summaryrefslogtreecommitdiff
path: root/theories/Reals/Ranalysis4.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Ranalysis4.v')
-rw-r--r--theories/Reals/Ranalysis4.v384
1 files changed, 384 insertions, 0 deletions
diff --git a/theories/Reals/Ranalysis4.v b/theories/Reals/Ranalysis4.v
new file mode 100644
index 00000000..86f49cd4
--- /dev/null
+++ b/theories/Reals/Ranalysis4.v
@@ -0,0 +1,384 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Ranalysis4.v,v 1.19.2.1 2004/07/16 19:31:12 herbelin Exp $ i*)
+
+Require Import Rbase.
+Require Import Rfunctions.
+Require Import SeqSeries.
+Require Import Rtrigo.
+Require Import Ranalysis1.
+Require Import Ranalysis3.
+Require Import Exp_prop. Open Local Scope R_scope.
+
+(**********)
+Lemma derivable_pt_inv :
+ forall (f:R -> R) (x:R),
+ f x <> 0 -> derivable_pt f x -> derivable_pt (/ f) x.
+intros; cut (derivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) x).
+intro; apply X0.
+apply derivable_pt_div.
+apply derivable_pt_const.
+assumption.
+assumption.
+unfold div_fct, inv_fct, fct_cte in |- *; intro; elim X0; intros;
+ unfold derivable_pt in |- *; apply existT with x0;
+ unfold derivable_pt_abs in |- *; unfold derivable_pt_lim in |- *;
+ unfold derivable_pt_abs in p; unfold derivable_pt_lim in p;
+ intros; elim (p eps H0); intros; exists x1; intros;
+ unfold Rdiv in H1; unfold Rdiv in |- *; rewrite <- (Rmult_1_l (/ f x));
+ rewrite <- (Rmult_1_l (/ f (x + h))).
+apply H1; assumption.
+Qed.
+
+(**********)
+Lemma pr_nu_var :
+ forall (f g:R -> R) (x:R) (pr1:derivable_pt f x) (pr2:derivable_pt g x),
+ f = g -> derive_pt f x pr1 = derive_pt g x pr2.
+unfold derivable_pt, derive_pt in |- *; intros.
+elim pr1; intros.
+elim pr2; intros.
+simpl in |- *.
+rewrite H in p.
+apply uniqueness_limite with g x; assumption.
+Qed.
+
+(**********)
+Lemma pr_nu_var2 :
+ forall (f g:R -> R) (x:R) (pr1:derivable_pt f x) (pr2:derivable_pt g x),
+ (forall h:R, f h = g h) -> derive_pt f x pr1 = derive_pt g x pr2.
+unfold derivable_pt, derive_pt in |- *; intros.
+elim pr1; intros.
+elim pr2; intros.
+simpl in |- *.
+assert (H0 := uniqueness_step2 _ _ _ p).
+assert (H1 := uniqueness_step2 _ _ _ p0).
+cut (limit1_in (fun h:R => (f (x + h) - f x) / h) (fun h:R => h <> 0) x1 0).
+intro; assert (H3 := uniqueness_step1 _ _ _ _ H0 H2).
+assumption.
+unfold limit1_in in |- *; unfold limit_in in |- *; unfold dist in |- *;
+ simpl in |- *; unfold R_dist in |- *; unfold limit1_in in H1;
+ unfold limit_in in H1; unfold dist in H1; simpl in H1;
+ unfold R_dist in H1.
+intros; elim (H1 eps H2); intros.
+elim H3; intros.
+exists x2.
+split.
+assumption.
+intros; do 2 rewrite H; apply H5; assumption.
+Qed.
+
+(**********)
+Lemma derivable_inv :
+ forall f:R -> R, (forall x:R, f x <> 0) -> derivable f -> derivable (/ f).
+intros.
+unfold derivable in |- *; intro.
+apply derivable_pt_inv.
+apply (H x).
+apply (X x).
+Qed.
+
+Lemma derive_pt_inv :
+ forall (f:R -> R) (x:R) (pr:derivable_pt f x) (na:f x <> 0),
+ derive_pt (/ f) x (derivable_pt_inv f x na pr) =
+ - derive_pt f x pr / Rsqr (f x).
+intros;
+ replace (derive_pt (/ f) x (derivable_pt_inv f x na pr)) with
+ (derive_pt (fct_cte 1 / f) x
+ (derivable_pt_div (fct_cte 1) f x (derivable_pt_const 1 x) pr na)).
