summaryrefslogtreecommitdiff
path: root/theories/Reals/PartSum.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/PartSum.v')
-rw-r--r--theories/Reals/PartSum.v603
1 files changed, 603 insertions, 0 deletions
diff --git a/theories/Reals/PartSum.v b/theories/Reals/PartSum.v
new file mode 100644
index 00000000..13070bde
--- /dev/null
+++ b/theories/Reals/PartSum.v
@@ -0,0 +1,603 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: PartSum.v,v 1.11.2.1 2004/07/16 19:31:11 herbelin Exp $ i*)
+
+Require Import Rbase.
+Require Import Rfunctions.
+Require Import Rseries.
+Require Import Rcomplete.
+Require Import Max.
+Open Local Scope R_scope.
+
+Lemma tech1 :
+ forall (An:nat -> R) (N:nat),
+ (forall n:nat, (n <= N)%nat -> 0 < An n) -> 0 < sum_f_R0 An N.
+intros; induction N as [| N HrecN].
+simpl in |- *; apply H; apply le_n.
+simpl in |- *; apply Rplus_lt_0_compat.
+apply HrecN; intros; apply H; apply le_S; assumption.
+apply H; apply le_n.
+Qed.
+
+(* Chasles' relation *)
+Lemma tech2 :
+ forall (An:nat -> R) (m n:nat),
+ (m < n)%nat ->
+ sum_f_R0 An n =
+ sum_f_R0 An m + sum_f_R0 (fun i:nat => An (S m + i)%nat) (n - S m).
+intros; induction n as [| n Hrecn].
+elim (lt_n_O _ H).
+cut ((m < n)%nat \/ m = n).
+intro; elim H0; intro.
+replace (sum_f_R0 An (S n)) with (sum_f_R0 An n + An (S n));
+ [ idtac | reflexivity ].
+replace (S n - S m)%nat with (S (n - S m)).
+replace (sum_f_R0 (fun i:nat => An (S m + i)%nat) (S (n - S m))) with
+ (sum_f_R0 (fun i:nat => An (S m + i)%nat) (n - S m) +
+ An (S m + S (n - S m))%nat); [ idtac | reflexivity ].
+replace (S m + S (n - S m))%nat with (S n).
+rewrite (Hrecn H1).
+ring.
+apply INR_eq; rewrite S_INR; rewrite plus_INR; do 2 rewrite S_INR;
+ rewrite minus_INR.
+rewrite S_INR; ring.
+apply lt_le_S; assumption.
+apply INR_eq; rewrite S_INR; repeat rewrite minus_INR.
+repeat rewrite S_INR; ring.
+apply le_n_S; apply lt_le_weak; assumption.
+apply lt_le_S; assumption.
+rewrite H1; rewrite <- minus_n_n; simpl in |- *.
+replace (n + 0)%nat with n; [ reflexivity | ring ].
+inversion H.
+right; reflexivity.
+left; apply lt_le_trans with (S m); [ apply lt_n_Sn | assumption ].
+Qed.
+
+(* Sum of geometric sequences *)
+Lemma tech3 :
+ forall (k:R) (N:nat),
+ k <> 1 -> sum_f_R0 (fun i:nat => k ^ i) N = (1 - k ^ S N) / (1 - k).
+intros; cut (1 - k <> 0).
+intro; induction N as [| N HrecN].
+simpl in |- *; rewrite Rmult_1_r; unfold Rdiv in |- *; rewrite <- Rinv_r_sym.
+reflexivity.
+apply H0.
+replace (sum_f_R0 (fun i:nat => k ^ i) (S N)) with
+ (sum_f_R0 (fun i:nat => k ^ i) N + k ^ S N); [ idtac | reflexivity ];
+ rewrite HrecN;
+ replace ((1 - k ^ S N) / (1 - k) + k ^ S N) with
+ ((1 - k ^ S N + (1 - k) * k ^ S N) / (1 - k)).
+apply Rmult_eq_reg_l with (1 - k).
+unfold Rdiv in |- *; do 2 rewrite <- (Rmult_comm (/ (1 - k)));
+ repeat rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym;
+ [ do 2 rewrite Rmult_1_l; simpl in |- *; ring | apply H0 ].
+apply H0.
+unfold Rdiv in |- *; rewrite Rmult_plus_distr_r; rewrite (Rmult_comm (1 - k));
+ repeat rewrite Rmult_assoc; rewrite <- Rinv_r_sym.
