diff options
Diffstat (limited to 'theories/Reals/Ranalysis3.v')
-rw-r--r-- | theories/Reals/Ranalysis3.v | 164 |
1 files changed, 81 insertions, 83 deletions
diff --git a/theories/Reals/Ranalysis3.v b/theories/Reals/Ranalysis3.v index c7d95660..5eaf5a57 100644 --- a/theories/Reals/Ranalysis3.v +++ b/theories/Reals/Ranalysis3.v @@ -1,18 +1,16 @@ (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Ranalysis3.v 14641 2011-11-06 11:59:10Z herbelin $ i*) - Require Import Rbase. Require Import Rfunctions. Require Import Ranalysis1. Require Import Ranalysis2. -Open Local Scope R_scope. +Local Open Scope R_scope. (** Division *) Theorem derivable_pt_lim_div : @@ -24,17 +22,17 @@ Theorem derivable_pt_lim_div : Proof. intros f1 f2 x l1 l2 H H0 H1. cut (derivable_pt f2 x); - [ intro X | unfold derivable_pt in |- *; exists l2; exact H0 ]. + [ intro X | unfold derivable_pt; exists l2; exact H0 ]. assert (H2 := continuous_neq_0 _ _ (derivable_continuous_pt _ _ X) H1). elim H2; clear H2; intros eps_f2 H2. - unfold div_fct in |- *. + unfold div_fct. assert (H3 := derivable_continuous_pt _ _ X). unfold continuity_pt in H3; unfold continue_in in H3; unfold limit1_in in H3; unfold limit_in in H3; unfold dist in H3. simpl in H3; unfold R_dist in H3. elim (H3 (Rabs (f2 x) / 2)); [ idtac - | unfold Rdiv in |- *; change (0 < Rabs (f2 x) * / 2) in |- *; + | unfold Rdiv; change (0 < Rabs (f2 x) * / 2); apply Rmult_lt_0_compat; [ apply Rabs_pos_lt; assumption | apply Rinv_0_lt_compat; prove_sup0 ] ]. clear H3; intros alp_f2 H3. @@ -48,12 +46,12 @@ Proof. (forall a:R, Rabs a < Rmin eps_f2 alp_f2 -> / Rabs (f2 (x + a)) < 2 / Rabs (f2 x)). intro Maj. - unfold derivable_pt_lim in |- *; intros. + unfold derivable_pt_lim; intros. elim (H (Rabs (eps * f2 x / 8))); [ idtac - | unfold Rdiv in |- *; change (0 < Rabs (eps * f2 x * / 8)) in |- *; + | unfold Rdiv; change (0 < Rabs (eps * f2 x * / 8)); apply Rabs_pos_lt; repeat apply prod_neq_R0; - [ red in |- *; intro H7; rewrite H7 in H6; elim (Rlt_irrefl _ H6) + [ red; intro H7; rewrite H7 in H6; elim (Rlt_irrefl _ H6) | assumption | apply Rinv_neq_0_compat; discrR ] ]. intros alp_f1d H7. @@ -70,7 +68,7 @@ Proof. | elim H3; intros; assumption | apply (cond_pos alp_f1d) ] ]. exists (mkposreal (Rmin eps_f2 (Rmin alp_f2 alp_f1d)) H10). - simpl in |- *; intros. + simpl; intros. assert (H13 := Rlt_le_trans _ _ _ H12 (Rmin_r _ _)). assert (H14 := Rlt_le_trans _ _ _ H12 (Rmin_l _ _)). assert (H15 := Rlt_le_trans _ _ _ H13 (Rmin_r _ _)). @@ -82,7 +80,7 @@ Proof. Rabs (l1 / (f2 x * f2 (x + h)) * (f2 x - f2 (x + h))) + Rabs (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2)) + Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x))). - unfold Rminus in |- *. + unfold Rminus. rewrite <- (Rabs_Ropp (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) + - f2 x) / h + - l2))) . @@ -100,15 +98,15 @@ Proof. intros. apply Rlt_4; assumption. rewrite H8. - unfold Rdiv in |- *; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. + unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. rewrite Rabs_R0; rewrite Rmult_0_l. apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ]. rewrite H8. - unfold Rdiv in |- *; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. + unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. rewrite Rabs_R0; rewrite Rmult_0_l. apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ]. rewrite