diff options
Diffstat (limited to 'theories/Reals/Ranalysis4.v')
-rw-r--r-- | theories/Reals/Ranalysis4.v | 28 |
1 files changed, 14 insertions, 14 deletions
diff --git a/theories/Reals/Ranalysis4.v b/theories/Reals/Ranalysis4.v index 95f6d27e..1ed3fb71 100644 --- a/theories/Reals/Ranalysis4.v +++ b/theories/Reals/Ranalysis4.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Ranalysis4.v 10710 2008-03-23 09:24:09Z herbelin $ i*) +(*i $Id$ i*) Require Import Rbase. Require Import Rfunctions. @@ -31,8 +31,8 @@ Proof. unfold div_fct, inv_fct, fct_cte in |- *; intro X0; elim X0; intros; unfold derivable_pt in |- *; exists x0; unfold derivable_pt_abs in |- *; unfold derivable_pt_lim in |- *; - unfold derivable_pt_abs in p; unfold derivable_pt_lim in p; - intros; elim (p eps H0); intros; exists x1; intros; + unfold derivable_pt_abs in p; unfold derivable_pt_lim in p; + intros; elim (p eps H0); intros; exists x1; intros; unfold Rdiv in H1; unfold Rdiv in |- *; rewrite <- (Rmult_1_l (/ f x)); rewrite <- (Rmult_1_l (/ f (x + h))). apply H1; assumption. @@ -60,14 +60,14 @@ Proof. elim pr1; intros. elim pr2; intros. simpl in |- *. - assert (H0 := uniqueness_step2 _ _ _ p). - assert (H1 := uniqueness_step2 _ _ _ p0). + assert (H0 := uniqueness_step2 _ _ _ p). + assert (H1 := uniqueness_step2 _ _ _ p0). cut (limit1_in (fun h:R => (f (x + h) - f x) / h) (fun h:R => h <> 0) x1 0). - intro; assert (H3 := uniqueness_step1 _ _ _ _ H0 H2). + intro; assert (H3 := uniqueness_step1 _ _ _ _ H0 H2). assumption. unfold limit1_in in |- *; unfold limit_in in |- *; unfold dist in |- *; simpl in |- *; unfold R_dist in |- *; unfold limit1_in in H1; - unfold limit_in in H1; unfold dist in H1; simpl in H1; + unfold limit_in in H1; unfold dist in H1; simpl in H1; unfold R_dist in H1. intros; elim (H1 eps H2); intros. elim H3; intros. @@ -122,7 +122,7 @@ Proof. case (Rcase_abs h); intro. rewrite (Rabs_left h r) in H2. left; rewrite Rplus_comm; apply Rplus_lt_reg_r with (- h); rewrite Rplus_0_r; - rewrite <- Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_l; + rewrite <- Rplus_assoc; rewrite Rplus_opp_l; rewrite Rplus_0_l; apply H2. apply Rplus_le_le_0_compat. left; apply H. @@ -178,12 +178,12 @@ Proof. unfold continuity in |- *; intro. case (Req_dec x 0); intro. unfold continuity_pt in |- *; unfold continue_in in |- *; - unfold limit1_in in |- *; unfold limit_in in |- *; - simpl in |- *; unfold R_dist in |- *; intros; exists eps; + unfold limit1_in in |- *; unfold limit_in in |- *; + simpl in |- *; unfold R_dist in |- *; intros; exists eps; split. apply H0. intros; rewrite H; rewrite Rabs_R0; unfold Rminus in |- *; rewrite Ropp_0; - rewrite Rplus_0_r; rewrite Rabs_Rabsolu; elim H1; + rewrite Rplus_0_r; rewrite Rabs_Rabsolu; elim H1; intros; rewrite H in H3; unfold Rminus in H3; rewrite Ropp_0 in H3; rewrite Rplus_0_r in H3; apply H3. apply derivable_continuous_pt; apply (Rderivable_pt_abs x H). @@ -297,7 +297,7 @@ Proof. induction N as [| N HrecN]. exists 0; apply H. exists - (sum_f_R0 (fun k:nat => INR (S k) * An (S k) * x ^ k) (pred (S N))); + (sum_f_R0 (fun k:nat => INR (S k) * An (S k) * x ^ k) (pred (S N))); apply H. Qed. @@ -317,7 +317,7 @@ Proof. ((exp + comp exp (- id)) * fct_cte (/ 2))%F; [ idtac | reflexivity ]. replace ((exp x - exp (- x)) * / 2) with ((exp x + exp (- x) * -1) * fct_cte (/ 2) x + - (exp + comp exp (- id))%F x * 0). + (exp + comp exp (- id))%F x * 0). apply derivable_pt_lim_mult. apply derivable_pt_lim_plus. apply derivable_pt_lim_exp. @@ -337,7 +337,7 @@ Proof. ((exp - comp exp (- id)) * fct_cte (/ 2))%F; [ idtac | reflexivity ]. replace ((exp x + exp (- x)) * / 2) with ((exp x - exp (- x) * -1) * fct_cte (/ 2) x + - (exp - comp exp (- id))%F x * 0). + (exp - comp exp (- id))%F x * 0). apply derivable_pt_lim_mult. apply derivable_pt_lim_minus. apply derivable_pt_lim_exp. |