summaryrefslogtreecommitdiff
path: root/theories/Reals/Cos_plus.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Cos_plus.v')
-rw-r--r--theories/Reals/Cos_plus.v1061
1 files changed, 1061 insertions, 0 deletions
diff --git a/theories/Reals/Cos_plus.v b/theories/Reals/Cos_plus.v
new file mode 100644
index 00000000..422eb4a4
--- /dev/null
+++ b/theories/Reals/Cos_plus.v
@@ -0,0 +1,1061 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Cos_plus.v,v 1.11.2.1 2004/07/16 19:31:10 herbelin Exp $ i*)
+
+Require Import Rbase.
+Require Import Rfunctions.
+Require Import SeqSeries.
+Require Import Rtrigo_def.
+Require Import Cos_rel.
+Require Import Max. Open Local Scope nat_scope. Open Local Scope R_scope.
+
+Definition Majxy (x y:R) (n:nat) : R :=
+ Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n) / INR (fact n).
+
+Lemma Majxy_cv_R0 : forall x y:R, Un_cv (Majxy x y) 0.
+intros.
+set (C := Rmax 1 (Rmax (Rabs x) (Rabs y))).
+set (C0 := C ^ 4).
+cut (0 < C).
+intro.
+cut (0 < C0).
+intro.
+assert (H1 := cv_speed_pow_fact C0).
+unfold Un_cv in H1; unfold R_dist in H1.
+unfold Un_cv in |- *; unfold R_dist in |- *; intros.
+cut (0 < eps / C0);
+ [ intro
+ | unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ [ assumption | apply Rinv_0_lt_compat; assumption ] ].
+elim (H1 (eps / C0) H3); intros N0 H4.
+exists N0; intros.
+replace (Majxy x y n) with (C0 ^ S n / INR (fact n)).
+simpl in |- *.
+apply Rmult_lt_reg_l with (Rabs (/ C0)).
+apply Rabs_pos_lt.
+apply Rinv_neq_0_compat.
+red in |- *; intro; rewrite H6 in H0; elim (Rlt_irrefl _ H0).
+rewrite <- Rabs_mult.
+unfold Rminus in |- *; rewrite Rmult_plus_distr_l.
+rewrite Ropp_0; rewrite Rmult_0_r.
+unfold Rdiv in |- *; repeat rewrite <- Rmult_assoc.
+rewrite <- Rinv_l_sym.
+rewrite Rmult_1_l.
+rewrite (Rabs_right (/ C0)).
+rewrite <- (Rmult_comm eps).
+replace (C0 ^ n * / INR (fact n) + 0) with (C0 ^ n * / INR (fact n) - 0);
+ [ idtac | ring ].
+unfold Rdiv in H4; apply H4; assumption.
+apply Rle_ge; left; apply Rinv_0_lt_compat; assumption.
+red in |- *; intro; rewrite H6 in H0; elim (Rlt_irrefl _ H0).
+unfold Majxy in |- *.
+unfold C0 in |- *.
+rewrite pow_mult.
+unfold C in |- *; reflexivity.
+unfold C0 in |- *; apply pow_lt; assumption.
+apply Rlt_le_trans with 1.
+apply Rlt_0_1.
+unfold C in |- *.
+apply RmaxLess1.
+Qed.
+
+Lemma reste1_maj :
+ forall (x y:R) (N:nat),
+ (0 < N)%nat -> Rabs (Reste1 x y N) <= Majxy x y (pred N).
+intros.
+set (C := Rmax 1 (Rmax (Rabs x) (Rabs y))).
+unfold Reste1 in |- *.
+apply Rle_trans with
+ (sum_f_R0
+ (fun k:nat =>
+ Rabs
+ (sum_f_R0
+ (fun l:nat =>
+ (-1) ^ S (l + k) / INR (fact (2 * S (l + k))) *
+ x ^ (2 * S (l + k)) *
+ ((-1) ^ (N - l) / INR (fact (2 * (N - l)))) *
+ y ^ (2 * (N - l))) (pred (N - k)))) (
+ pred N)).
+apply
+ (Rsum_abs
+ (fun k:nat =>
+ sum_f_R0
+ (fun l:nat =>
+ (-1) ^ S (l + k) / INR (fact (2 * S (l + k))) *
+ x ^ (2 * S (l + k)) * ((-1) ^ (N - l) / INR (fact (2 * (N - l)))) *
+ y ^ (2 * (N - l))) (pred (N - k))) (pred N)).
+apply Rle_trans with
+ (sum_f_R0
+ (fun k:nat =>
+ sum_f_R0
+ (fun l:nat =>
+ Rabs
+ ((-1) ^ S (l + k) / INR (fact (2 * S (l + k))) *
+ x ^ (2 * S (l + k)) *
+ ((-1) ^ (N - l) / INR (fact (2 * (N - l)))) *
+ y ^ (2 * (N - l)))) (pred (N - k))) (
+ pred N)).
+apply sum_Rle.
+intros.
+apply
+ (Rsum_abs
+ (fun l:nat =>
+ (-1) ^ S (l + n) / INR (fact (2 * S (l + n))) * x ^ (2 * S (l + n)) *
+ ((-1) ^ (N - l) / INR (fact (2 * (N - l)))) *
+ y ^ (2 * (N - l))) (pred (N - n))).
+apply Rle_trans with
+ (sum_f_R0
+ (fun k:nat =>
+ sum_f_R0
+ (fun l:nat =>
+ / INR (fact (2 * S (l + k)) * fact (2 * (N - l))) *
+ C ^ (2 * S (N + k))) (pred (N - k))) (pred N)).
+apply sum_Rle; intros.
+apply sum_Rle; intros.
+unfold Rdiv in |- *; repeat rewrite Rabs_mult.
+do 2 rewrite pow_1_abs.
+do 2 rewrite Rmult_1_l.
+rewrite (Rabs_right (/ INR (fact (2 * S (n0 + n))))).
