diff options
Diffstat (limited to 'theories/Reals/Exp_prop.v')
-rw-r--r-- | theories/Reals/Exp_prop.v | 20 |
1 files changed, 9 insertions, 11 deletions
diff --git a/theories/Reals/Exp_prop.v b/theories/Reals/Exp_prop.v index beb4b744..bf729526 100644 --- a/theories/Reals/Exp_prop.v +++ b/theories/Reals/Exp_prop.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) -(*i $Id: Exp_prop.v 9551 2007-01-29 15:13:35Z bgregoir $ i*) +(*i $Id: Exp_prop.v 10710 2008-03-23 09:24:09Z herbelin $ i*) Require Import Rbase. Require Import Rfunctions. @@ -27,7 +27,7 @@ Lemma E1_cvg : forall x:R, Un_cv (E1 x) (exp x). Proof. intro; unfold exp in |- *; unfold projT1 in |- *. case (exist_exp x); intro. - unfold exp_in, Un_cv in |- *; unfold infinit_sum, E1 in |- *; trivial. + unfold exp_in, Un_cv in |- *; unfold infinite_sum, E1 in |- *; trivial. Qed. Definition Reste_E (x y:R) (N:nat) : R := @@ -734,7 +734,7 @@ Proof. apply Rinv_0_lt_compat; apply INR_fact_lt_0. apply (pow_lt _ n H). unfold exp in |- *; unfold projT1 in |- *; case (exist_exp x); intro. - unfold exp_in in |- *; unfold infinit_sum, Un_cv in |- *; trivial. + unfold exp_in in |- *; unfold infinite_sum, Un_cv in |- *; trivial. Qed. (**********) @@ -769,7 +769,7 @@ Proof. unfold derivable_pt_lim in |- *; intros. set (fn := fun (N:nat) (x:R) => x ^ N / INR (fact (S N))). cut (CVN_R fn). - intro; cut (forall x:R, sigT (fun l:R => Un_cv (fun N:nat => SP fn N x) l)). + intro; cut (forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }). intro cv; cut (forall n:nat, continuity (fn n)). intro; cut (continuity (SFL fn cv)). intro; unfold continuity in H1. @@ -809,13 +809,12 @@ Proof. unfold Rdiv in |- *; rewrite Rinv_1; rewrite Rmult_1_r; reflexivity. apply lt_le_trans with 1%nat; [ apply lt_n_Sn | apply H9 ]. unfold SFL, exp in |- *. - unfold projT1 in |- *. - case (cv h); case (exist_exp h); intros. + case (cv h); case (exist_exp h); simpl; intros. eapply UL_sequence. apply u. unfold Un_cv in |- *; intros. unfold exp_in in e. - unfold infinit_sum in e. + unfold infinite_sum in e. cut (0 < eps0 * Rabs h). intro; elim (e _ H9); intros N0 H10. exists N0; intros. @@ -871,13 +870,12 @@ Proof. assert (H0 := Alembert_exp). unfold CVN_R in |- *. intro; unfold CVN_r in |- *. - apply existT with (fun N:nat => r ^ N / INR (fact (S N))). + exists (fun N:nat => r ^ N / INR (fact (S N))). cut - (sigT - (fun l:R => + { l:R | Un_cv (fun n:nat => - sum_f_R0 (fun k:nat => Rabs (r ^ k / INR (fact (S k)))) n) l)). + sum_f_R0 (fun k:nat => Rabs (r ^ k / INR (fact (S k)))) n) l }. intro X. elim X; intros. exists x; intros. |