summaryrefslogtreecommitdiff
path: root/theories/Reals/Exp_prop.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Exp_prop.v')
-rw-r--r--theories/Reals/Exp_prop.v20
1 files changed, 9 insertions, 11 deletions
diff --git a/theories/Reals/Exp_prop.v b/theories/Reals/Exp_prop.v
index beb4b744..bf729526 100644
--- a/theories/Reals/Exp_prop.v
+++ b/theories/Reals/Exp_prop.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Exp_prop.v 9551 2007-01-29 15:13:35Z bgregoir $ i*)
+(*i $Id: Exp_prop.v 10710 2008-03-23 09:24:09Z herbelin $ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -27,7 +27,7 @@ Lemma E1_cvg : forall x:R, Un_cv (E1 x) (exp x).
Proof.
intro; unfold exp in |- *; unfold projT1 in |- *.
case (exist_exp x); intro.
- unfold exp_in, Un_cv in |- *; unfold infinit_sum, E1 in |- *; trivial.
+ unfold exp_in, Un_cv in |- *; unfold infinite_sum, E1 in |- *; trivial.
Qed.
Definition Reste_E (x y:R) (N:nat) : R :=
@@ -734,7 +734,7 @@ Proof.
apply Rinv_0_lt_compat; apply INR_fact_lt_0.
apply (pow_lt _ n H).
unfold exp in |- *; unfold projT1 in |- *; case (exist_exp x); intro.
- unfold exp_in in |- *; unfold infinit_sum, Un_cv in |- *; trivial.
+ unfold exp_in in |- *; unfold infinite_sum, Un_cv in |- *; trivial.
Qed.
(**********)
@@ -769,7 +769,7 @@ Proof.
unfold derivable_pt_lim in |- *; intros.
set (fn := fun (N:nat) (x:R) => x ^ N / INR (fact (S N))).
cut (CVN_R fn).
- intro; cut (forall x:R, sigT (fun l:R => Un_cv (fun N:nat => SP fn N x) l)).
+ intro; cut (forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }).
intro cv; cut (forall n:nat, continuity (fn n)).
intro; cut (continuity (SFL fn cv)).
intro; unfold continuity in H1.
@@ -809,13 +809,12 @@ Proof.
unfold Rdiv in |- *; rewrite Rinv_1; rewrite Rmult_1_r; reflexivity.
apply lt_le_trans with 1%nat; [ apply lt_n_Sn | apply H9 ].
unfold SFL, exp in |- *.
- unfold projT1 in |- *.
- case (cv h); case (exist_exp h); intros.
+ case (cv h); case (exist_exp h); simpl; intros.
eapply UL_sequence.
apply u.
unfold Un_cv in |- *; intros.
unfold exp_in in e.
- unfold infinit_sum in e.
+ unfold infinite_sum in e.
cut (0 < eps0 * Rabs h).
intro; elim (e _ H9); intros N0 H10.
exists N0; intros.
@@ -871,13 +870,12 @@ Proof.
assert (H0 := Alembert_exp).
unfold CVN_R in |- *.
intro; unfold CVN_r in |- *.
- apply existT with (fun N:nat => r ^ N / INR (fact (S N))).
+ exists (fun N:nat => r ^ N / INR (fact (S N))).
cut
- (sigT
- (fun l:R =>
+ { l:R |
Un_cv
(fun n:nat =>
- sum_f_R0 (fun k:nat => Rabs (r ^ k / INR (fact (S k)))) n) l)).
+ sum_f_R0 (fun k:nat => Rabs (r ^ k / INR (fact (S k)))) n) l }.
intro X.
elim X; intros.
exists x; intros.