+rewrite (Rabs_right (/ INR (fact (2 * (N - n0))))).
+rewrite mult_INR.
+rewrite Rinv_mult_distr.
+repeat rewrite Rmult_assoc.
+apply Rmult_le_compat_l.
+left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
+rewrite <- Rmult_assoc.
+rewrite <- (Rmult_comm (/ INR (fact (2 * (N - n0))))).
+rewrite Rmult_assoc.
+apply Rmult_le_compat_l.
+left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
+do 2 rewrite <- RPow_abs.
+apply Rle_trans with (Rabs x ^ (2 * S (n0 + n)) * C ^ (2 * (N - n0))).
+apply Rmult_le_compat_l.
+apply pow_le; apply Rabs_pos.
+apply pow_incr.
+split.
+apply Rabs_pos.
+unfold C in |- *.
+apply Rle_trans with (Rmax (Rabs x) (Rabs y)); apply RmaxLess2.
+apply Rle_trans with (C ^ (2 * S (n0 + n)) * C ^ (2 * (N - n0))).
+do 2 rewrite <- (Rmult_comm (C ^ (2 * (N - n0)))).
+apply Rmult_le_compat_l.
+apply pow_le.
+apply Rle_trans with 1.
+left; apply Rlt_0_1.
+unfold C in |- *; apply RmaxLess1.
+apply pow_incr.
+split.
+apply Rabs_pos.
+unfold C in |- *; apply Rle_trans with (Rmax (Rabs x) (Rabs y)).
+apply RmaxLess1.
+apply RmaxLess2.
+right.
+replace (2 * S (N + n))%nat with (2 * (N - n0) + 2 * S (n0 + n))%nat.
+rewrite pow_add.
+apply Rmult_comm.
+apply INR_eq; rewrite plus_INR; do 3 rewrite mult_INR.
+rewrite minus_INR.
+repeat rewrite S_INR; do 2 rewrite plus_INR; ring.
+apply le_trans with (pred (N - n)).
+exact H1.
+apply le_S_n.
+replace (S (pred (N - n))) with (N - n)%nat.
+apply le_trans with N.
+apply (fun p n m:nat => plus_le_reg_l n m p) with n.
+rewrite <- le_plus_minus.
+apply le_plus_r.
+apply le_trans with (pred N).
+assumption.
+apply le_pred_n.
+apply le_n_Sn.
+apply S_pred with 0%nat.
+apply plus_lt_reg_l with n.
+rewrite <- le_plus_minus.
+replace (n + 0)%nat with n; [ idtac | ring ].
+apply le_lt_trans with (pred N).
+assumption.
+apply lt_pred_n_n; assumption.
+apply le_trans with (pred N).
+assumption.
+apply le_pred_n.
+apply INR_fact_neq_0.
+apply INR_fact_neq_0.
+apply Rle_ge; left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
+apply Rle_ge; left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
+apply Rle_trans with
+ (sum_f_R0
+ (fun k:nat =>
+ sum_f_R0
+ (fun l:nat =>
+ / INR (fact (2 * S (l + k)) * fact (2 * (N - l))) * C ^ (4 * N))
+ (pred (N - k))) (pred N)).
+apply sum_Rle; intros.
+apply sum_Rle; intros.
+apply Rmult_le_compat_l.
+left; apply Rinv_0_lt_compat.
+rewrite mult_INR; apply Rmult_lt_0_compat; apply INR_fact_lt_0.
+apply Rle_pow.
+unfold C in |- *; apply RmaxLess1.
+replace (4 * N)%nat with (2 * (2 * N))%nat; [ idtac | ring ].
+apply (fun m n p:nat => mult_le_compat_l p n m).
+replace (2 * N)%nat with (S (N + pred N)).
+apply le_n_S.
+apply plus_le_compat_l; assumption.
+rewrite pred_of_minus.
+apply INR_eq; rewrite S_INR; rewrite plus_INR; rewrite mult_INR;
+ rewrite minus_INR.
+repeat rewrite S_INR; ring.
+apply lt_le_S; assumption.
+apply Rle_trans with
+ (sum_f_R0
+ (fun k:nat =>
+ sum_f_R0 (fun l:nat => C ^ (4 * N) * Rsqr (/ INR (fact (S (N + k)))))
+ (pred (N - k))) (pred N)).
+apply sum_Rle; intros.
+apply sum_Rle; intros.
+rewrite <- (Rmult_comm (C ^ (4 * N))).
+apply Rmult_le_compat_l.
+apply pow_le.
+left; apply Rlt_le_trans with 1.
+apply Rlt_0_1.
+unfold C in |- *; apply RmaxLess1.
+replace (/ INR (fact (2 * S (n0 + n)) * fact (2 * (N - n0)))) with
+ (Binomial.C (2 * S (N + n)) (2 * S (n0 + n)) / INR (fact (2 * S (N + n)))).
+apply Rle_trans with
+ (Binomial.C (2 * S (N + n)) (S (N + n)) / INR (fact (2 * S (N + n)))).
+unfold Rdiv in |- *;
+ do 2 rewrite <- (Rmult_comm (/ INR (fact (2 * S (N + n))))).
+apply Rmult_le_compat_l.
+left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
+apply C_maj.
+apply (fun m n p:nat => mult_le_compat_l p n m).
+apply le_n_S.
+apply plus_le_compat_r.
+apply le_trans with (pred (N - n)).
+assumption.
+apply le_S_n.
+replace (S (pred (N - n))) with (N - n)%nat.
+apply le_trans with N.
+apply (fun p n m:nat => plus_le_reg_l n m p) with n.
+rewrite <- le_plus_minus.
+apply le_plus_r.
+apply le_trans with (pred N).
+assumption.
+apply le_pred_n.
+apply le_n_Sn.
+apply S_pred with 0%nat.
+apply plus_lt_reg_l with n.
+rewrite <- le_plus_minus.
+replace (n + 0)%nat with n; [ idtac | ring ].
+apply le_lt_trans with (pred N).
+assumption.