H9. - unfold Rdiv in |- *; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. + unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. rewrite Rabs_R0; rewrite Rmult_0_l. apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ]. rewrite <- Rabs_mult. @@ -116,7 +114,7 @@ Proof. try assumption || apply H2. apply H14. apply Rmin_2; assumption. - right; symmetry in |- *; apply quadruple_var. + right; symmetry ; apply quadruple_var. (***********************************) (* Second case *) (* (f1 x)=0 l1<>0 *) @@ -139,7 +137,7 @@ Proof. cut (0 < Rmin (Rmin eps_f2 alp_f1d) (Rmin alp_f2 alp_f2t2)). intro. exists (mkposreal (Rmin (Rmin eps_f2 alp_f1d) (Rmin alp_f2 alp_f2t2)) H12). - simpl in |- *. + simpl. intros. assert (H15 := Rlt_le_trans _ _ _ H14 (Rmin_r _ _)). assert (H16 := Rlt_le_trans _ _ _ H14 (Rmin_l _ _)). @@ -154,7 +152,7 @@ Proof. Rabs (l1 / (f2 x * f2 (x + h)) * (f2 x - f2 (x + h))) + Rabs (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2)) + Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x))). - unfold Rminus in |- *. + unfold Rminus. rewrite <- (Rabs_Ropp (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) + - f2 x) / h + - l2))) . @@ -172,11 +170,11 @@ Proof. intros. apply Rlt_4; assumption. rewrite H8. - unfold Rdiv in |- *; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. + unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. rewrite Rabs_R0; rewrite Rmult_0_l. apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ]. rewrite H8. - unfold Rdiv in |- *; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. + unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. rewrite Rabs_R0; rewrite Rmult_0_l. apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ]. rewrite <- Rabs_mult. @@ -187,7 +185,7 @@ Proof. apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); try assumption. apply H2; assumption. apply Rmin_2; assumption. - right; symmetry in |- *; apply quadruple_var. + right; symmetry ; apply quadruple_var. apply H2; assumption. repeat apply Rmin_pos. apply (cond_pos eps_f2). @@ -198,21 +196,21 @@ Proof. elim H10; intros. case (Req_dec a 0); intro. rewrite H14; rewrite Rplus_0_r. - unfold Rminus in |- *; rewrite Rplus_opp_r. + unfold Rminus; rewrite Rplus_opp_r. rewrite Rabs_R0. apply Rabs_pos_lt. - unfold Rdiv, Rsqr in |- *; repeat rewrite Rmult_assoc. + unfold Rdiv, Rsqr; repeat rewrite Rmult_assoc. repeat apply prod_neq_R0; try assumption. - red in |- *; intro; rewrite H15 in H6; elim (Rlt_irrefl _ H6). + red; intro; rewrite H15 in H6; elim (Rlt_irrefl _ H6). apply Rinv_neq_0_compat; repeat apply prod_neq_R0; discrR || assumption. apply H13. split. apply D_x_no_cond; assumption. replace (x + a - x) with a; [ assumption | ring ]. - change (0 < Rabs (eps * Rsqr (f2 x) / (8 * l1))) in |- *. - apply Rabs_pos_lt; unfold Rdiv, Rsqr in |- *; repeat rewrite Rmult_assoc; + change (0 < Rabs (eps * Rsqr (f2 x) / (8 * l1))). + apply Rabs_pos_lt; unfold Rdiv, Rsqr; repeat rewrite Rmult_assoc; repeat apply prod_neq_R0. - red in |- *; intro; rewrite H11 in H6; elim (Rlt_irrefl _ H6). + red; intro; rewrite H11 in H6; elim (Rlt_irrefl _ H6). assumption. assumption. apply Rinv_neq_0_compat; repeat apply prod_neq_R0; @@ -225,17 +223,17 @@ Proof. case (Req_dec l2 0); intro. elim (H0 (Rabs (Rsqr (f2 x) * eps / (8 * f1 x)))); [ idtac - | apply