+rewrite Rmult_1_r; reflexivity.
+apply H0.
+apply Rminus_eq_contra; red in |- *; intro; elim H; symmetry in |- *;
+ assumption.
+Qed.
+
+Lemma tech4 :
+ forall (An:nat -> R) (k:R) (N:nat),
+ 0 <= k -> (forall i:nat, An (S i) < k * An i) -> An N <= An 0%nat * k ^ N.
+intros; induction N as [| N HrecN].
+simpl in |- *; right; ring.
+apply Rle_trans with (k * An N).
+left; apply (H0 N).
+replace (S N) with (N + 1)%nat; [ idtac | ring ].
+rewrite pow_add; simpl in |- *; rewrite Rmult_1_r;
+ replace (An 0%nat * (k ^ N * k)) with (k * (An 0%nat * k ^ N));
+ [ idtac | ring ]; apply Rmult_le_compat_l.
+assumption.
+apply HrecN.
+Qed.
+
+Lemma tech5 :
+ forall (An:nat -> R) (N:nat), sum_f_R0 An (S N) = sum_f_R0 An N + An (S N).
+intros; reflexivity.
+Qed.
+
+Lemma tech6 :
+ forall (An:nat -> R) (k:R) (N:nat),
+ 0 <= k ->
+ (forall i:nat, An (S i) < k * An i) ->
+ sum_f_R0 An N <= An 0%nat * sum_f_R0 (fun i:nat => k ^ i) N.
+intros; induction N as [| N HrecN].
+simpl in |- *; right; ring.
+apply Rle_trans with (An 0%nat * sum_f_R0 (fun i:nat => k ^ i) N + An (S N)).
+rewrite tech5; do 2 rewrite <- (Rplus_comm (An (S N)));
+ apply Rplus_le_compat_l.
+apply HrecN.
+rewrite tech5; rewrite Rmult_plus_distr_l; apply Rplus_le_compat_l.
+apply tech4; assumption.
+Qed.
+
+Lemma tech7 : forall r1 r2:R, r1 <> 0 -> r2 <> 0 -> r1 <> r2 -> / r1 <> / r2.
+intros; red in |- *; intro.
+assert (H3 := Rmult_eq_compat_l r1 _ _ H2).
+rewrite <- Rinv_r_sym in H3; [ idtac | assumption ].
+assert (H4 := Rmult_eq_compat_l r2 _ _ H3).
+rewrite Rmult_1_r in H4; rewrite <- Rmult_assoc in H4.
+rewrite Rinv_r_simpl_m in H4; [ idtac | assumption ].
+elim H1; symmetry in |- *; assumption.
+Qed.
+
+Lemma tech11 :
+ forall (An Bn Cn:nat -> R) (N:nat),
+ (forall i:nat, An i = Bn i - Cn i) ->
+ sum_f_R0 An N = sum_f_R0 Bn N - sum_f_R0 Cn N.
+intros; induction N as [| N HrecN].
+simpl in |- *; apply H.
+do 3 rewrite tech5; rewrite HrecN; rewrite (H (S N)); ring.
+Qed.
+
+Lemma tech12 :
+ forall (An:nat -> R) (x l:R),
+ Un_cv (fun N:nat => sum_f_R0 (fun i:nat => An i * x ^ i) N) l ->
+ Pser An x l.
+intros; unfold Pser in |- *; unfold infinit_sum in |- *; unfold Un_cv in H;
+ assumption.
+Qed.
+
+Lemma scal_sum :
+ forall (An:nat -> R) (N:nat) (x:R),
+ x * sum_f_R0 An N = sum_f_R0 (fun i:nat => An i * x) N.
+intros; induction N as [| N HrecN].
+simpl in |- *; ring.
+do 2 rewrite tech5.
+rewrite Rmult_plus_distr_l; rewrite <- HrecN; ring.
+Qed.
+
+Lemma decomp_sum :
+ forall (An:nat -> R) (N:nat),
+ (0 < N)%nat ->
+ sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i:nat => An (S i)) (pred N).
+intros; induction N as [| N HrecN].
+elim (lt_irrefl _ H).
+cut ((0 < N)%nat \/ N = 0%nat).
+intro; elim H0; intro.
+cut (S (pred N) = pred (S N)).
+intro; rewrite <- H2.
+do 2 rewrite tech5.
