diff options
Diffstat (limited to 'theories/Reals/MVT.v')
-rw-r--r-- | theories/Reals/MVT.v | 26 |
1 files changed, 13 insertions, 13 deletions
diff --git a/theories/Reals/MVT.v b/theories/Reals/MVT.v index f22e49e1..4037e3de 100644 --- a/theories/Reals/MVT.v +++ b/theories/Reals/MVT.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: MVT.v 10710 2008-03-23 09:24:09Z herbelin $ i*) +(*i $Id$ i*) Require Import Rbase. Require Import Rfunctions. @@ -115,7 +115,7 @@ Proof. (derivable_pt_mult _ _ _ (derivable_pt_const (f b - f a) c) (pr2 c P)))); [ idtac | apply pr_nu ]. rewrite derive_pt_minus; do 2 rewrite derive_pt_mult; - do 2 rewrite derive_pt_const; do 2 rewrite Rmult_0_l; + do 2 rewrite derive_pt_const; do 2 rewrite Rmult_0_l; do 2 rewrite Rplus_0_l; reflexivity. unfold h in |- *; ring. intros; unfold h in |- *; @@ -180,7 +180,7 @@ Proof. cut (derive_pt id x (X2 x x0) = 1). cut (derive_pt f x (X0 x x0) = f' x). intros; rewrite H4 in H3; rewrite H5 in H3; unfold id in H3; - rewrite Rmult_1_r in H3; rewrite Rmult_comm; symmetry in |- *; + rewrite Rmult_1_r in H3; rewrite Rmult_comm; symmetry in |- *; assumption. apply derive_pt_eq_0; apply H0; elim x0; intros; split; left; assumption. apply derive_pt_eq_0; apply derivable_pt_lim_id. @@ -258,7 +258,7 @@ Lemma nonpos_derivative_0 : decreasing f -> forall x:R, derive_pt f x (pr x) <= 0. Proof. intros f pr H x; assert (H0 := H); unfold decreasing in H0; - generalize (derivable_derive f x (pr x)); intro; elim H1; + generalize (derivable_derive f x (pr x)); intro; elim H1; intros l H2. rewrite H2; case (Rtotal_order l 0); intro. left; assumption. @@ -282,7 +282,7 @@ Proof. intro. generalize (Ropp_lt_gt_contravar (- ((f (x + delta / 2) + - f x) / (delta / 2))) - (- (l / 2)) H15). + (- (l / 2)) H15). repeat rewrite Ropp_involutive. intro. generalize @@ -432,7 +432,7 @@ Lemma strictincreasing_strictdecreasing_opp : forall f:R -> R, strict_increasing f -> strict_decreasing (- f)%F. Proof. unfold strict_increasing, strict_decreasing, opp_fct in |- *; intros; - generalize (H x y H0); intro; apply Ropp_lt_gt_contravar; + generalize (H x y H0); intro; apply Ropp_lt_gt_contravar; assumption. Qed. @@ -467,14 +467,14 @@ Qed. (**********) Lemma null_derivative_0 : forall (f:R -> R) (pr:derivable f), - constant f -> forall x:R, derive_pt f x (pr x) = 0. + constant f -> forall x:R, derive_pt f x (pr x) = 0. Proof. intros. unfold constant in H. apply derive_pt_eq_0. intros; exists (mkposreal 1 Rlt_0_1); simpl in |- *; intros. rewrite (H x (x + h)); unfold Rminus in |- *; unfold Rdiv in |- *; - rewrite Rplus_opp_r; rewrite Rmult_0_l; rewrite Rplus_opp_r; + rewrite Rplus_opp_r; rewrite Rmult_0_l; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. Qed. @@ -576,7 +576,7 @@ Lemma derive_increasing_interv_var : forall x y:R, a <= x <= b -> a <= y <= b -> x < y -> f x <= f y. Proof. intros a b f pr H H0 x y H1 H2 H3; - generalize (derive_increasing_interv_ax a b f pr H); + generalize (derive_increasing_interv_ax a b f pr H); intro; elim H4; intros _ H5; apply (H5 H0 x y H1 H2 H3). Qed. @@ -618,7 +618,7 @@ Proof. cut (derivable (g - f)). intro X. cut (forall c:R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0). - intro. + intro. assert (H2 := IAF (g - f)%F a b 0 X H H1). rewrite Rmult_0_l in H2; unfold minus_fct in H2. apply Rplus_le_reg_l with (- f b + f a). @@ -697,11 +697,11 @@ Proof. clear H0; intros H0 _; exists (g1 a - g2 a); intros; assert (H3 : forall x:R, a <= x <= b -> derivable_pt g1 x). intros; unfold derivable_pt in |- *; exists (f x0); elim (H x0 H3); - intros; eapply derive_pt_eq_1; symmetry in |- *; + intros; eapply derive_pt_eq_1; symmetry in |- *; apply H4. assert (H4 : forall x:R, a <= x <= b -> derivable_pt g2 x). intros; unfold derivable_pt in |- *; exists (f x0); - elim (H0 x0 H4); intros; eapply derive_pt_eq_1; symmetry in |- *; + elim (H0 x0 H4); intros; eapply derive_pt_eq_1; symmetry in |- *; apply H5. assert (H5 : forall x:R, a < x < b -> derivable_pt (g1 - g2) x). intros; elim H5; intros; apply derivable_pt_minus; @@ -717,6 +717,6 @@ Proof. apply derivable_pt_lim_minus; [ elim (H _ H9) | elim (H0 _ H9) ]; intros; eapply derive_pt_eq_1; symmetry in |- *; apply H10. assert (H8 := null_derivative_loc (g1 - g2)%F a b H5 H6 H7); - unfold constant_D_eq in H8; assert (H9 := H8 _ H2); + unfold constant_D_eq in H8; assert (H9 := H8 _ H2); unfold minus_fct in H9; rewrite <- H9; ring. Qed. |