+apply lt_pred_n_n; assumption.
+apply le_trans with (pred N).
+assumption.
+apply le_pred_n.
+right.
+unfold Rdiv in |- *; rewrite Rmult_comm.
+unfold Binomial.C in |- *.
+unfold Rdiv in |- *; repeat rewrite <- Rmult_assoc.
+rewrite <- Rinv_l_sym.
+rewrite Rmult_1_l.
+replace (2 * S (N + n) - S (N + n))%nat with (S (N + n)).
+rewrite Rinv_mult_distr.
+unfold Rsqr in |- *; reflexivity.
+apply INR_fact_neq_0.
+apply INR_fact_neq_0.
+apply INR_eq; rewrite S_INR; rewrite minus_INR.
+rewrite mult_INR; repeat rewrite S_INR; rewrite plus_INR; ring.
+apply le_n_2n.
+apply INR_fact_neq_0.
+unfold Rdiv in |- *; rewrite Rmult_comm.
+unfold Binomial.C in |- *.
+unfold Rdiv in |- *; repeat rewrite <- Rmult_assoc.
+rewrite <- Rinv_l_sym.
+rewrite Rmult_1_l.
+replace (2 * S (N + n) - 2 * S (n0 + n))%nat with (2 * (N - n0))%nat.
+rewrite mult_INR.
+reflexivity.
+apply INR_eq; rewrite minus_INR.
+do 3 rewrite mult_INR; repeat rewrite S_INR; do 2 rewrite plus_INR;
+ rewrite minus_INR.
+ring.
+apply le_trans with (pred (N - n)).
+assumption.
+apply le_S_n.
+replace (S (pred (N - n))) with (N - n)%nat.
+apply le_trans with N.
+apply (fun p n m:nat => plus_le_reg_l n m p) with n.
+rewrite <- le_plus_minus.
+apply le_plus_r.
+apply le_trans with (pred N).
+assumption.
+apply le_pred_n.
+apply le_n_Sn.
+apply S_pred with 0%nat.
+apply plus_lt_reg_l with n.
+rewrite <- le_plus_minus.
+replace (n + 0)%nat with n; [ idtac | ring ].
+apply le_lt_trans with (pred N).
+assumption.
+apply lt_pred_n_n; assumption.
+apply le_trans with (pred N).
+assumption.
+apply le_pred_n.
+apply (fun m n p:nat => mult_le_compat_l p n m).
+apply le_n_S.
+apply plus_le_compat_r.
+apply le_trans with (pred (N - n)).
+assumption.
+apply le_S_n.
+replace (S (pred (N - n))) with (N - n)%nat.
+apply le_trans with N.
+apply (fun p n m:nat => plus_le_reg_l n m p) with n.
+rewrite <- le_plus_minus.
+apply le_plus_r.
+apply le_trans with (pred N).
+assumption.
+apply le_pred_n.
+apply le_n_Sn.
+apply S_pred with 0%nat.
+apply plus_lt_reg_l with n.
+rewrite <- le_plus_minus.
+replace (n + 0)%nat with n; [ idtac | ring ].
+apply le_lt_trans with (pred N).
+assumption.
+apply lt_pred_n_n; assumption.
+apply le_trans with (pred N).
+assumption.
+apply le_pred_n.
+apply INR_fact_neq_0.
+apply Rle_trans with
+ (sum_f_R0 (fun k:nat => INR N / INR (fact (S N)) * C ^ (4 * N)) (pred N)).
+apply sum_Rle; intros.
+rewrite <-
+ (scal_sum (fun _:nat => C ^ (4 * N)) (pred (N - n))
+ (Rsqr (/ INR (fact (S (N + n)))))).
+rewrite sum_cte.
+rewrite <- Rmult_assoc.
+do 2 rewrite <- (Rmult_comm (C ^ (4 * N))).
+rewrite Rmult_assoc.
+apply Rmult_le_compat_l.
+apply pow_le.
+left; apply Rlt_le_trans with 1.
+apply Rlt_0_1.
+unfold C in |- *; apply RmaxLess1.
+apply Rle_trans with (Rsqr (/ INR (fact (S (N + n)))) * INR N).
+apply Rmult_le_compat_l.
+apply Rle_0_sqr.
+replace (S (pred (N - n))) with (N - n)%nat.
+apply le_INR.
+apply (fun p n m:nat => plus_le_reg_l n m p) with n.
+rewrite <- le_plus_minus.
+apply le_plus_r.
+apply le_trans with (pred N).
+assumption.
+apply le_pred_n.
+apply S_pred with 0%nat.
+apply plus_lt_reg_l with n.
+rewrite <- le_plus_minus.
+replace (n + 0)%nat with n; [ idtac | ring ].
+apply le_lt_trans with (pred N).
+assumption.
+apply lt_pred_n_n; assumption.
+apply le_trans with (pred N).
+assumption.
+apply le_pred_n.
+rewrite Rmult_comm; unfold Rdiv in |- *; apply Rmult_le_compat_l.
+apply pos_INR.
+apply Rle_trans with (/ INR (fact (S (N + n)))).
+pattern (/ INR (fact (S (N + n)))) at 2 in |- *; rewrite <- Rmult_1_r.
+unfold Rsqr in |- *.
+apply Rmult_le_compat_l.
+left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
+apply Rmult_le_reg_l with (INR (fact (S (N + n)))).
+apply INR_fact_lt_0.
+rewrite <- Rinv_r_sym.
+rewrite Rmult_1_r.
+replace 1 with (INR 1).
+apply le_INR.
+apply lt_le_S.
+apply INR_lt; apply INR_fact_lt_0.
+reflexivity.
+apply INR_fact_neq_0.
+apply Rmult_le_reg_l with (INR (fact (S (N + n)))).
+apply INR_fact_lt_0.
+rewrite <- Rinv_r_sym.
+apply Rmult_le_reg_l with (INR (fact (S N))).
+apply INR_fact_lt_0.