+replace (S (S (pred N))) with (S N).
+rewrite (HrecN H1); ring.
+rewrite H2; simpl in |- *; reflexivity.
+assert (H2 := O_or_S N).
+elim H2; intros.
+elim a; intros.
+rewrite <- p.
+simpl in |- *; reflexivity.
+rewrite <- b in H1; elim (lt_irrefl _ H1).
+rewrite H1; simpl in |- *; reflexivity.
+inversion H.
+right; reflexivity.
+left; apply lt_le_trans with 1%nat; [ apply lt_O_Sn | assumption ].
+Qed.
+
+Lemma plus_sum :
+ forall (An Bn:nat -> R) (N:nat),
+ sum_f_R0 (fun i:nat => An i + Bn i) N = sum_f_R0 An N + sum_f_R0 Bn N.
+intros; induction N as [| N HrecN].
+simpl in |- *; ring.
+do 3 rewrite tech5; rewrite HrecN; ring.
+Qed.
+
+Lemma sum_eq :
+ forall (An Bn:nat -> R) (N:nat),
+ (forall i:nat, (i <= N)%nat -> An i = Bn i) ->
+ sum_f_R0 An N = sum_f_R0 Bn N.
+intros; induction N as [| N HrecN].
+simpl in |- *; apply H; apply le_n.
+do 2 rewrite tech5; rewrite HrecN.
+rewrite (H (S N)); [ reflexivity | apply le_n ].
+intros; apply H; apply le_trans with N; [ assumption | apply le_n_Sn ].
+Qed.
+
+(* Unicity of the limit defined by convergent series *)
+Lemma uniqueness_sum :
+ forall (An:nat -> R) (l1 l2:R),
+ infinit_sum An l1 -> infinit_sum An l2 -> l1 = l2.
+unfold infinit_sum in |- *; intros.
+case (Req_dec l1 l2); intro.
+assumption.
+cut (0 < Rabs ((l1 - l2) / 2)); [ intro | apply Rabs_pos_lt ].
+elim (H (Rabs ((l1 - l2) / 2)) H2); intros.
+elim (H0 (Rabs ((l1 - l2) / 2)) H2); intros.
+set (N := max x0 x); cut (N >= x0)%nat.
+cut (N >= x)%nat.
+intros; assert (H7 := H3 N H5); assert (H8 := H4 N H6).
+cut (Rabs (l1 - l2) <= R_dist (sum_f_R0 An N) l1 + R_dist (sum_f_R0 An N) l2).
+intro; assert (H10 := Rplus_lt_compat _ _ _ _ H7 H8);
+ assert (H11 := Rle_lt_trans _ _ _ H9 H10); unfold Rdiv in H11;
+ rewrite Rabs_mult in H11.
+cut (Rabs (/ 2) = / 2).
+intro; rewrite H12 in H11; assert (H13 := double_var); unfold Rdiv in H13;
+ rewrite <- H13 in H11.
+elim (Rlt_irrefl _ H11).
+apply Rabs_right; left; change (0 < / 2) in |- *; apply Rinv_0_lt_compat;
+ cut (0%nat <> 2%nat);
+ [ intro H20; generalize (lt_INR_0 2 (neq_O_lt 2 H20)); unfold INR in |- *;
+ intro; assumption
+ | discriminate ].
+unfold R_dist in |- *; rewrite <- (Rabs_Ropp (sum_f_R0 An N - l1));
+ rewrite Ropp_minus_distr'.
+replace (l1 - l2) with (l1 - sum_f_R0 An N + (sum_f_R0 An N - l2));
+ [ idtac | ring ].
+apply Rabs_triang.
+unfold ge in |- *; unfold N in |- *; apply le_max_r.
+unfold ge in |- *; unfold N in |- *; apply le_max_l.
+unfold Rdiv in |- *; apply prod_neq_R0.
+apply Rminus_eq_contra; assumption.
+apply Rinv_neq_0_compat; discrR.
+Qed.
+
+Lemma minus_sum :
+ forall (An Bn:nat -> R) (N:nat),
+ sum_f_R0 (fun i:nat => An i - Bn i) N = sum_f_R0 An N - sum_f_R0 Bn N.
+intros; induction N as [| N HrecN].
+simpl in |- *; ring.
+do 3 rewrite tech5; rewrite HrecN; ring.
+Qed.