Rabs_pos_lt; unfold Rdiv, Rsqr in |- *; repeat rewrite Rmult_assoc; + | apply Rabs_pos_lt; unfold Rdiv, Rsqr; repeat rewrite Rmult_assoc; repeat apply prod_neq_R0; [ assumption | assumption - | red in |- *; intro; rewrite H11 in H6; elim (Rlt_irrefl _ H6) + | red; intro; rewrite H11 in H6; elim (Rlt_irrefl _ H6) | apply Rinv_neq_0_compat; repeat apply prod_neq_R0; discrR || assumption ] ]. intros alp_f2d H12. cut (0 < Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d)). intro. exists (mkposreal (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d)) H11). - simpl in |- *. + simpl. intros. assert (H15 := Rlt_le_trans _ _ _ H14 (Rmin_l _ _)). assert (H16 := Rlt_le_trans _ _ _ H14 (Rmin_r _ _)). @@ -250,7 +248,7 @@ Proof. Rabs (l1 / (f2 x * f2 (x + h)) * (f2 x - f2 (x + h))) + Rabs (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2)) + Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x))). - unfold Rminus in |- *. + unfold Rminus. rewrite <- (Rabs_Ropp (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) + - f2 x) / h + - l2))) . @@ -268,7 +266,7 @@ Proof. intros. apply Rlt_4; assumption. rewrite H10. - unfold Rdiv in |- *; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. + unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. rewrite Rabs_R0; rewrite Rmult_0_l. apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ]. rewrite <- Rabs_mult. @@ -276,14 +274,14 @@ Proof. apply H2; assumption. apply Rmin_2; assumption. rewrite H9. - unfold Rdiv in |- *; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. + unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. rewrite Rabs_R0; rewrite Rmult_0_l. apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ]. rewrite <- Rabs_mult. apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); assumption || idtac. apply H2; assumption. apply Rmin_2; assumption. - right; symmetry in |- *; apply quadruple_var. + right; symmetry ; apply quadruple_var. apply H2; assumption. repeat apply Rmin_pos. apply (cond_pos eps_f2). @@ -296,7 +294,7 @@ Proof. (***********************************) elim (H0 (Rabs (Rsqr (f2 x) * eps / (8 * f1 x)))); [ idtac - | apply Rabs_pos_lt; unfold Rsqr, Rdiv in |- *; + | apply Rabs_pos_lt; unfold Rsqr, Rdiv; repeat rewrite Rinv_mult_distr; repeat apply prod_neq_R0; try assumption || discrR ]. intros alp_f2d H11. @@ -315,7 +313,7 @@ Proof. exists (mkposreal (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d (Rmin alp_f2d alp_f2c))) H14). - simpl in |- *; intros. + simpl; intros. assert (H17 := Rlt_le_trans _ _ _ H16 (Rmin_l _ _)). assert (H18 := Rlt_le_trans _ _ _ H16 (Rmin_r _ _)). assert (H19 := Rlt_le_trans _ _ _ H18 (Rmin_r _ _)). @@ -337,7 +335,7 @@ Proof. Rabs (l1 / (f2 x * f2 (x + h)) * (f2 x - f2 (x + h))) + Rabs (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2)) + Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x))). - unfold Rminus in |- *. + unfold Rminus. rewrite <- (Rabs_Ropp (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) + - f2 x) / h + - l2))) . @@ -363,24 +361,24 @@ Proof. apply H2; assumption. apply Rmin_2; assumption. rewrite H9. - unfold Rdiv in |- *; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. + unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. rewrite Rabs_R0; rewrite Rmult_0_l. apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ]. rewrite <- Rabs_mult. apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); try assumption. apply H2; assumption. apply Rmin_2; assumption. - right; symmetry in |- *; apply quadruple_var. + right; symmetry ; apply quadruple_var. apply H2; assumption. intros. case (Req_dec a 0); intro. rewrite H17; rewrite Rplus_0_r. - unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0. + unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0. apply Rabs_pos_lt. - unfold Rdiv, Rsqr in |- *. + unfold Rdiv, Rsqr. repeat rewrite Rinv_mult_distr; try assumption. repeat apply prod_neq_R0; try assumption. - red in |- *; intro H18; rewrite H18 in H6; elim (Rlt_irrefl _ H6). + red; intro H18; rewrite H18 in H6; elim (Rlt_irrefl _ H6). apply Rinv_neq_0_compat; discrR. apply Rinv_neq_0_compat; discrR. apply Rinv_neq_0_compat; discrR. @@ -403,19 +401,19 @@ Proof. apply (cond_pos alp_f1d). apply (cond_pos alp_f2d). elim H13; intros; assumption. - change (0 < Rabs (Rsqr (f2 x) * f2 x * eps / (8 * f1 x * l2))) in |- *. + change (0 < Rabs (Rsqr (f2 x) * f2 x * eps / (8 * f1 x * l2))). apply Rabs_pos_lt. - unfold Rsqr, Rdiv in |- *. + unfold Rsqr, Rdiv. repeat rewrite Rinv_mult_distr; try assumption || discrR. repeat apply prod_neq_R0; try assumption. - red in |- *; intro H13; rewrite H13 in H6; elim (Rlt_irrefl _ H6). + red; intro H13; rewrite H13 in H6; elim (Rlt_irrefl _ H6). apply Rinv_neq_0_compat; discrR. apply Rinv_neq_0_compat; discrR. apply Rinv_neq_0_compat; discrR. apply Rinv_neq_0_compat; assumption. apply Rinv_neq_0_compat; assumption. apply prod_neq_R0; [ discrR | assumption ]. - red in |- *; intro H11; rewrite H11 in H6; elim (Rlt_irrefl _ H6). + red; intro H11; rewrite H11 in H6; elim (Rlt_irrefl _ H6). apply Rinv_neq_0_compat; discrR. apply Rinv_neq_0_compat; discrR. apply Rinv_neq_0_compat; discrR. @@ -442,7 +440,7 @@ Proof. exists (mkposreal (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d (Rmin alp_f2d alp_f2t2))) H13). - simpl in |- *. + simpl. intros. cut (forall a:R, @@ -464,7 +462,7 @@ Proof. Rabs (l1 / (f2 x * f2 (x + h)) * (f2 x - f2 (x + h))) + Rabs (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2)) + Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x))). - unfold Rminus in |- *. + unfold Rminus. rewrite <- (Rabs_Ropp (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) + - f2 x) / h + - l2))) . @@ -482,7 +480,7 @@ Proof. intros. apply Rlt_4; assumption. rewrite H10. - unfold Rdiv in |- *; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. + unfold Rdiv; repeat rewrite Rmult_0_r || rewrite Rmult_0_l. rewrite Rabs_R0; rewrite Rmult_0_l. apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup ]. rewrite <- Rabs_mult. @@ -497,20 +495,20 @@ Proof. apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); try assumption. apply H2; assumption. apply Rmin_2; assumption. - right; symmetry in |- *; apply quadruple_var. + right; symmetry ; apply quadruple_var. apply H2; assumption. intros. case (Req_dec a 0); intro. - rewrite H17; rewrite Rplus_0_r; unfold Rminus in |- *; rewrite Rplus_opp_r; + rewrite H17; rewrite Rplus_0_r; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0. apply Rabs_pos_lt. - unfold Rdiv in |- *; rewrite Rinv_mult_distr; try discrR || assumption. - unfold Rsqr in |- *. + unfold Rdiv; rewrite Rinv_mult_distr; try discrR || assumption. + unfold Rsqr. repeat apply prod_neq_R0; assumption || (apply Rinv_neq_0_compat; assumption) || (apply Rinv_neq_0_compat; discrR) || - (red in |- *; intro H18; rewrite H18 in H6; elim (Rlt_irrefl _ H6)). + (red; intro H18; rewrite H18 in H6; elim (Rlt_irrefl _ H6)). elim H11; intros. apply H19. split. @@ -523,20 +521,20 @@ Proof. apply (cond_pos alp_f2d). elim H11; intros; assumption. apply Rabs_pos_lt. - unfold Rdiv, Rsqr in |- *; rewrite Rinv_mult_distr; try discrR || assumption. + unfold Rdiv, Rsqr; rewrite Rinv_mult_distr; try discrR || assumption. repeat apply prod_neq_R0; assumption || (apply Rinv_neq_0_compat; assumption) || (apply Rinv_neq_0_compat; discrR) || - (red in |- *; intro H12; rewrite H12 in H6; elim (Rlt_irrefl _ H6)). - change (0 < Rabs (eps * Rsqr (f2 x) / (8 * l1))) in |- *. + (red; intro H12; rewrite H12 in H6; elim (Rlt_irrefl _ H6)). + change (0 < Rabs (eps * Rsqr (f2 x) / (8 * l1))). apply Rabs_pos_lt. - unfold Rdiv, Rsqr in |- *; rewrite Rinv_mult_distr; try discrR || assumption. + unfold Rdiv, Rsqr; rewrite Rinv_mult_distr; try discrR || assumption. repeat apply prod_neq_R0; assumption || (apply Rinv_neq_0_compat; assumption) || (apply Rinv_neq_0_compat; discrR) || - (red in |- *; intro H12; rewrite H12 in H6; elim (Rlt_irrefl _ H6)). + (red; intro H12; rewrite H12 in H6; elim (Rlt_irrefl _ H6)). (***********************************) (* Sixth case *) (* (f1 x)<>0 l1<>0 l2<>0 *) @@ -564,7 +562,7 @@ Proof. (mkposreal (Rmin (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d)) (Rmin alp_f2c alp_f2t2)) H15). - simpl in |- *. + simpl. intros. assert (H18 := Rlt_le_trans _ _ _ H17 (Rmin_l _ _)). assert (H19 := Rlt_le_trans _ _ _ H17 (Rmin_r _ _)). @@ -593,7 +591,7 @@ Proof. Rabs (l1 / (f2 x * f2 (x + h)) * (f2 x - f2 (x + h))) + Rabs (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) - f2 x) / h - l2)) + Rabs (l2 * f1 x / (Rsqr (f2 x) * f2 (x + h)) * (f2 (x + h) - f2 x))). - unfold Rminus in |- *. + unfold Rminus. rewrite <- (Rabs_Ropp (f1 x / (f2 x * f2 (x + h)) * ((f2 (x + h) + - f2 x) / h + - l2))) . @@ -626,18 +624,18 @@ Proof. apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); try assumption. apply H2; assumption. apply Rmin_2; assumption. - right; symmetry in |- *; apply quadruple_var. + right; symmetry ; apply quadruple_var. apply H2; assumption. intros. case (Req_dec a 0); intro. - rewrite H18; rewrite Rplus_0_r; unfold Rminus in |- *; rewrite Rplus_opp_r; + rewrite H18; rewrite Rplus_0_r; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply Rabs_pos_lt. - unfold Rdiv, Rsqr in |- *; rewrite Rinv_mult_distr. + unfold Rdiv, Rsqr; rewrite Rinv_mult_distr. repeat apply prod_neq_R0; assumption || (apply Rinv_neq_0_compat; assumption) || (apply Rinv_neq_0_compat; discrR) || - (red in |- *; intro H28; rewrite H28 in H6; elim (Rlt_irrefl _ H6)). + (red; intro H28; rewrite H28 in H6; elim (Rlt_irrefl _ H6)). apply prod_neq_R0; [ discrR | assumption ]. apply prod_neq_R0; [ discrR | assumption ]. assumption. @@ -648,20 +646,20 @@ Proof. replace (x + a - x) with a; [ assumption | ring ]. intros. case (Req_dec a 0); intro. - rewrite H18; rewrite Rplus_0_r; unfold Rminus in |- *; rewrite Rplus_opp_r; + rewrite H18; rewrite Rplus_0_r; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; apply Rabs_pos_lt. - unfold Rdiv, Rsqr in |- *; rewrite Rinv_mult_distr. + unfold Rdiv, Rsqr; rewrite Rinv_mult_distr. repeat apply