summaryrefslogtreecommitdiff
path: root/theories/Reals/Ranalysis4.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Ranalysis4.v')
-rw-r--r--theories/Reals/Ranalysis4.v28
1 files changed, 14 insertions, 14 deletions
diff --git a/theories/Reals/Ranalysis4.v b/theories/Reals/Ranalysis4.v
index 95f6d27e..1ed3fb71 100644
--- a/theories/Reals/Ranalysis4.v
+++ b/theories/Reals/Ranalysis4.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Ranalysis4.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
+(*i $Id$ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -31,8 +31,8 @@ Proof.
unfold div_fct, inv_fct, fct_cte in |- *; intro X0; elim X0; intros;
unfold derivable_pt in |- *; exists x0;
unfold derivable_pt_abs in |- *; unfold derivable_pt_lim in |- *;
- unfold derivable_pt_abs in p; unfold derivable_pt_lim in p;
- intros; elim (p eps H0); intros; exists x1; intros;
+ unfold derivable_pt_abs in p; unfold derivable_pt_lim in p;
+ intros; elim (p eps H0); intros; exists x1; intros;
unfold Rdiv in H1; unfold Rdiv in |- *; rewrite <- (Rmult_1_l (/ f x));
rewrite <- (Rmult_1_l (/ f (x + h))).
apply H1; assumption.
@@ -60,14 +60,14 @@ Proof.
elim pr1; intros.
elim pr2; intros.
simpl in |- *.
- assert (H0 := uniqueness_step2 _ _ _ p).
- assert (H1 := uniqueness_step2 _ _ _ p0).
+ assert (H0 := uniqueness_step2 _ _ _ p).
+ assert (H1 := uniqueness_step2 _ _ _ p0).
cut (limit1_in (fun h:R => (f (x + h) - f x) / h) (fun h:R => h <> 0) x1 0).
- intro; assert (H3 := uniqueness_step1 _ _ _ _ H0 H2).
+ intro; assert (H3 := uniqueness_step1 _ _ _ _ H0 H2).
assumption.
unfold limit1_in in |- *; unfold limit_in in |- *; unfold dist in |- *;
simpl in |- *; unfold R_dist in |- *; unfold limit1_in in H1;
- unfold limit_in in H1; unfold dist in H1; simpl in H1;
+ unfold limit_in in H1; unfold dist in H1; simpl in H1;
unfold R_dist in H1.
intros; elim (H1 eps H2); intros.
elim H3; intros.
@@ -122,7 +122,7 @@ Proof.
case (Rcase_abs h); intro.
rewrite (Rabs_left h r) in H2.
left; rewrite Rplus_comm; apply Rplus_lt_reg_r with (- h); rewrite Rplus_0_r;
- rewrite <- Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_l;
+ rewrite <- Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_l;
apply H2.
apply Rplus_le_le_0_compat.
left; apply H.
@@ -178,12 +178,12 @@ Proof.
unfold continuity in |- *; intro.
case (Req_dec x 0); intro.
unfold continuity_pt in |- *; unfold continue_in in |- *;
- unfold limit1_in in |- *; unfold limit_in in |- *;
- simpl in |- *; unfold R_dist in |- *; intros; exists eps;
+ unfold limit1_in in |- *; unfold limit_in in |- *;
+ simpl in |- *; unfold R_dist in |- *; intros; exists eps;
split.
apply H0.
intros; rewrite H; rewrite Rabs_R0; unfold Rminus in |- *; rewrite Ropp_0;
- rewrite Rplus_0_r; rewrite Rabs_Rabsolu; elim H1;
+ rewrite Rplus_0_r; rewrite Rabs_Rabsolu; elim H1;
intros; rewrite H in H3; unfold Rminus in H3; rewrite Ropp_0 in H3;
rewrite Rplus_0_r in H3; apply H3.
apply derivable_continuous_pt; apply (Rderivable_pt_abs x H).
@@ -297,7 +297,7 @@ Proof.
induction N as [| N HrecN].
exists 0; apply H.
exists
- (sum_f_R0 (fun k:nat => INR (S k) * An (S k) * x ^ k) (pred (S N)));
+ (sum_f_R0 (fun k:nat => INR (S k) * An (S k) * x ^ k) (pred (S N)));
apply H.
Qed.
@@ -317,7 +317,7 @@ Proof.
((exp + comp exp (- id)) * fct_cte (/ 2))%F; [ idtac | reflexivity ].
replace ((exp x - exp (- x)) * / 2) with
((exp x + exp (- x) * -1) * fct_cte (/ 2) x +
- (exp + comp exp (- id))%F x * 0).
+ (exp + comp exp (- id))%F x * 0).
apply derivable_pt_lim_mult.
apply derivable_pt_lim_plus.
apply derivable_pt_lim_exp.
@@ -337,7 +337,7 @@ Proof.
((exp - comp exp (- id)) * fct_cte (/ 2))%F; [ idtac | reflexivity ].
replace ((exp x + exp (- x)) * / 2) with
((exp x - exp (- x) * -1) * fct_cte (/ 2) x +
- (exp - comp exp (- id))%F x * 0).
+ (exp - comp exp (- id))%F x * 0).
apply derivable_pt_lim_mult.
apply derivable_pt_lim_minus.
apply derivable_pt_lim_exp.