+rewrite Rmult_1_r.
+rewrite (Rmult_comm (INR (fact (S N)))).
+rewrite Rmult_assoc.
+rewrite <- Rinv_l_sym.
+rewrite Rmult_1_r.
+apply le_INR.
+apply fact_le.
+apply le_n_S.
+apply le_plus_l.
+apply INR_fact_neq_0.
+apply INR_fact_neq_0.
+rewrite sum_cte.
+apply Rle_trans with (C ^ (4 * N) / INR (fact (pred N))).
+rewrite <- (Rmult_comm (C ^ (4 * N))).
+unfold Rdiv in |- *; rewrite Rmult_assoc; apply Rmult_le_compat_l.
+apply pow_le.
+left; apply Rlt_le_trans with 1.
+apply Rlt_0_1.
+unfold C in |- *; apply RmaxLess1.
+cut (S (pred N) = N).
+intro; rewrite H0.
+pattern N at 2 in |- *; rewrite <- H0.
+do 2 rewrite fact_simpl.
+rewrite H0.
+repeat rewrite mult_INR.
+repeat rewrite Rinv_mult_distr.
+rewrite (Rmult_comm (/ INR (S N))).
+repeat rewrite <- Rmult_assoc.
+rewrite <- Rinv_r_sym.
+rewrite Rmult_1_l.
+pattern (/ INR (fact (pred N))) at 2 in |- *; rewrite <- Rmult_1_r.
+rewrite Rmult_assoc.
+apply Rmult_le_compat_l.
+left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
+apply Rmult_le_reg_l with (INR (S N)).
+apply lt_INR_0; apply lt_O_Sn.
+rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym.
+rewrite Rmult_1_r; rewrite Rmult_1_l.
+apply le_INR; apply le_n_Sn.
+apply not_O_INR; discriminate.
+apply not_O_INR.
+red in |- *; intro; rewrite H1 in H; elim (lt_irrefl _ H).
+apply not_O_INR.
+red in |- *; intro; rewrite H1 in H; elim (lt_irrefl _ H).
+apply INR_fact_neq_0.
+apply not_O_INR; discriminate.
+apply prod_neq_R0.
+apply not_O_INR.
+red in |- *; intro; rewrite H1 in H; elim (lt_irrefl _ H).
+apply INR_fact_neq_0.
+symmetry in |- *; apply S_pred with 0%nat; assumption.
+right.
+unfold Majxy in |- *.
+unfold C in |- *.
+replace (S (pred N)) with N.
+reflexivity.
+apply S_pred with 0%nat; assumption.
+Qed.
+
+Lemma reste2_maj :
+ forall (x y:R) (N:nat), (0 < N)%nat -> Rabs (Reste2 x y N) <= Majxy x y N.
+intros.
+set (C := Rmax 1 (Rmax (Rabs x) (Rabs y))).
+unfold Reste2 in |- *.
+apply Rle_trans with
+ (sum_f_R0
+ (fun k:nat =>
+ Rabs
+ (sum_f_R0
+ (fun l:nat =>
+ (-1) ^ S (l + k) / INR (fact (2 * S (l + k) + 1)) *
+ x ^ (2 * S (l + k) + 1) *
+ ((-1) ^ (N - l) / INR (fact (2 * (N - l) + 1))) *
+ y ^ (2 * (N - l) + 1)) (pred (N - k)))) (
+ pred N)).
+apply
+ (Rsum_abs
+ (fun k:nat =>
+ sum_f_R0
+ (fun l:nat =>
+ (-1) ^ S (l + k) / INR (fact (2 * S (l + k) + 1)) *
+ x ^ (2 * S (l + k) + 1) *
+ ((-1) ^ (N - l) / INR (fact (2 * (N - l) + 1))) *
+ y ^ (2 * (N - l) + 1)) (pred (N - k))) (
+ pred N)).
+apply Rle_trans with
+ (sum_f_R0
+ (fun k:nat =>
+ sum_f_R0
+ (fun l:nat =>
+ Rabs
+ ((-1) ^ S (l + k) / INR (fact (2 * S (l + k) + 1)) *
+ x ^ (2 * S (l + k) + 1) *
+ ((-1) ^ (N - l) / INR (fact (2 * (N - l) + 1))) *
+ y ^ (2 * (N - l) + 1))) (pred (N - k))) (
+ pred N)).
+apply sum_Rle.
+intros.
+apply
+ (Rsum_abs
+ (fun l:nat =>
+ (-1) ^ S (l + n) / INR (fact (2 * S (l + n) + 1)) *
+ x ^ (2 * S (l + n) + 1) *
+ ((-1) ^ (N - l) / INR (fact (2 * (N - l) + 1))) *
+ y ^ (2 * (N - l) + 1)) (pred (N - n))).
+apply Rle_trans with
+ (sum_f_R0
+ (fun k:nat =>
+ sum_f_R0
+ (fun l:nat =>
+ / INR (fact (2 * S (l + k) + 1) * fact (2 * (N - l) + 1)) *
+ C ^ (2 * S (S (N + k)))) (pred (N - k))) (
+ pred N)).
+apply sum_Rle; intros.
+apply sum_Rle; intros.
+unfold Rdiv in |- *; repeat rewrite Rabs_mult.
+do 2 rewrite pow_1_abs.
+do 2 rewrite Rmult_1_l.
+rewrite (Rabs_right (/ INR (fact (2 * S (n0 + n) + 1)))).
+rewrite (Rabs_right (/ INR (fact (2 * (N - n0) + 1)))).
+rewrite mult_INR.
+rewrite Rinv_mult_distr.
+repeat rewrite Rmult_assoc.
+apply Rmult_le_compat_l.
+left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
+rewrite <- Rmult_assoc.
+rewrite <- (Rmult_comm (/ INR (fact (2 * (N - n0) + 1)))).
+rewrite Rmult_assoc.
+apply Rmult_le_compat_l.
+left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
+do 2 rewrite <- RPow_abs.