+
+Lemma sum_decomposition :
+ forall (An:nat -> R) (N:nat),
+ sum_f_R0 (fun l:nat => An (2 * l)%nat) (S N) +
+ sum_f_R0 (fun l:nat => An (S (2 * l))) N = sum_f_R0 An (2 * S N).
+intros.
+induction N as [| N HrecN].
+simpl in |- *; ring.
+rewrite tech5.
+rewrite (tech5 (fun l:nat => An (S (2 * l))) N).
+replace (2 * S (S N))%nat with (S (S (2 * S N))).
+rewrite (tech5 An (S (2 * S N))).
+rewrite (tech5 An (2 * S N)).
+rewrite <- HrecN.
+ring.
+apply INR_eq; do 2 rewrite S_INR; do 2 rewrite mult_INR; repeat rewrite S_INR.
+ring.
+Qed.
+
+Lemma sum_Rle :
+ forall (An Bn:nat -> R) (N:nat),
+ (forall n:nat, (n <= N)%nat -> An n <= Bn n) ->
+ sum_f_R0 An N <= sum_f_R0 Bn N.
+intros.
+induction N as [| N HrecN].
+simpl in |- *; apply H.
+apply le_n.
+do 2 rewrite tech5.
+apply Rle_trans with (sum_f_R0 An N + Bn (S N)).
+apply Rplus_le_compat_l.
+apply H.
+apply le_n.
+do 2 rewrite <- (Rplus_comm (Bn (S N))).
+apply Rplus_le_compat_l.
+apply HrecN.
+intros; apply H.
+apply le_trans with N; [ assumption | apply le_n_Sn ].
+Qed.
+
+Lemma Rsum_abs :
+ forall (An:nat -> R) (N:nat),
+ Rabs (sum_f_R0 An N) <= sum_f_R0 (fun l:nat => Rabs (An l)) N.
+intros.
+induction N as [| N HrecN].
+simpl in |- *.
+right; reflexivity.
+do 2 rewrite tech5.
+apply Rle_trans with (Rabs (sum_f_R0 An N) + Rabs (An (S N))).
+apply Rabs_triang.
+do 2 rewrite <- (Rplus_comm (Rabs (An (S N)))).
+apply Rplus_le_compat_l.
+apply HrecN.
+Qed.
+
+Lemma sum_cte :
+ forall (x:R) (N:nat), sum_f_R0 (fun _:nat => x) N = x * INR (S N).
+intros.
+induction N as [| N HrecN].
+simpl in |- *; ring.
+rewrite tech5.
+rewrite HrecN; repeat rewrite S_INR; ring.
+Qed.
+
+(**********)
+Lemma sum_growing :
+ forall (An Bn:nat -> R) (N:nat),
+ (forall n:nat, An n <= Bn n) -> sum_f_R0 An N <= sum_f_R0 Bn N.
+intros.
+induction N as [| N HrecN].
+simpl in |- *; apply H.
+do 2 rewrite tech5.
+apply Rle_trans with (sum_f_R0 An N + Bn (S N)).
+apply Rplus_le_compat_l; apply H.
+do 2 rewrite <- (Rplus_comm (Bn (S N))).
+apply Rplus_le_compat_l; apply HrecN.
+Qed.
+
+(**********)
+Lemma Rabs_triang_gen :
+ forall (An:nat -> R) (N:nat),
+ Rabs (sum_f_R0 An N) <= sum_f_R0 (fun i:nat => Rabs (An i)) N.
+intros.
+induction N as [| N HrecN].
+simpl in |- *.
+right; reflexivity.
+do 2 rewrite tech5.
+apply Rle_trans with (Rabs (sum_f_R0 An N) + Rabs (An (S N))).
+apply Rabs_triang.
+do 2 rewrite <- (Rplus_comm (Rabs (An (S N)))).
+apply Rplus_le_compat_l; apply HrecN.
+Qed.
+
+(**********)
+Lemma cond_pos_sum :
+ forall (An:nat -> R) (N:nat),
+ (forall n:nat, 0 <= An n) -> 0 <= sum_f_R0 An N.
+intros.
+induction N as [| N HrecN].
+simpl in |- *; apply H.
+rewrite tech5.
+apply Rplus_le_le_0_compat.
+apply HrecN.
+apply H.
+Qed.
+
+(* Cauchy's criterion for series *)
+Definition Cauchy_crit_series (An:nat -> R) : Prop :=
+ Cauchy_crit (fun N:nat => sum_f_R0 An N).