+rewrite derive_pt_div; rewrite derive_pt_const; unfold fct_cte in |- *;
+ rewrite Rmult_0_l; rewrite Rmult_1_r; unfold Rminus in |- *;
+ rewrite Rplus_0_l; reflexivity.
+apply pr_nu_var2.
+intro; unfold div_fct, fct_cte, inv_fct in |- *.
+unfold Rdiv in |- *; ring.
+Qed.
+
+(* Rabsolu *)
+Lemma Rabs_derive_1 : forall x:R, 0 < x -> derivable_pt_lim Rabs x 1.
+intros.
+unfold derivable_pt_lim in |- *; intros.
+exists (mkposreal x H); intros.
+rewrite (Rabs_right x).
+rewrite (Rabs_right (x + h)).
+rewrite Rplus_comm.
+unfold Rminus in |- *; rewrite Rplus_assoc; rewrite Rplus_opp_r.
+rewrite Rplus_0_r; unfold Rdiv in |- *; rewrite <- Rinv_r_sym.
+rewrite Rplus_opp_r; rewrite Rabs_R0; apply H0.
+apply H1.
+apply Rle_ge.
+case (Rcase_abs h); intro.
+rewrite (Rabs_left h r) in H2.
+left; rewrite Rplus_comm; apply Rplus_lt_reg_r with (- h); rewrite Rplus_0_r;
+ rewrite <- Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_l;
+ apply H2.
+apply Rplus_le_le_0_compat.
+left; apply H.
+apply Rge_le; apply r.
+left; apply H.
+Qed.
+
+Lemma Rabs_derive_2 : forall x:R, x < 0 -> derivable_pt_lim Rabs x (-1).
+intros.
+unfold derivable_pt_lim in |- *; intros.
+cut (0 < - x).
+intro; exists (mkposreal (- x) H1); intros.
+rewrite (Rabs_left x).
+rewrite (Rabs_left (x + h)).
+rewrite Rplus_comm.
+rewrite Ropp_plus_distr.
+unfold Rminus in |- *; rewrite Ropp_involutive; rewrite Rplus_assoc;
+ rewrite Rplus_opp_l.
+rewrite Rplus_0_r; unfold Rdiv in |- *.
+rewrite Ropp_mult_distr_l_reverse.
+rewrite <- Rinv_r_sym.
+rewrite Ropp_involutive; rewrite Rplus_opp_l; rewrite Rabs_R0; apply H0.
+apply H2.
+case (Rcase_abs h); intro.
+apply Ropp_lt_cancel.
+rewrite Ropp_0; rewrite Ropp_plus_distr; apply Rplus_lt_0_compat.
+apply H1.
+apply Ropp_0_gt_lt_contravar; apply r.
+rewrite (Rabs_right h r) in H3.
+apply Rplus_lt_reg_r with (- x); rewrite Rplus_0_r; rewrite <- Rplus_assoc;
+ rewrite Rplus_opp_l; rewrite Rplus_0_l; apply H3.
+apply H.
+apply Ropp_0_gt_lt_contravar; apply H.
+Qed.
+
+(* Rabsolu is derivable for all x <> 0 *)
+Lemma Rderivable_pt_abs : forall x:R, x <> 0 -> derivable_pt Rabs x.
+intros.
+case (total_order_T x 0); intro.
+elim s; intro.
+unfold derivable_pt in |- *; apply existT with (-1).
+apply (Rabs_derive_2 x a).
+elim H; exact b.
+unfold derivable_pt in |- *; apply existT with 1.
+apply (Rabs_derive_1 x r).
+Qed.
+
+(* Rabsolu is continuous for all x *)
+Lemma Rcontinuity_abs : continuity Rabs.
+unfold continuity in |- *; intro.
+case (Req_dec x 0); intro.
+unfold continuity_pt in |- *; unfold continue_in in |- *;
+ unfold limit1_in in |- *; unfold limit_in in |- *;
+ simpl in |- *; unfold R_dist in |- *; intros; exists eps;
+ split.
+apply H0.
+intros; rewrite H; rewrite Rabs_R0; unfold Rminus in |- *; rewrite Ropp_0;
+ rewrite Rplus_0_r; rewrite Rabs_Rabsolu; elim H1;
+ intros; rewrite H in H3; unfold Rminus in H3; rewrite Ropp_0 in H3;
+ rewrite Rplus_0_r in H3; apply H3.
+apply derivable_continuous_pt; apply (Rderivable_pt_abs x H).
+Qed.
+
+(* Finite sums : Sum a_k x^k *)
+Lemma continuity_finite_sum :
+ forall (An:nat -> R) (N:nat),
+ continuity (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N).