+apply Rle_trans with (Rabs x ^ (2 * S (n0 + n) + 1) * C ^ (2 * (N - n0) + 1)).
+apply Rmult_le_compat_l.
+apply pow_le; apply Rabs_pos.
+apply pow_incr.
+split.
+apply Rabs_pos.
+unfold C in |- *.
+apply Rle_trans with (Rmax (Rabs x) (Rabs y)); apply RmaxLess2.
+apply Rle_trans with (C ^ (2 * S (n0 + n) + 1) * C ^ (2 * (N - n0) + 1)).
+do 2 rewrite <- (Rmult_comm (C ^ (2 * (N - n0) + 1))).
+apply Rmult_le_compat_l.
+apply pow_le.
+apply Rle_trans with 1.
+left; apply Rlt_0_1.
+unfold C in |- *; apply RmaxLess1.
+apply pow_incr.
+split.
+apply Rabs_pos.
+unfold C in |- *; apply Rle_trans with (Rmax (Rabs x) (Rabs y)).
+apply RmaxLess1.
+apply RmaxLess2.
+right.
+replace (2 * S (S (N + n)))%nat with
+ (2 * (N - n0) + 1 + (2 * S (n0 + n) + 1))%nat.
+repeat rewrite pow_add.
+ring.
+apply INR_eq; repeat rewrite plus_INR; do 3 rewrite mult_INR.
+rewrite minus_INR.
+repeat rewrite S_INR; do 2 rewrite plus_INR; ring.
+apply le_trans with (pred (N - n)).
+exact H1.
+apply le_S_n.
+replace (S (pred (N - n))) with (N - n)%nat.
+apply le_trans with N.
+apply (fun p n m:nat => plus_le_reg_l n m p) with n.
+rewrite <- le_plus_minus.
+apply le_plus_r.
+apply le_trans with (pred N).
+assumption.
+apply le_pred_n.
+apply le_n_Sn.
+apply S_pred with 0%nat.
+apply plus_lt_reg_l with n.
+rewrite <- le_plus_minus.
+replace (n + 0)%nat with n; [ idtac | ring ].
+apply le_lt_trans with (pred N).
+assumption.
+apply lt_pred_n_n; assumption.
+apply le_trans with (pred N).
+assumption.
+apply le_pred_n.
+apply INR_fact_neq_0.
+apply INR_fact_neq_0.
+apply Rle_ge; left; apply Rinv_0_lt_compat.
+apply INR_fact_lt_0.
+apply Rle_ge; left; apply Rinv_0_lt_compat.
+apply INR_fact_lt_0.
+apply Rle_trans with
+ (sum_f_R0
+ (fun k:nat =>
+ sum_f_R0
+ (fun l:nat =>
+ / INR (fact (2 * S (l + k) + 1) * fact (2 * (N - l) + 1)) *
+ C ^ (4 * S N)) (pred (N - k))) (pred N)).
+apply sum_Rle; intros.
+apply sum_Rle; intros.
+apply Rmult_le_compat_l.
+left; apply Rinv_0_lt_compat.
+rewrite mult_INR; apply Rmult_lt_0_compat; apply INR_fact_lt_0.
+apply Rle_pow.
+unfold C in |- *; apply RmaxLess1.
+replace (4 * S N)%nat with (2 * (2 * S N))%nat; [ idtac | ring ].
+apply (fun m n p:nat => mult_le_compat_l p n m).
+replace (2 * S N)%nat with (S (S (N + N))).
+repeat apply le_n_S.
+apply plus_le_compat_l.
+apply le_trans with (pred N).
+assumption.
+apply le_pred_n.
+apply INR_eq; do 2 rewrite S_INR; rewrite plus_INR; rewrite mult_INR.
+repeat rewrite S_INR; ring.
+apply Rle_trans with
+ (sum_f_R0
+ (fun k:nat =>
+ sum_f_R0
+ (fun l:nat => C ^ (4 * S N) * Rsqr (/ INR (fact (S (S (N + k))))))
+ (pred (N - k))) (pred N)).
+apply sum_Rle; intros.
+apply sum_Rle; intros.
+rewrite <- (Rmult_comm (C ^ (4 * S N))).
+apply Rmult_le_compat_l.
+apply pow_le.
+left; apply Rlt_le_trans with 1.
+apply Rlt_0_1.
+unfold C in |- *; apply RmaxLess1.
+replace (/ INR (fact (2 * S (n0 + n) + 1) * fact (2 * (N - n0) + 1))) with
+ (Binomial.C (2 * S (S (N + n))) (2 * S (n0 + n) + 1) /
+ INR (fact (2 * S (S (N + n))))).
+apply Rle_trans with
+ (Binomial.C (2 * S (S (N + n))) (S (S (N + n))) /
+ INR (fact (2 * S (S (N + n))))).
+unfold Rdiv in |- *;
+ do 2 rewrite <- (Rmult_comm (/ INR (fact (2 * S (S (N + n)))))).
+apply Rmult_le_compat_l.
+left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
+apply C_maj.
+apply le_trans with (2 * S (S (n0 + n)))%nat.
+replace (2 * S (S (n0 + n)))%nat with (S (2 * S (n0 + n) + 1)).
+apply le_n_Sn.
+apply INR_eq; rewrite S_INR; rewrite plus_INR; do 2 rewrite mult_INR;
+ repeat rewrite S_INR; rewrite plus_INR; ring.
+apply (fun m n p:nat => mult_le_compat_l p n m).
+repeat apply le_n_S.
+apply plus_le_compat_r.
+apply le_trans with (pred (N - n)).
+assumption.
+apply le_S_n.
+replace (S (pred (N - n))) with (N - n)%nat.
+apply le_trans with N.
+apply (fun p n m:nat => plus_le_reg_l n m p) with n.
+rewrite <- le_plus_minus.
+apply le_plus_r.
+apply le_trans with (pred N).
+assumption.
+apply le_pred_n.
+apply le_n_Sn.
