summaryrefslogtreecommitdiff
path: root/theories/Reals/MVT.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/MVT.v')
-rw-r--r--theories/Reals/MVT.v26
1 files changed, 13 insertions, 13 deletions
diff --git a/theories/Reals/MVT.v b/theories/Reals/MVT.v
index f22e49e1..4037e3de 100644
--- a/theories/Reals/MVT.v
+++ b/theories/Reals/MVT.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: MVT.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
+(*i $Id$ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -115,7 +115,7 @@ Proof.
(derivable_pt_mult _ _ _ (derivable_pt_const (f b - f a) c) (pr2 c P))));
[ idtac | apply pr_nu ].
rewrite derive_pt_minus; do 2 rewrite derive_pt_mult;
- do 2 rewrite derive_pt_const; do 2 rewrite Rmult_0_l;
+ do 2 rewrite derive_pt_const; do 2 rewrite Rmult_0_l;
do 2 rewrite Rplus_0_l; reflexivity.
unfold h in |- *; ring.
intros; unfold h in |- *;
@@ -180,7 +180,7 @@ Proof.
cut (derive_pt id x (X2 x x0) = 1).
cut (derive_pt f x (X0 x x0) = f' x).
intros; rewrite H4 in H3; rewrite H5 in H3; unfold id in H3;
- rewrite Rmult_1_r in H3; rewrite Rmult_comm; symmetry in |- *;
+ rewrite Rmult_1_r in H3; rewrite Rmult_comm; symmetry in |- *;
assumption.
apply derive_pt_eq_0; apply H0; elim x0; intros; split; left; assumption.
apply derive_pt_eq_0; apply derivable_pt_lim_id.
@@ -258,7 +258,7 @@ Lemma nonpos_derivative_0 :
decreasing f -> forall x:R, derive_pt f x (pr x) <= 0.
Proof.
intros f pr H x; assert (H0 := H); unfold decreasing in H0;
- generalize (derivable_derive f x (pr x)); intro; elim H1;
+ generalize (derivable_derive f x (pr x)); intro; elim H1;
intros l H2.
rewrite H2; case (Rtotal_order l 0); intro.
left; assumption.
@@ -282,7 +282,7 @@ Proof.
intro.
generalize
(Ropp_lt_gt_contravar (- ((f (x + delta / 2) + - f x) / (delta / 2)))
- (- (l / 2)) H15).
+ (- (l / 2)) H15).
repeat rewrite Ropp_involutive.
intro.
generalize
@@ -432,7 +432,7 @@ Lemma strictincreasing_strictdecreasing_opp :
forall f:R -> R, strict_increasing f -> strict_decreasing (- f)%F.
Proof.
unfold strict_increasing, strict_decreasing, opp_fct in |- *; intros;
- generalize (H x y H0); intro; apply Ropp_lt_gt_contravar;
+ generalize (H x y H0); intro; apply Ropp_lt_gt_contravar;
assumption.
Qed.
@@ -467,14 +467,14 @@ Qed.
(**********)
Lemma null_derivative_0 :
forall (f:R -> R) (pr:derivable f),
- constant f -> forall x:R, derive_pt f x (pr x) = 0.
+ constant f -> forall x:R, derive_pt f x (pr x) = 0.
Proof.
intros.
unfold constant in H.
apply derive_pt_eq_0.
intros; exists (mkposreal 1 Rlt_0_1); simpl in |- *; intros.
rewrite (H x (x + h)); unfold Rminus in |- *; unfold Rdiv in |- *;
- rewrite Rplus_opp_r; rewrite Rmult_0_l; rewrite Rplus_opp_r;
+ rewrite Rplus_opp_r; rewrite Rmult_0_l; rewrite Rplus_opp_r;
rewrite Rabs_R0; assumption.
Qed.
@@ -576,7 +576,7 @@ Lemma derive_increasing_interv_var :
forall x y:R, a <= x <= b -> a <= y <= b -> x < y -> f x <= f y.
Proof.
intros a b f pr H H0 x y H1 H2 H3;
- generalize (derive_increasing_interv_ax a b f pr H);
+ generalize (derive_increasing_interv_ax a b f pr H);
intro; elim H4; intros _ H5; apply (H5 H0 x y H1 H2 H3).
Qed.
@@ -618,7 +618,7 @@ Proof.
cut (derivable (g - f)).
intro X.
cut (forall c:R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0).
- intro.
+ intro.
assert (H2 := IAF (g - f)%F a b 0 X H H1).
rewrite Rmult_0_l in H2; unfold minus_fct in H2.
apply Rplus_le_reg_l with (- f b + f a).
@@ -697,11 +697,11 @@ Proof.
clear H0; intros H0 _; exists (g1 a - g2 a); intros;
assert (H3 : forall x:R, a <= x <= b -> derivable_pt g1 x).
intros; unfold derivable_pt in |- *; exists (f x0); elim (H x0 H3);
- intros; eapply derive_pt_eq_1; symmetry in |- *;
+ intros; eapply derive_pt_eq_1; symmetry in |- *;
apply H4.
assert (H4 : forall x:R, a <= x <= b -> derivable_pt g2 x).
intros; unfold derivable_pt in |- *; exists (f x0);
- elim (H0 x0 H4); intros; eapply derive_pt_eq_1; symmetry in |- *;
+ elim (H0 x0 H4); intros; eapply derive_pt_eq_1; symmetry in |- *;
apply H5.
assert (H5 : forall x:R, a < x < b -> derivable_pt (g1 - g2) x).
intros; elim H5; intros; apply derivable_pt_minus;
@@ -717,6 +717,6 @@ Proof.
apply derivable_pt_lim_minus; [ elim (H _ H9) | elim (H0 _ H9) ]; intros;
eapply derive_pt_eq_1; symmetry in |- *; apply H10.
assert (H8 := null_derivative_loc (g1 - g2)%F a b H5 H6 H7);
- unfold constant_D_eq in H8; assert (H9 := H8 _ H2);
+ unfold constant_D_eq in H8; assert (H9 := H8 _ H2);
unfold minus_fct in H9; rewrite <- H9; ring.
Qed.