+intros; unfold continuity in |- *; intro.
+induction N as [| N HrecN].
+simpl in |- *.
+apply continuity_pt_const.
+unfold constant in |- *; intros; reflexivity.
+replace (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) (S N)) with
+ ((fun y:R => sum_f_R0 (fun k:nat => (An k * y ^ k)%R) N) +
+ (fun y:R => (An (S N) * y ^ S N)%R))%F.
+apply continuity_pt_plus.
+apply HrecN.
+replace (fun y:R => An (S N) * y ^ S N) with
+ (mult_real_fct (An (S N)) (fun y:R => y ^ S N)).
+apply continuity_pt_scal.
+apply derivable_continuous_pt.
+apply derivable_pt_pow.
+reflexivity.
+reflexivity.
+Qed.
+
+Lemma derivable_pt_lim_fs :
+ forall (An:nat -> R) (x:R) (N:nat),
+ (0 < N)%nat ->
+ derivable_pt_lim (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N) x
+ (sum_f_R0 (fun k:nat => INR (S k) * An (S k) * x ^ k) (pred N)).
+intros; induction N as [| N HrecN].
+elim (lt_irrefl _ H).
+cut (N = 0%nat \/ (0 < N)%nat).
+intro; elim H0; intro.
+rewrite H1.
+simpl in |- *.
+replace (fun y:R => An 0%nat * 1 + An 1%nat * (y * 1)) with
+ (fct_cte (An 0%nat * 1) + mult_real_fct (An 1%nat) (id * fct_cte 1))%F.
+replace (1 * An 1%nat * 1) with (0 + An 1%nat * (1 * fct_cte 1 x + id x * 0)).
+apply derivable_pt_lim_plus.
+apply derivable_pt_lim_const.
+apply derivable_pt_lim_scal.
+apply derivable_pt_lim_mult.
+apply derivable_pt_lim_id.
+apply derivable_pt_lim_const.
+unfold fct_cte, id in |- *; ring.
+reflexivity.
+replace (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) (S N)) with
+ ((fun y:R => sum_f_R0 (fun k:nat => (An k * y ^ k)%R) N) +
+ (fun y:R => (An (S N) * y ^ S N)%R))%F.
+replace (sum_f_R0 (fun k:nat => INR (S k) * An (S k) * x ^ k) (pred (S N)))
+ with
+ (sum_f_R0 (fun k:nat => INR (S k) * An (S k) * x ^ k) (pred N) +
+ An (S N) * (INR (S (pred (S N))) * x ^ pred (S N))).
+apply derivable_pt_lim_plus.
+apply HrecN.
+assumption.
+replace (fun y:R => An (S N) * y ^ S N) with
+ (mult_real_fct (An (S N)) (fun y:R => y ^ S N)).
+apply derivable_pt_lim_scal.
+replace (pred (S N)) with N; [ idtac | reflexivity ].
+pattern N at 3 in |- *; replace N with (pred (S N)).
+apply derivable_pt_lim_pow.
+reflexivity.
+reflexivity.
+cut (pred (S N) = S (pred N)).
+intro; rewrite H2.
+rewrite tech5.
+apply Rplus_eq_compat_l.
+rewrite <- H2.
+replace (pred (S N)) with N; [ idtac | reflexivity ].
+ring.
+simpl in |- *.
+apply S_pred with 0%nat; assumption.
+unfold plus_fct in |- *.
+simpl in |- *; reflexivity.
+inversion H.
+left; reflexivity.
+right; apply lt_le_trans with 1%nat; [ apply lt_O_Sn | assumption ].
+Qed.
+
+Lemma derivable_pt_lim_finite_sum :
+ forall (An:nat -> R) (x:R) (N:nat),
+ derivable_pt_lim (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N) x
+ match N with
+ | O => 0
+ | _ => sum_f_R0 (fun k:nat => INR (S k) * An (S k) * x ^ k) (pred N)
+ end.
+intros.
+induction N as [| N HrecN].
+simpl in |- *.
+rewrite Rmult_1_r.
+replace (fun _:R => An 0%nat) with (fct_cte (An 0%nat));
+ [ apply derivable_pt_lim_const | reflexivity ].
+apply derivable_pt_lim_fs; apply lt_O_Sn.
+Qed.
+
+Lemma derivable_pt_finite_sum :
+ forall (An:nat -> R) (N:nat) (x:R),
+ derivable_pt (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N) x.
+intros.
+unfold derivable_pt in |- *.
+assert (H := derivable_pt_lim_finite_sum An x N).