+apply S_pred with 0%nat.
+apply plus_lt_reg_l with n.
+rewrite <- le_plus_minus.
+replace (n + 0)%nat with n; [ idtac | ring ].
+apply le_lt_trans with (pred N).
+assumption.
+apply lt_pred_n_n; assumption.
+apply le_trans with (pred N).
+assumption.
+apply le_pred_n.
+right.
+unfold Rdiv in |- *; rewrite Rmult_comm.
+unfold Binomial.C in |- *.
+unfold Rdiv in |- *; repeat rewrite <- Rmult_assoc.
+rewrite <- Rinv_l_sym.
+rewrite Rmult_1_l.
+replace (2 * S (S (N + n)) - S (S (N + n)))%nat with (S (S (N + n))).
+rewrite Rinv_mult_distr.
+unfold Rsqr in |- *; reflexivity.
+apply INR_fact_neq_0.
+apply INR_fact_neq_0.
+apply INR_eq; do 2 rewrite S_INR; rewrite minus_INR.
+rewrite mult_INR; repeat rewrite S_INR; rewrite plus_INR; ring.
+apply le_n_2n.
+apply INR_fact_neq_0.
+unfold Rdiv in |- *; rewrite Rmult_comm.
+unfold Binomial.C in |- *.
+unfold Rdiv in |- *; repeat rewrite <- Rmult_assoc.
+rewrite <- Rinv_l_sym.
+rewrite Rmult_1_l.
+replace (2 * S (S (N + n)) - (2 * S (n0 + n) + 1))%nat with
+ (2 * (N - n0) + 1)%nat.
+rewrite mult_INR.
+reflexivity.
+apply INR_eq; rewrite minus_INR.
+do 2 rewrite plus_INR; do 3 rewrite mult_INR; repeat rewrite S_INR;
+ do 2 rewrite plus_INR; rewrite minus_INR.
+ring.
+apply le_trans with (pred (N - n)).
+assumption.
+apply le_S_n.
+replace (S (pred (N - n))) with (N - n)%nat.
+apply le_trans with N.
+apply (fun p n m:nat => plus_le_reg_l n m p) with n.
+rewrite <- le_plus_minus.
+apply le_plus_r.
+apply le_trans with (pred N).
+assumption.
+apply le_pred_n.
+apply le_n_Sn.
+apply S_pred with 0%nat.
+apply plus_lt_reg_l with n.
+rewrite <- le_plus_minus.
+replace (n + 0)%nat with n; [ idtac | ring ].
+apply le_lt_trans with (pred N).
+assumption.
+apply lt_pred_n_n; assumption.
+apply le_trans with (pred N).
+assumption.
+apply le_pred_n.
+apply le_trans with (2 * S (S (n0 + n)))%nat.
+replace (2 * S (S (n0 + n)))%nat with (S (2 * S (n0 + n) + 1)).
+apply le_n_Sn.
+apply INR_eq; rewrite S_INR; rewrite plus_INR; do 2 rewrite mult_INR;
+ repeat rewrite S_INR; rewrite plus_INR; ring.
+apply (fun m n p:nat => mult_le_compat_l p n m).
+repeat apply le_n_S.
+apply plus_le_compat_r.
+apply le_trans with (pred (N - n)).
+assumption.
+apply le_S_n.
+replace (S (pred (N - n))) with (N - n)%nat.
+apply le_trans with N.
+apply (fun p n m:nat => plus_le_reg_l n m p) with n.
+rewrite <- le_plus_minus.
+apply le_plus_r.
+apply le_trans with (pred N).
+assumption.
+apply le_pred_n.
+apply le_n_Sn.
+apply S_pred with 0%nat.
+apply plus_lt_reg_l with n.
+rewrite <- le_plus_minus.
+replace (n + 0)%nat with n; [ idtac | ring ].
+apply le_lt_trans with (pred N).
+assumption.
+apply lt_pred_n_n; assumption.
+apply le_trans with (pred N).
+assumption.
+apply le_pred_n.
+apply INR_fact_neq_0.
+apply Rle_trans with
+ (sum_f_R0 (fun k:nat => INR N / INR (fact (S (S N))) * C ^ (4 * S N))
+ (pred N)).
+apply sum_Rle; intros.
+rewrite <-
+ (scal_sum (fun _:nat => C ^ (4 * S N)) (pred (N - n))
+ (Rsqr (/ INR (fact (S (S (N + n))))))).
+rewrite sum_cte.
+rewrite <- Rmult_assoc.
+do 2 rewrite <- (Rmult_comm (C ^ (4 * S N))).
+rewrite Rmult_assoc.
+apply Rmult_le_compat_l.
+apply pow_le.
+left; apply Rlt_le_trans with 1.
+apply Rlt_0_1.
+unfold C in |- *; apply RmaxLess1.
+apply Rle_trans with (Rsqr (/ INR (fact (S (S (N + n))))) * INR N).
+apply Rmult_le_compat_l.
+apply Rle_0_sqr.
+replace (S (pred (N - n))) with (N - n)%nat.
+apply le_INR.
+apply (fun p n m:nat => plus_le_reg_l n m p) with n.
+rewrite <- le_plus_minus.
+apply le_plus_r.
+apply le_trans with (pred N).
+assumption.
+apply le_pred_n.
+apply S_pred with 0%nat.
+apply plus_lt_reg_l with n.
+rewrite <- le_plus_minus.
+replace (n + 0)%nat with n; [ idtac | ring ].
+apply le_lt_trans with (pred N).
+assumption.
+apply lt_pred_n_n; assumption.
+apply le_trans with (pred N).
+assumption.
+apply le_pred_n.
+rewrite Rmult_comm; unfold Rdiv in |- *; apply Rmult_le_compat_l.
+apply pos_INR.
+apply Rle_trans with (/ INR (fact (S (S (N + n))))).
+pattern (/ INR (fact (S (S (N + n))))) at 2 in |- *; rewrite <- Rmult_1_r.
+unfold Rsqr in |- *.
