summaryrefslogtreecommitdiff
path: root/theories/Reals/Raxioms.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Raxioms.v')
-rw-r--r--theories/Reals/Raxioms.v14
1 files changed, 7 insertions, 7 deletions
diff --git a/theories/Reals/Raxioms.v b/theories/Reals/Raxioms.v
index 6667d2ec..9715414f 100644
--- a/theories/Reals/Raxioms.v
+++ b/theories/Reals/Raxioms.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Raxioms.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
+(*i $Id$ i*)
(*********************************************************)
(** Axiomatisation of the classical reals *)
@@ -40,13 +40,13 @@ Hint Resolve Rplus_opp_r: real v62.
Axiom Rplus_0_l : forall r:R, 0 + r = r.
Hint Resolve Rplus_0_l: real.
-(***********************************************************)
+(***********************************************************)
(** ** Multiplication *)
(***********************************************************)
(**********)
Axiom Rmult_comm : forall r1 r2:R, r1 * r2 = r2 * r1.
-Hint Resolve Rmult_comm: real v62.
+Hint Resolve Rmult_comm: real v62.
(**********)
Axiom Rmult_assoc : forall r1 r2 r3:R, r1 * r2 * r3 = r1 * (r2 * r3).
@@ -102,7 +102,7 @@ Axiom
Hint Resolve Rlt_asym Rplus_lt_compat_l Rmult_lt_compat_l: real.
-(**********************************************************)
+(**********************************************************)
(** * Injection from N to R *)
(**********************************************************)
@@ -112,11 +112,11 @@ Boxed Fixpoint INR (n:nat) : R :=
| O => 0
| S O => 1
| S n => INR n + 1
- end.
+ end.
Arguments Scope INR [nat_scope].
-(**********************************************************)
+(**********************************************************)
(** * Injection from [Z] to [R] *)
(**********************************************************)
@@ -126,7 +126,7 @@ Definition IZR (z:Z) : R :=
| Z0 => 0
| Zpos n => INR (nat_of_P n)
| Zneg n => - INR (nat_of_P n)
- end.
+ end.
Arguments Scope IZR [Z_scope].
(**********************************************************)