+induction N as [| N HrecN].
+apply existT with 0; apply H.
+apply existT with
+ (sum_f_R0 (fun k:nat => INR (S k) * An (S k) * x ^ k) (pred (S N)));
+ apply H.
+Qed.
+
+Lemma derivable_finite_sum :
+ forall (An:nat -> R) (N:nat),
+ derivable (fun y:R => sum_f_R0 (fun k:nat => An k * y ^ k) N).
+intros; unfold derivable in |- *; intro; apply derivable_pt_finite_sum.
+Qed.
+
+(* Regularity of hyperbolic functions *)
+Lemma derivable_pt_lim_cosh : forall x:R, derivable_pt_lim cosh x (sinh x).
+intro.
+unfold cosh, sinh in |- *; unfold Rdiv in |- *.
+replace (fun x0:R => (exp x0 + exp (- x0)) * / 2) with
+ ((exp + comp exp (- id)) * fct_cte (/ 2))%F; [ idtac | reflexivity ].
+replace ((exp x - exp (- x)) * / 2) with
+ ((exp x + exp (- x) * -1) * fct_cte (/ 2) x +
+ (exp + comp exp (- id))%F x * 0).
+apply derivable_pt_lim_mult.
+apply derivable_pt_lim_plus.
+apply derivable_pt_lim_exp.
+apply derivable_pt_lim_comp.
+apply derivable_pt_lim_opp.
+apply derivable_pt_lim_id.
+apply derivable_pt_lim_exp.
+apply derivable_pt_lim_const.
+unfold plus_fct, mult_real_fct, comp, opp_fct, id, fct_cte in |- *; ring.
+Qed.
+
+Lemma derivable_pt_lim_sinh : forall x:R, derivable_pt_lim sinh x (cosh x).
+intro.
+unfold cosh, sinh in |- *; unfold Rdiv in |- *.
+replace (fun x0:R => (exp x0 - exp (- x0)) * / 2) with
+ ((exp - comp exp (- id)) * fct_cte (/ 2))%F; [ idtac | reflexivity ].
+replace ((exp x + exp (- x)) * / 2) with
+ ((exp x - exp (- x) * -1) * fct_cte (/ 2) x +
+ (exp - comp exp (- id))%F x * 0).
+apply derivable_pt_lim_mult.
+apply derivable_pt_lim_minus.
+apply derivable_pt_lim_exp.
+apply derivable_pt_lim_comp.
+apply derivable_pt_lim_opp.
+apply derivable_pt_lim_id.
+apply derivable_pt_lim_exp.
+apply derivable_pt_lim_const.
+unfold plus_fct, mult_real_fct, comp, opp_fct, id, fct_cte in |- *; ring.
+Qed.
+
+Lemma derivable_pt_exp : forall x:R, derivable_pt exp x.
+intro.
+unfold derivable_pt in |- *.
+apply existT with (exp x).
+apply derivable_pt_lim_exp.
+Qed.
+
+Lemma derivable_pt_cosh : forall x:R, derivable_pt cosh x.
+intro.
+unfold derivable_pt in |- *.
+apply existT with (sinh x).
+apply derivable_pt_lim_cosh.
+Qed.
+
+Lemma derivable_pt_sinh : forall x:R, derivable_pt sinh x.
+intro.
+unfold derivable_pt in |- *.
+apply existT with (cosh x).
+apply derivable_pt_lim_sinh.
+Qed.
+
+Lemma derivable_exp : derivable exp.
+unfold derivable in |- *; apply derivable_pt_exp.
+Qed.
+
+Lemma derivable_cosh : derivable cosh.
+unfold derivable in |- *; apply derivable_pt_cosh.
+Qed.
+
+Lemma derivable_sinh : derivable sinh.
+unfold derivable in |- *; apply derivable_pt_sinh.
+Qed.
+
+Lemma derive_pt_exp :
+ forall x:R, derive_pt exp x (derivable_pt_exp x) = exp x.
+intro; apply derive_pt_eq_0.
+apply derivable_pt_lim_exp.
+Qed.
+
+Lemma derive_pt_cosh :
+ forall x:R, derive_pt cosh x (derivable_pt_cosh x) = sinh x.
+intro; apply derive_pt_eq_0.
+apply derivable_pt_lim_cosh.
+Qed.
+
+Lemma derive_pt_sinh :
+ forall x:R, derive_pt sinh x (derivable_pt_sinh x) = cosh x.
+intro; apply derive_pt_eq_0.
+apply derivable_pt_lim_sinh.
+Qed. \ No newline at end of file