivial ]. Qed. (*********) @@ -243,10 +370,10 @@ Lemma Rabs_pos_lt : forall x:R, x <> 0 -> 0 < Rabs x. Proof. intros; generalize (Rabs_pos x); intro; unfold Rle in H0; elim H0; intro; auto. - elimtype False; clear H0; elim H; clear H; generalize H1; unfold Rabs in |- *; + exfalso; clear H0; elim H; clear H; generalize H1; unfold Rabs in |- *; case (Rcase_abs x); intros; auto. clear r H1; generalize (Rplus_eq_compat_l x 0 (- x) H0); - rewrite (let (H1, H2) := Rplus_ne x in H1); rewrite (Rplus_opp_r x); + rewrite (let (H1, H2) := Rplus_ne x in H1); rewrite (Rplus_opp_r x); trivial. Qed. @@ -256,14 +383,14 @@ Proof. intros; unfold Rabs in |- *; case (Rcase_abs (x - y)); case (Rcase_abs (y - x)); intros. generalize (Rminus_lt y x r); generalize (Rminus_lt x y r0); intros; - generalize (Rlt_asym x y H); intro; elimtype False; + generalize (Rlt_asym x y H); intro; exfalso; auto. rewrite (Ropp_minus_distr x y); trivial. rewrite (Ropp_minus_distr y x); trivial. unfold Rge in r, r0; elim r; elim r0; intros; clear r r0. generalize (Ropp_lt_gt_0_contravar (x - y) H); rewrite (Ropp_minus_distr x y); - intro; unfold Rgt in H0; generalize (Rlt_asym 0 (y - x) H0); - intro; elimtype False; auto. + intro; unfold Rgt in H0; generalize (Rlt_asym 0 (y - x) H0); + intro; exfalso; auto. rewrite (Rminus_diag_uniq x y H); trivial. rewrite (Rminus_diag_uniq y x H0); trivial. rewrite (Rminus_diag_uniq y x H0); trivial. @@ -275,47 +402,47 @@ Proof. intros; unfold Rabs in |- *; case (Rcase_abs (x * y)); case (Rcase_abs x); case (Rcase_abs y); intros; auto. generalize (Rmult_lt_gt_compat_neg_l y x 0 r r0); intro; - rewrite (Rmult_0_r y) in H; generalize (Rlt_asym (x * y) 0 r1); - intro; unfold Rgt in H; elimtype False; rewrite (Rmult_comm y x) in H; + rewrite (Rmult_0_r y) in H; generalize (Rlt_asym (x * y) 0 r1); + intro; unfold Rgt in H; exfalso; rewrite (Rmult_comm y x) in H; auto. - rewrite (Ropp_mult_distr_l_reverse x y); trivial. + rewrite (Ropp_mult_distr_l_reverse x y); trivial. rewrite (Rmult_comm x (- y)); rewrite (Ropp_mult_distr_l_reverse y x); rewrite (Rmult_comm x y); trivial. unfold Rge in r, r0; elim r; elim r0; clear r r0; intros; unfold Rgt in H, H0. generalize (Rmult_lt_compat_l x 0 y H H0); intro; rewrite (Rmult_0_r x) in H1; - generalize (Rlt_asym (x * y) 0 r1); intro; elimtype False; + generalize (Rlt_asym (x * y) 0 r1); intro; exfalso; auto. rewrite H in r1; rewrite (Rmult_0_l y) in r1; generalize (Rlt_irrefl 0); - intro; elimtype False; auto. + intro; exfalso; auto. rewrite H0 in r1; rewrite (Rmult_0_r x) in r1; generalize (Rlt_irrefl 0); - intro; elimtype False; auto. + intro; exfalso; auto. rewrite H0 in r1; rewrite (Rmult_0_r x) in r1; generalize (Rlt_irrefl 0); - intro; elimtype False; auto. + intro; exfalso; auto. rewrite (Rmult_opp_opp x y); trivial. unfold Rge in r, r1; elim r; elim r1; clear r r1; intros; unfold Rgt in H0, H. generalize (Rmult_lt_compat_l y x 0 H0 r0); intro; rewrite (Rmult_0_r y) in H1; rewrite (Rmult_comm y x) in H1; - generalize (Rlt_asym (x * y) 0 H1); intro; elimtype False; + generalize (Rlt_asym (x * y) 0 H1); intro; exfalso; auto. generalize (Rlt_dichotomy_converse x 0 (or_introl (x > 0) r0)); - generalize (Rlt_dichotomy_converse y 0 (or_intror (y < 0) H0)); - intros; generalize (Rmult_integral x y H); intro; - elim H3; intro; elimtype False; auto. + generalize (Rlt_dichotomy_converse y 0 (or_intror (y < 0) H0)); + intros; generalize (Rmult_integral x y H); intro; + elim H3; intro; exfalso; auto. rewrite H0 in H; rewrite (Rmult_0_r x) in H; unfold Rgt in H; - generalize (Rlt_irrefl 0); intro; elimtype False; + generalize (Rlt_irrefl 