+apply Rmult_le_compat_l.
+left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
+apply Rmult_le_reg_l with (INR (fact (S (S (N + n))))).
+apply INR_fact_lt_0.
+rewrite <- Rinv_r_sym.
+rewrite Rmult_1_r.
+replace 1 with (INR 1).
+apply le_INR.
+apply lt_le_S.
+apply INR_lt; apply INR_fact_lt_0.
+reflexivity.
+apply INR_fact_neq_0.
+apply Rmult_le_reg_l with (INR (fact (S (S (N + n))))).
+apply INR_fact_lt_0.
+rewrite <- Rinv_r_sym.
+apply Rmult_le_reg_l with (INR (fact (S (S N)))).
+apply INR_fact_lt_0.
+rewrite Rmult_1_r.
+rewrite (Rmult_comm (INR (fact (S (S N))))).
+rewrite Rmult_assoc.
+rewrite <- Rinv_l_sym.
+rewrite Rmult_1_r.
+apply le_INR.
+apply fact_le.
+repeat apply le_n_S.
+apply le_plus_l.
+apply INR_fact_neq_0.
+apply INR_fact_neq_0.
+rewrite sum_cte.
+apply Rle_trans with (C ^ (4 * S N) / INR (fact N)).
+rewrite <- (Rmult_comm (C ^ (4 * S N))).
+unfold Rdiv in |- *; rewrite Rmult_assoc; apply Rmult_le_compat_l.
+apply pow_le.
+left; apply Rlt_le_trans with 1.
+apply Rlt_0_1.
+unfold C in |- *; apply RmaxLess1.
+cut (S (pred N) = N).
+intro; rewrite H0.
+do 2 rewrite fact_simpl.
+repeat rewrite mult_INR.
+repeat rewrite Rinv_mult_distr.
+apply Rle_trans with
+ (INR (S (S N)) * (/ INR (S (S N)) * (/ INR (S N) * / INR (fact N))) * INR N).
+repeat rewrite Rmult_assoc.
+rewrite (Rmult_comm (INR N)).
+rewrite (Rmult_comm (INR (S (S N)))).
+apply Rmult_le_compat_l.
+repeat apply Rmult_le_pos.
+left; apply Rinv_0_lt_compat; apply lt_INR_0; apply lt_O_Sn.
+left; apply Rinv_0_lt_compat; apply lt_INR_0; apply lt_O_Sn.
+left; apply Rinv_0_lt_compat.
+apply INR_fact_lt_0.
+apply pos_INR.
+apply le_INR.
+apply le_trans with (S N); apply le_n_Sn.
+repeat rewrite <- Rmult_assoc.
+rewrite <- Rinv_r_sym.
+rewrite Rmult_1_l.
+apply Rle_trans with (/ INR (S N) * / INR (fact N) * INR (S N)).
+repeat rewrite Rmult_assoc.
+repeat apply Rmult_le_compat_l.
+left; apply Rinv_0_lt_compat; apply lt_INR_0; apply lt_O_Sn.
+left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
+apply le_INR; apply le_n_Sn.
+rewrite (Rmult_comm (/ INR (S N))).
+rewrite Rmult_assoc.
+rewrite <- Rinv_l_sym.
+rewrite Rmult_1_r; right; reflexivity.
+apply not_O_INR; discriminate.
+apply not_O_INR; discriminate.
+apply not_O_INR; discriminate.
+apply INR_fact_neq_0.
+apply not_O_INR; discriminate.
+apply prod_neq_R0; [ apply not_O_INR; discriminate | apply INR_fact_neq_0 ].
+symmetry in |- *; apply S_pred with 0%nat; assumption.
+right.
+unfold Majxy in |- *.
+unfold C in |- *.
+reflexivity.
+Qed.
+
+Lemma reste1_cv_R0 : forall x y:R, Un_cv (Reste1 x y) 0.
+intros.
+assert (H := Majxy_cv_R0 x y).
+unfold Un_cv in H; unfold R_dist in H.
+unfold Un_cv in |- *; unfold R_dist in |- *; intros.
+elim (H eps H0); intros N0 H1.
+exists (S N0); intros.
+unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r.
+apply Rle_lt_trans with (Rabs (Majxy x y (pred n))).
+rewrite (Rabs_right (Majxy x y (pred n))).
+apply reste1_maj.
+apply lt_le_trans with (S N0).
+apply lt_O_Sn.
+assumption.
+apply Rle_ge.
+unfold Majxy in |- *.
+unfold Rdiv in |- *; apply Rmult_le_pos.
+apply pow_le.
+apply Rle_trans with 1.
+left; apply Rlt_0_1.
+apply RmaxLess1.
+left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
+replace (Majxy x y (pred n)) with (Majxy x y (pred n) - 0); [ idtac | ring ].
+apply H1.
+unfold ge in |- *; apply le_S_n.
+replace (S (pred n)) with n.
+assumption.
+apply S_pred with 0%nat.
+apply lt_le_trans with (S N0); [ apply lt_O_Sn | assumption ].
+Qed.
+
+Lemma reste2_cv_R0 : forall x y:R, Un_cv (Reste2 x y) 0.
+intros.
+assert (H := Majxy_cv_R0 x y).
+unfold Un_cv in H; unfold R_dist in H.
+unfold Un_cv in |- *; unfold R_dist in |- *; intros.
+elim (H eps H0); intros N0 H1.
+exists (S N0); intros.
+unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r.
+apply Rle_lt_trans with (Rabs (Majxy x y n)).
+rewrite (Rabs_right (Majxy x y n)).
+apply reste2_maj.
+apply lt_le_trans with (S N0).
+apply lt_O_Sn.
+assumption.
+apply Rle_ge.
+unfold Majxy in |- *.
+unfold Rdiv in |- *; apply Rmult_le_pos.
+apply pow_le.
+apply Rle_trans with 1.
+left; apply Rlt_0_1.
+apply RmaxLess1.