+
+(* If (|An|) satisfies the Cauchy's criterion for series, then (An) too *)
+Lemma cauchy_abs :
+ forall An:nat -> R,
+ Cauchy_crit_series (fun i:nat => Rabs (An i)) -> Cauchy_crit_series An.
+unfold Cauchy_crit_series in |- *; unfold Cauchy_crit in |- *.
+intros.
+elim (H eps H0); intros.
+exists x.
+intros.
+cut
+ (R_dist (sum_f_R0 An n) (sum_f_R0 An m) <=
+ R_dist (sum_f_R0 (fun i:nat => Rabs (An i)) n)
+ (sum_f_R0 (fun i:nat => Rabs (An i)) m)).
+intro.
+apply Rle_lt_trans with
+ (R_dist (sum_f_R0 (fun i:nat => Rabs (An i)) n)
+ (sum_f_R0 (fun i:nat => Rabs (An i)) m)).
+assumption.
+apply H1; assumption.
+assert (H4 := lt_eq_lt_dec n m).
+elim H4; intro.
+elim a; intro.
+rewrite (tech2 An n m); [ idtac | assumption ].
+rewrite (tech2 (fun i:nat => Rabs (An i)) n m); [ idtac | assumption ].
+unfold R_dist in |- *.
+unfold Rminus in |- *.
+do 2 rewrite Ropp_plus_distr.
+do 2 rewrite <- Rplus_assoc.
+do 2 rewrite Rplus_opp_r.
+do 2 rewrite Rplus_0_l.
+do 2 rewrite Rabs_Ropp.
+rewrite
+ (Rabs_right (sum_f_R0 (fun i:nat => Rabs (An (S n + i)%nat)) (m - S n)))
+ .
+set (Bn := fun i:nat => An (S n + i)%nat).
+replace (fun i:nat => Rabs (An (S n + i)%nat)) with
+ (fun i:nat => Rabs (Bn i)).
+apply Rabs_triang_gen.
+unfold Bn in |- *; reflexivity.
+apply Rle_ge.
+apply cond_pos_sum.
+intro; apply Rabs_pos.
+rewrite b.
+unfold R_dist in |- *.
+unfold Rminus in |- *; do 2 rewrite Rplus_opp_r.
+rewrite Rabs_R0; right; reflexivity.
+rewrite (tech2 An m n); [ idtac | assumption ].
+rewrite (tech2 (fun i:nat => Rabs (An i)) m n); [ idtac | assumption ].
+unfold R_dist in |- *.
+unfold Rminus in |- *.
+do 2 rewrite Rplus_assoc.
+rewrite (Rplus_comm (sum_f_R0 An m)).
+rewrite (Rplus_comm (sum_f_R0 (fun i:nat => Rabs (An i)) m)).
+do 2 rewrite Rplus_assoc.
+do 2 rewrite Rplus_opp_l.
+do 2 rewrite Rplus_0_r.
+rewrite
+ (Rabs_right (sum_f_R0 (fun i:nat => Rabs (An (S m + i)%nat)) (n - S m)))
+ .
+set (Bn := fun i:nat => An (S m + i)%nat).
+replace (fun i:nat => Rabs (An (S m + i)%nat)) with
+ (fun i:nat => Rabs (Bn i)).
+apply Rabs_triang_gen.
+unfold Bn in |- *; reflexivity.
+apply Rle_ge.
+apply cond_pos_sum.
+intro; apply Rabs_pos.
+Qed.
+
+(**********)
+Lemma cv_cauchy_1 :
+ forall An:nat -> R,
+ sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l) ->
+ Cauchy_crit_series An.
+intros.
+elim X; intros.
+unfold Un_cv in p.
+unfold Cauchy_crit_series in |- *; unfold Cauchy_crit in |- *.
+intros.
+cut (0 < eps / 2).
+intro.
+elim (p (eps / 2) H0); intros.
+exists x0.
+intros.
+apply Rle_lt_trans with (R_dist (sum_f_R0 An n) x + R_dist (sum_f_R0 An m) x).
+unfold R_dist in |- *.
+replace (sum_f_R0 An n - sum_f_R0 An m) with
+ (sum_f_R0 An n - x + - (sum_f_R0 An m - x)); [ idtac | ring ].
+rewrite <- (Rabs_Ropp (sum_f_R0 An m - x)).