0); intro; exfalso; auto. rewrite H0; rewrite (Rmult_0_r x); rewrite (Rmult_0_r (- x)); trivial. unfold Rge in r0, r1; elim r0; elim r1; clear r0 r1; intros; unfold Rgt in H0, H. generalize (Rmult_lt_compat_l x y 0 H0 r); intro; rewrite (Rmult_0_r x) in H1; - generalize (Rlt_asym (x * y) 0 H1); intro; elimtype False; + generalize (Rlt_asym (x * y) 0 H1); intro; exfalso; auto. generalize (Rlt_dichotomy_converse y 0 (or_introl (y > 0) r)); - generalize (Rlt_dichotomy_converse 0 x (or_introl (0 > x) H0)); - intros; generalize (Rmult_integral x y H); intro; - elim H3; intro; elimtype False; auto. + generalize (Rlt_dichotomy_converse 0 x (or_introl (0 > x) H0)); + intros; generalize (Rmult_integral x y H); intro; + elim H3; intro; exfalso; auto. rewrite H0 in H; rewrite (Rmult_0_l y) in H; unfold Rgt in H; - generalize (Rlt_irrefl 0); intro; elimtype False; + generalize (Rlt_irrefl 0); intro; exfalso; auto. rewrite H0; rewrite (Rmult_0_l y); rewrite (Rmult_0_l (- y)); trivial. Qed. @@ -327,15 +454,15 @@ Proof. intros. apply Ropp_inv_permute; auto. generalize (Rinv_lt_0_compat r r1); intro; unfold Rge in r0; elim r0; intros. - unfold Rgt in H1; generalize (Rlt_asym 0 (/ r) H1); intro; elimtype False; + unfold Rgt in H1; generalize (Rlt_asym 0 (/ r) H1); intro; exfalso; auto. generalize (Rlt_dichotomy_converse (/ r) 0 (or_introl (/ r > 0) H0)); intro; - elimtype False; auto. + exfalso; auto. unfold Rge in r1; elim r1; clear r1; intro. unfold Rgt in H0; generalize (Rlt_asym 0 (/ r) (Rinv_0_lt_compat r H0)); - intro; elimtype False; auto. - elimtype False; auto. -Qed. + intro; exfalso; auto. + exfalso; auto. +Qed. Lemma Rabs_Ropp : forall x:R, Rabs (- x) = Rabs x. Proof. @@ -351,7 +478,7 @@ Proof. generalize (Ropp_le_ge_contravar 0 (-1) H1). rewrite Ropp_involutive; rewrite Ropp_0. intro; generalize (Rgt_not_le 1 0 Rlt_0_1); intro; generalize (Rge_le 0 1 H2); - intro; elimtype False; auto. + intro; exfalso; auto. ring. Qed. @@ -366,7 +493,7 @@ Proof. rewrite (Ropp_plus_distr a b); apply (Rplus_le_compat_l (- a) (- b) b); unfold Rle in |- *; unfold Rge in r; elim r; intro. left; unfold Rgt in H; generalize (Rplus_lt_compat_l (- b) 0 b H); intro; - elim (Rplus_ne (- b)); intros v w; rewrite v in H0; + elim (Rplus_ne (- b)); intros v w; rewrite v in H0; clear v w; rewrite (Rplus_opp_l b) in H0; apply (Rlt_trans (- b) 0 b H0 H). right; rewrite H; apply Ropp_0. (**) @@ -374,21 +501,21 @@ Proof. rewrite (Rplus_comm a (- b)); apply (Rplus_le_compat_l (- b) (- a) a); unfold Rle in |- *; unfold Rge in r0; elim r0; intro. left; unfold Rgt in H; generalize (Rplus_lt_compat_l (- a) 0 a H); intro; - elim (Rplus_ne (- a)); intros v w; rewrite v in H0; + elim (Rplus_ne (- a)); intros v w; rewrite v in H0; clear v w; rewrite (Rplus_opp_l a) in H0; apply (Rlt_trans (- a) 0 a H0 H). right; rewrite H; apply Ropp_0. (**) - elimtype False; generalize (Rplus_ge_compat_l a b 0 r); intro; + exfalso; generalize (Rplus_ge_compat_l a b 0 r); intro; elim (Rplus_ne a); intros v w; rewrite v in H; clear v w; - generalize (Rge_trans (a + b) a 0 H r0); intro; clear H; + generalize (Rge_trans (a + b) a 0 H r0); intro; clear H; unfold Rge in H0; elim H0; intro; clear H0. unfold Rgt in H; generalize (Rlt_asym (a + b) 0 r1); intro; auto. absurd (a + b = 0); auto. apply (Rlt_dichotomy_converse (a + b) 0); left; assumption. (**) - elimtype False; generalize (Rplus_lt_compat_l a b 0 r); intro; + exfalso; generalize (Rplus_lt_compat_l a b 0 r); intro; elim (Rplus_ne a); intros v w; rewrite v in H; clear v w; - generalize (Rlt_trans (a + b) a 0 H r0); intro; clear H; + generalize (Rlt_trans (a + b) a 