+left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
+replace (Majxy x y n) with (Majxy x y n - 0); [ idtac | ring ].
+apply H1.
+unfold ge in |- *; apply le_trans with (S N0).
+apply le_n_Sn.
+exact H2.
+Qed.
+
+Lemma reste_cv_R0 : forall x y:R, Un_cv (Reste x y) 0.
+intros.
+unfold Reste in |- *.
+set (An := fun n:nat => Reste2 x y n).
+set (Bn := fun n:nat => Reste1 x y (S n)).
+cut
+ (Un_cv (fun n:nat => An n - Bn n) (0 - 0) ->
+ Un_cv (fun N:nat => Reste2 x y N - Reste1 x y (S N)) 0).
+intro.
+apply H.
+apply CV_minus.
+unfold An in |- *.
+replace (fun n:nat => Reste2 x y n) with (Reste2 x y).
+apply reste2_cv_R0.
+reflexivity.
+unfold Bn in |- *.
+assert (H0 := reste1_cv_R0 x y).
+unfold Un_cv in H0; unfold R_dist in H0.
+unfold Un_cv in |- *; unfold R_dist in |- *; intros.
+elim (H0 eps H1); intros N0 H2.
+exists N0; intros.
+apply H2.
+unfold ge in |- *; apply le_trans with (S N0).
+apply le_n_Sn.
+apply le_n_S; assumption.
+unfold An, Bn in |- *.
+intro.
+replace 0 with (0 - 0); [ idtac | ring ].
+exact H.
+Qed.
+
+Theorem cos_plus : forall x y:R, cos (x + y) = cos x * cos y - sin x * sin y.
+intros.
+cut (Un_cv (C1 x y) (cos x * cos y - sin x * sin y)).
+cut (Un_cv (C1 x y) (cos (x + y))).
+intros.
+apply UL_sequence with (C1 x y); assumption.
+apply C1_cvg.
+unfold Un_cv in |- *; unfold R_dist in |- *.
+intros.
+assert (H0 := A1_cvg x).
+assert (H1 := A1_cvg y).
+assert (H2 := B1_cvg x).
+assert (H3 := B1_cvg y).
+assert (H4 := CV_mult _ _ _ _ H0 H1).
+assert (H5 := CV_mult _ _ _ _ H2 H3).
+assert (H6 := reste_cv_R0 x y).
+unfold Un_cv in H4; unfold Un_cv in H5; unfold Un_cv in H6.
+unfold R_dist in H4; unfold R_dist in H5; unfold R_dist in H6.
+cut (0 < eps / 3);
+ [ intro
+ | unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ [ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ].
+elim (H4 (eps / 3) H7); intros N1 H8.
+elim (H5 (eps / 3) H7); intros N2 H9.
+elim (H6 (eps / 3) H7); intros N3 H10.
+set (N := S (S (max (max N1 N2) N3))).
+exists N.
+intros.
+cut (n = S (pred n)).
+intro; rewrite H12.
+rewrite <- cos_plus_form.
+rewrite <- H12.
+apply Rle_lt_trans with
+ (Rabs (A1 x n * A1 y n - cos x * cos y) +
+ Rabs (sin x * sin y - B1 x (pred n) * B1 y (pred n) + Reste x y (pred n))).
+replace
+ (A1 x n * A1 y n - B1 x (pred n) * B1 y (pred n) + Reste x y (pred n) -
+ (cos x * cos y - sin x * sin y)) with
+ (A1 x n * A1 y n - cos x * cos y +
+ (sin x * sin y - B1 x (pred n) * B1 y (pred n) + Reste x y (pred n)));
+ [ apply Rabs_triang | ring ].
+replace eps with (eps / 3 + (eps / 3 + eps / 3)).
+apply Rplus_lt_compat.
+apply H8.
+unfold ge in |- *; apply le_trans with N.
+unfold N in |- *.
+apply le_trans with (max N1 N2).
+apply le_max_l.
+apply le_trans with (max (max N1 N2) N3).
+apply le_max_l.
+apply le_trans with (S (max (max N1 N2) N3)); apply le_n_Sn.
+assumption.
+apply Rle_lt_trans with
+ (Rabs (sin x * sin y - B1 x (pred n) * B1 y (pred n)) +
+ Rabs (Reste x y (pred n))).
+apply Rabs_triang.
+apply Rplus_lt_compat.
+rewrite <- Rabs_Ropp.
+rewrite Ropp_minus_distr.
+apply H9.
+unfold ge in |- *; apply le_trans with (max N1 N2).
+apply le_max_r.
+apply le_S_n.
+rewrite <- H12.
+apply le_trans with N.
+unfold N in |- *.
+apply le_n_S.
+apply le_trans with (max (max N1 N2) N3).
+apply le_max_l.
+apply le_n_Sn.
+assumption.
+replace (Reste x y (pred n)) with (Reste x y (pred n) - 0).
+apply H10.
+unfold ge in |- *.
+apply le_S_n.
+rewrite <- H12.
+apply le_trans with N.
+unfold N in |- *.
+apply le_n_S.
+apply le_trans with (max (max N1 N2) N3).
+apply le_max_r.
+apply le_n_Sn.
+assumption.
+ring.
+pattern eps at 4 in |- *; replace eps with (3 * (eps / 3)).
+ring.
+unfold Rdiv in |- *.
+rewrite <- Rmult_assoc.
+apply Rinv_r_simpl_m.
+discrR.
+apply lt_le_trans with (pred N).
+unfold N in |- *; simpl in |- *; apply lt_O_Sn.
+apply le_S_n.
+rewrite <- H12.
+replace (S (pred N)) with N.
+assumption.
+unfold N in |- *; simpl in |- *; reflexivity.
+cut (0 < N)%nat.
+intro.
+cut (0 < n)%nat.
+intro.
+apply S_pred with 0%nat; assumption.
+apply lt_le_trans with N; assumption.
+unfold N in |- *; apply lt_O_Sn.
+Qed. \ No newline at end of file