+apply Rabs_triang.
+apply Rlt_le_trans with (eps / 2 + eps / 2).
+apply Rplus_lt_compat.
+apply H1; assumption.
+apply H1; assumption.
+right; symmetry in |- *; apply double_var.
+unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ [ assumption | apply Rinv_0_lt_compat; prove_sup0 ].
+Qed.
+
+Lemma cv_cauchy_2 :
+ forall An:nat -> R,
+ Cauchy_crit_series An ->
+ sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 An N) l).
+intros.
+apply R_complete.
+unfold Cauchy_crit_series in H.
+exact H.
+Qed.
+
+(**********)
+Lemma sum_eq_R0 :
+ forall (An:nat -> R) (N:nat),
+ (forall n:nat, (n <= N)%nat -> An n = 0) -> sum_f_R0 An N = 0.
+intros; induction N as [| N HrecN].
+simpl in |- *; apply H; apply le_n.
+rewrite tech5; rewrite HrecN;
+ [ rewrite Rplus_0_l; apply H; apply le_n
+ | intros; apply H; apply le_trans with N; [ assumption | apply le_n_Sn ] ].
+Qed.
+
+Definition SP (fn:nat -> R -> R) (N:nat) (x:R) : R :=
+ sum_f_R0 (fun k:nat => fn k x) N.
+
+(**********)
+Lemma sum_incr :
+ forall (An:nat -> R) (N:nat) (l:R),
+ Un_cv (fun n:nat => sum_f_R0 An n) l ->
+ (forall n:nat, 0 <= An n) -> sum_f_R0 An N <= l.
+intros; case (total_order_T (sum_f_R0 An N) l); intro.
+elim s; intro.
+left; apply a.
+right; apply b.
+cut (Un_growing (fun n:nat => sum_f_R0 An n)).
+intro; set (l1 := sum_f_R0 An N).
+fold l1 in r.
+unfold Un_cv in H; cut (0 < l1 - l).
+intro; elim (H _ H2); intros.
+set (N0 := max x N); cut (N0 >= x)%nat.
+intro; assert (H5 := H3 N0 H4).
+cut (l1 <= sum_f_R0 An N0).
+intro; unfold R_dist in H5; rewrite Rabs_right in H5.
+cut (sum_f_R0 An N0 < l1).
+intro; elim (Rlt_irrefl _ (Rlt_le_trans _ _ _ H7 H6)).
+apply Rplus_lt_reg_r with (- l).
+do 2 rewrite (Rplus_comm (- l)).
+apply H5.
+apply Rle_ge; apply Rplus_le_reg_l with l.
+rewrite Rplus_0_r; replace (l + (sum_f_R0 An N0 - l)) with (sum_f_R0 An N0);
+ [ idtac | ring ]; apply Rle_trans with l1.
+left; apply r.
+apply H6.
+unfold l1 in |- *; apply Rge_le;
+ apply (growing_prop (fun k:nat => sum_f_R0 An k)).
+apply H1.
+unfold ge, N0 in |- *; apply le_max_r.
+unfold ge, N0 in |- *; apply le_max_l.
+apply Rplus_lt_reg_r with l; rewrite Rplus_0_r;
+ replace (l + (l1 - l)) with l1; [ apply r | ring ].
+unfold Un_growing in |- *; intro; simpl in |- *;
+ pattern (sum_f_R0 An n) at 1 in |- *; rewrite <- Rplus_0_r;
+ apply Rplus_le_compat_l; apply H0.
+Qed.
+
+(**********)
+Lemma sum_cv_maj :
+ forall (An:nat -> R) (fn:nat -> R -> R) (x l1 l2:R),
+ Un_cv (fun n:nat => SP fn n x) l1 ->
+ Un_cv (fun n:nat => sum_f_R0 An n) l2 ->
+ (forall n:nat, Rabs (fn n x) <= An n) -> Rabs l1 <= l2.
+intros; case (total_order_T (Rabs l1) l2); intro.
+elim s; intro.
+left; apply a.
+right; apply b.
+cut (forall n0:nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0).
+intro; cut (0 < (Rabs l1 - l2) / 2).
+intro; unfold Un_cv in H, H0.
+elim (H _ H3); intros Na H4.
+elim (H0 _ H3); intros Nb H5.
+set (N := max Na Nb).
+unfold R_dist in H4, H5.
+cut (Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2).
+intro; cut (Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2).