0 H r0); intro; clear H; unfold Rge in r1; elim r1; clear r1; intro. unfold Rgt in H; generalize (Rlt_trans (a + b) 0 (a + b) H0 H); intro; apply (Rlt_irrefl (a + b)); assumption. @@ -397,16 +524,16 @@ Proof. rewrite (Rplus_comm a b); rewrite (Rplus_comm (- a) b); apply (Rplus_le_compat_l b a (- a)); apply (Rminus_le a (- a)); unfold Rminus in |- *; rewrite (Ropp_involutive a); - generalize (Rplus_lt_compat_l a a 0 r0); clear r r1; - intro; elim (Rplus_ne a); intros v w; rewrite v in H; - clear v w; generalize (Rlt_trans (a + a) a 0 H r0); + generalize (Rplus_lt_compat_l a a 0 r0); clear r r1; + intro; elim (Rplus_ne a); intros v w; rewrite v in H; + clear v w; generalize (Rlt_trans (a + a) a 0 H r0); intro; apply (Rlt_le (a + a) 0 H0). (**) apply (Rplus_le_compat_l a b (- b)); apply (Rminus_le b (- b)); unfold Rminus in |- *; rewrite (Ropp_involutive b); - generalize (Rplus_lt_compat_l b b 0 r); clear r0 r1; - intro; elim (Rplus_ne b); intros v w; rewrite v in H; - clear v w; generalize (Rlt_trans (b + b) b 0 H r); + generalize (Rplus_lt_compat_l b b 0 r); clear r0 r1; + intro; elim (Rplus_ne b); intros v w; rewrite v in H; + clear v w; generalize (Rlt_trans (b + b) b 0 H r); intro; apply (Rlt_le (b + b) 0 H0). (**) unfold Rle in |- *; right; reflexivity. @@ -428,25 +555,25 @@ Proof. Qed. (* ||a|-|b||<=|a-b| *) -Lemma Rabs_triang_inv2 : forall a b:R, Rabs (Rabs a - Rabs b) <= Rabs (a - b). +Lemma Rabs_triang_inv2 : forall a b:R, Rabs (Rabs a - Rabs b) <= Rabs (a - b). Proof. cut - (forall a b:R, Rabs b <= Rabs a -> Rabs (Rabs a - Rabs b) <= Rabs (a - b)). + (forall a b:R, Rabs b <= Rabs a -> Rabs (Rabs a - Rabs b) <= Rabs (a - b)). intros; destruct (Rtotal_order (Rabs a) (Rabs b)) as [Hlt| [Heq| Hgt]]. rewrite <- (Rabs_Ropp (Rabs a - Rabs b)); rewrite <- (Rabs_Ropp (a - b)); - do 2 rewrite Ropp_minus_distr. - apply H; left; assumption. + do 2 rewrite Ropp_minus_distr. + apply H; left; assumption. rewrite Heq; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; - apply Rabs_pos. - apply H; left; assumption. - intros; replace (Rabs (Rabs a - Rabs b)) with (Rabs a - Rabs b). - apply Rabs_triang_inv. + apply Rabs_pos. + apply H; left; assumption. + intros; replace (Rabs (Rabs a - Rabs b)) with (Rabs a - Rabs b). + apply Rabs_triang_inv. rewrite (Rabs_right (Rabs a - Rabs b)); [ reflexivity | apply Rle_ge; apply Rplus_le_reg_l with (Rabs b); rewrite Rplus_0_r; - replace (Rabs b + (Rabs a - Rabs b)) with (Rabs a); - [ assumption | ring ] ]. -Qed. + replace (Rabs b + (Rabs a - Rabs b)) with (Rabs a); + [ assumption | ring ] ]. +Qed. (*********) Lemma Rabs_def1 : forall x a:R, x < a -> - a < x -> Rabs x < a. @@ -462,13 +589,13 @@ Lemma Rabs_def2 : forall x a:R, Rabs x < a -> x < a /\ - a < x. Proof. unfold Rabs in |- *; intro x; case (Rcase_abs x); intros. generalize (Ropp_gt_lt_0_contravar x r); unfold Rgt in |- *; intro; - generalize (Rlt_trans 0 (- x) a H0 H); intro; split. + generalize (Rlt_trans 0 (- x) a H0 H); intro; split. apply (Rlt_trans x 0 a r H1). generalize (Ropp_lt_gt_contravar (- x) a H); rewrite (Ropp_involutive x); unfold Rgt in |- *; trivial. fold (a > x) in H; generalize (Rgt_ge_trans a x 0 H r); intro; generalize (Ropp_lt_gt_0_contravar a H0); intro; fold (0 > - a) in |- *; - generalize (Rge_gt_trans x 0 (- a) r H1); unfold Rgt in |- *; + generalize (Rge_gt_trans x 0 (- a) r H1); unfold Rgt in |- *; intro; split; assumption. Qed. @@ -506,4 +633,9 @@ Proof. intros p0; rewrite Rabs_Ropp. apply Rabs_right; auto with real zarith. Qed. - + +Lemma abs_IZR : forall z, IZR (Zabs z) = Rabs (IZR z). +Proof. + intros. + now rewrite Rabs_Zabs. +Qed. |