prod_neq_R0; assumption || (apply Rinv_neq_0_compat; assumption) || (apply Rinv_neq_0_compat; discrR) || - (red in |- *; intro H28; rewrite H28 in H6; elim (Rlt_irrefl _ H6)). + (red; intro H28; rewrite H28 in H6; elim (Rlt_irrefl _ H6)). discrR. assumption. elim H14; intros. apply H20. split. - unfold D_x, no_cond in |- *; split. + unfold D_x, no_cond; split. trivial. apply Rminus_not_eq_right. replace (x + a - x) with a; [ assumption | ring ]. @@ -673,34 +671,34 @@ Proof. apply (cond_pos alp_f2d). elim H13; intros; assumption. elim H14; intros; assumption. - change (0 < Rabs (eps * Rsqr (f2 x) / (8 * l1))) in |- *; apply Rabs_pos_lt. - unfold Rdiv, Rsqr in |- *; rewrite Rinv_mult_distr; try discrR || assumption. + change (0 < Rabs (eps * Rsqr (f2 x) / (8 * l1))); apply Rabs_pos_lt. + unfold Rdiv, Rsqr; rewrite Rinv_mult_distr; try discrR || assumption. repeat apply prod_neq_R0; assumption || (apply Rinv_neq_0_compat; assumption) || (apply Rinv_neq_0_compat; discrR) || - (red in |- *; intro H14; rewrite H14 in H6; elim (Rlt_irrefl _ H6)). - change (0 < Rabs (Rsqr (f2 x) * f2 x * eps / (8 * f1 x * l2))) in |- *; + (red; intro H14; rewrite H14 in H6; elim (Rlt_irrefl _ H6)). + change (0 < Rabs (Rsqr (f2 x) * f2 x * eps / (8 * f1 x * l2))); apply Rabs_pos_lt. - unfold Rdiv, Rsqr in |- *; rewrite Rinv_mult_distr. + unfold Rdiv, Rsqr; rewrite Rinv_mult_distr. repeat apply prod_neq_R0; assumption || (apply Rinv_neq_0_compat; assumption) || (apply Rinv_neq_0_compat; discrR) || - (red in |- *; intro H13; rewrite H13 in H6; elim (Rlt_irrefl _ H6)). + (red; intro H13; rewrite H13 in H6; elim (Rlt_irrefl _ H6)). apply prod_neq_R0; [ discrR | assumption ]. apply prod_neq_R0; [ discrR | assumption ]. assumption. apply Rabs_pos_lt. - unfold Rdiv, Rsqr in |- *; rewrite Rinv_mult_distr; + unfold Rdiv, Rsqr; rewrite Rinv_mult_distr; [ idtac | discrR | assumption ]. repeat apply prod_neq_R0; assumption || (apply Rinv_neq_0_compat; assumption) || (apply Rinv_neq_0_compat; discrR) || - (red in |- *; intro H11; rewrite H11 in H6; elim (Rlt_irrefl _ H6)). + (red; intro H11; rewrite H11 in H6; elim (Rlt_irrefl _ H6)). intros. - unfold Rdiv in |- *. + unfold Rdiv. apply Rmult_lt_reg_l with (Rabs (f2 (x + a))). apply Rabs_pos_lt; apply H2. apply Rlt_le_trans with (Rmin eps_f2 alp_f2). @@ -741,13 +739,13 @@ Proof. unfold Rminus in H7; assumption. intros. case (Req_dec x x0); intro. - rewrite <- H5; unfold Rminus in |- *; rewrite Rplus_opp_r; rewrite Rabs_R0; - unfold Rdiv in |- *; apply Rmult_lt_0_compat; + rewrite <- H5; unfold Rminus; rewrite Rplus_opp_r; rewrite Rabs_R0; + unfold Rdiv; apply Rmult_lt_0_compat; [ apply Rabs_pos_lt; assumption | apply Rinv_0_lt_compat; prove_sup0 ]. elim H3; intros. apply H7. split. - unfold D_x, no_cond in |- *; split. + unfold D_x, no_cond; split. trivial. assumption. assumption. @@ -758,7 +756,7 @@ Lemma derivable_pt_div : derivable_pt f1 x -> derivable_pt f2 x -> f2 x <> 0 -> derivable_pt (f1 / f2) x. Proof. - unfold derivable_pt in |- *. + unfold derivable_pt. intros f1 f2 x X X0 H. elim X; intros. elim X0; intros. @@ -771,7 +769,7 @@ Lemma derivable_div : derivable f1 -> derivable f2 -> (forall x:R, f2 x <> 0) -> derivable (f1 / f2). Proof. - unfold derivable in |- *; intros f1 f2 X X0 H x. + unfold derivable; intros f1 f2 X X0 H x. apply (derivable_pt_div _ _ _ (X x) (X0 x) (H x)). Qed. |