+intro; cut (sum_f_R0 An N < (Rabs l1 + l2) / 2).
+intro; cut ((Rabs l1 + l2) / 2 < Rabs (SP fn N x)).
+intro; cut (sum_f_R0 An N < Rabs (SP fn N x)).
+intro; assert (H11 := H2 N).
+elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H11 H10)).
+apply Rlt_trans with ((Rabs l1 + l2) / 2); assumption.
+case (Rcase_abs (Rabs l1 - Rabs (SP fn N x))); intro.
+apply Rlt_trans with (Rabs l1).
+apply Rmult_lt_reg_l with 2.
+prove_sup0.
+unfold Rdiv in |- *; rewrite (Rmult_comm 2); rewrite Rmult_assoc;
+ rewrite <- Rinv_l_sym.
+rewrite Rmult_1_r; rewrite double; apply Rplus_lt_compat_l; apply r.
+discrR.
+apply (Rminus_lt _ _ r0).
+rewrite (Rabs_right _ r0) in H7.
+apply Rplus_lt_reg_r with ((Rabs l1 - l2) / 2 - Rabs (SP fn N x)).
+replace ((Rabs l1 - l2) / 2 - Rabs (SP fn N x) + (Rabs l1 + l2) / 2) with
+ (Rabs l1 - Rabs (SP fn N x)).
+unfold Rminus in |- *; rewrite Rplus_assoc; rewrite Rplus_opp_l;
+ rewrite Rplus_0_r; apply H7.
+unfold Rdiv in |- *; rewrite Rmult_plus_distr_r;
+ rewrite <- (Rmult_comm (/ 2)); rewrite Rmult_minus_distr_l;
+ repeat rewrite (Rmult_comm (/ 2)); pattern (Rabs l1) at 1 in |- *;
+ rewrite double_var; unfold Rdiv in |- *; ring.
+case (Rcase_abs (sum_f_R0 An N - l2)); intro.
+apply Rlt_trans with l2.
+apply (Rminus_lt _ _ r0).
+apply Rmult_lt_reg_l with 2.
+prove_sup0.
+rewrite (double l2); unfold Rdiv in |- *; rewrite (Rmult_comm 2);
+ rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
+rewrite Rmult_1_r; rewrite (Rplus_comm (Rabs l1)); apply Rplus_lt_compat_l;
+ apply r.
+discrR.
+rewrite (Rabs_right _ r0) in H6; apply Rplus_lt_reg_r with (- l2).
+replace (- l2 + (Rabs l1 + l2) / 2) with ((Rabs l1 - l2) / 2).
+rewrite Rplus_comm; apply H6.
+unfold Rdiv in |- *; rewrite <- (Rmult_comm (/ 2));
+ rewrite Rmult_minus_distr_l; rewrite Rmult_plus_distr_r;
+ pattern l2 at 2 in |- *; rewrite double_var;
+ repeat rewrite (Rmult_comm (/ 2)); rewrite Ropp_plus_distr;
+ unfold Rdiv in |- *; ring.
+apply Rle_lt_trans with (Rabs (SP fn N x - l1)).
+rewrite <- Rabs_Ropp; rewrite Ropp_minus_distr'; apply Rabs_triang_inv2.
+apply H4; unfold ge, N in |- *; apply le_max_l.
+apply H5; unfold ge, N in |- *; apply le_max_r.
+unfold Rdiv in |- *; apply Rmult_lt_0_compat.
+apply Rplus_lt_reg_r with l2.
+rewrite Rplus_0_r; replace (l2 + (Rabs l1 - l2)) with (Rabs l1);
+ [ apply r | ring ].
+apply Rinv_0_lt_compat; prove_sup0.
+intros; induction n0 as [| n0 Hrecn0].
+unfold SP in |- *; simpl in |- *; apply H1.
+unfold SP in |- *; simpl in |- *.
+apply Rle_trans with
+ (Rabs (sum_f_R0 (fun k:nat => fn k x) n0) + Rabs (fn (S n0) x)).
+apply Rabs_triang.
+apply Rle_trans with (sum_f_R0 An n0 + Rabs (fn (S n0) x)).
+do 2 rewrite <- (Rplus_comm (Rabs (fn (S n0) x))).
+apply Rplus_le_compat_l; apply Hrecn0.
+apply Rplus_le_compat_l; apply H1.
+Qed. \ No newline at end of file