summaryrefslogtreecommitdiff
path: root/theories/Reals/Cos_plus.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Cos_plus.v')
-rw-r--r--theories/Reals/Cos_plus.v194
1 files changed, 97 insertions, 97 deletions
diff --git a/theories/Reals/Cos_plus.v b/theories/Reals/Cos_plus.v
index ec1eeddf..c296d427 100644
--- a/theories/Reals/Cos_plus.v
+++ b/theories/Reals/Cos_plus.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -12,8 +12,8 @@ Require Import SeqSeries.
Require Import Rtrigo_def.
Require Import Cos_rel.
Require Import Max.
-Open Local Scope nat_scope.
-Open Local Scope R_scope.
+Local Open Scope nat_scope.
+Local Open Scope R_scope.
Definition Majxy (x y:R) (n:nat) : R :=
Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n) / INR (fact n).
@@ -29,23 +29,23 @@ Proof.
intro.
assert (H1 := cv_speed_pow_fact C0).
unfold Un_cv in H1; unfold R_dist in H1.
- unfold Un_cv in |- *; unfold R_dist in |- *; intros.
+ unfold Un_cv; unfold R_dist; intros.
cut (0 < eps / C0);
[ intro
- | unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ | unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; assumption ] ].
elim (H1 (eps / C0) H3); intros N0 H4.
exists N0; intros.
replace (Majxy x y n) with (C0 ^ S n / INR (fact n)).
- simpl in |- *.
+ simpl.
apply Rmult_lt_reg_l with (Rabs (/ C0)).
apply Rabs_pos_lt.
apply Rinv_neq_0_compat.
- red in |- *; intro; rewrite H6 in H0; elim (Rlt_irrefl _ H0).
+ red; intro; rewrite H6 in H0; elim (Rlt_irrefl _ H0).
rewrite <- Rabs_mult.
- unfold Rminus in |- *; rewrite Rmult_plus_distr_l.
+ unfold Rminus; rewrite Rmult_plus_distr_l.
rewrite Ropp_0; rewrite Rmult_0_r.
- unfold Rdiv in |- *; repeat rewrite <- Rmult_assoc.
+ unfold Rdiv; repeat rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
rewrite (Rabs_right (/ C0)).
@@ -54,15 +54,15 @@ Proof.
[ idtac | ring ].
unfold Rdiv in H4; apply H4; assumption.
apply Rle_ge; left; apply Rinv_0_lt_compat; assumption.
- red in |- *; intro; rewrite H6 in H0; elim (Rlt_irrefl _ H0).
- unfold Majxy in |- *.
- unfold C0 in |- *.
+ red; intro; rewrite H6 in H0; elim (Rlt_irrefl _ H0).
+ unfold Majxy.
+ unfold C0.
rewrite pow_mult.
- unfold C in |- *; reflexivity.
- unfold C0 in |- *; apply pow_lt; assumption.
+ unfold C; reflexivity.
+ unfold C0; apply pow_lt; assumption.
apply Rlt_le_trans with 1.
apply Rlt_0_1.
- unfold C in |- *.
+ unfold C.
apply RmaxLess1.
Qed.
@@ -72,7 +72,7 @@ Lemma reste1_maj :
Proof.
intros.
set (C := Rmax 1 (Rmax (Rabs x) (Rabs y))).
- unfold Reste1 in |- *.
+ unfold Reste1.
apply Rle_trans with
(sum_f_R0
(fun k:nat =>
@@ -120,7 +120,7 @@ Proof.
C ^ (2 * S (N + k))) (pred (N - k))) (pred N)).
apply sum_Rle; intros.
apply sum_Rle; intros.
- unfold Rdiv in |- *; repeat rewrite Rabs_mult.
+ unfold Rdiv; repeat rewrite Rabs_mult.
do 2 rewrite pow_1_abs.
do 2 rewrite Rmult_1_l.
rewrite (Rabs_right (/ INR (fact (2 * S (n0 + n))))).
@@ -142,7 +142,7 @@ Proof.
apply pow_incr.
split.
apply Rabs_pos.
- unfold C in |- *.
+ unfold C.
apply Rle_trans with (Rmax (Rabs x) (Rabs y)); apply RmaxLess2.
apply Rle_trans with (C ^ (2 * S (n0 + n)) * C ^ (2 * (N - n0))).
do 2 rewrite <- (Rmult_comm (C ^ (2 * (N - n0)))).
@@ -150,11 +150,11 @@ Proof.
apply pow_le.
apply Rle_trans with 1.
left; apply Rlt_0_1.
- unfold C in |- *; apply RmaxLess1.
+ unfold C; apply RmaxLess1.
apply pow_incr.
split.
apply Rabs_pos.
- unfold C in |- *; apply Rle_trans with (Rmax (Rabs x) (Rabs y)).
+ unfold C; apply Rle_trans with (Rmax (Rabs x) (Rabs y)).
apply RmaxLess1.
apply RmaxLess2.
right.
@@ -203,7 +203,7 @@ Proof.
left; apply Rinv_0_lt_compat.
rewrite mult_INR; apply Rmult_lt_0_compat; apply INR_fact_lt_0.
apply Rle_pow.
- unfold C in |- *; apply RmaxLess1.
+ unfold C; apply RmaxLess1.
replace (4 * N)%nat with (2 * (2 * N))%nat; [ idtac | ring ].
apply (fun m n p:nat => mult_le_compat_l p n m).
replace (2 * N)%nat with (S (N + pred N)).
@@ -223,33 +223,33 @@ Proof.
apply pow_le.
left; apply Rlt_le_trans with 1.
apply Rlt_0_1.
- unfold C in |- *; apply RmaxLess1.
+ unfold C; apply RmaxLess1.
replace (/ INR (fact (2 * S (n0 + n)) * fact (2 * (N - n0)))) with
(Binomial.C (2 * S (N + n)) (2 * S (n0 + n)) / INR (fact (2 * S (N + n)))).
apply Rle_trans with
(Binomial.C (2 * S (N + n)) (S (N + n)) / INR (fact (2 * S (N + n)))).
- unfold Rdiv in |- *;
+ unfold Rdiv;
do 2 rewrite <- (Rmult_comm (/ INR (fact (2 * S (N + n))))).
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
apply C_maj.
omega.
right.
- unfold Rdiv in |- *; rewrite Rmult_comm.
- unfold Binomial.C in |- *.
- unfold Rdiv in |- *; repeat rewrite <- Rmult_assoc.
+ unfold Rdiv; rewrite Rmult_comm.
+ unfold Binomial.C.
+ unfold Rdiv; repeat rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
replace (2 * S (N + n) - S (N + n))%nat with (S (N + n)).
rewrite Rinv_mult_distr.
- unfold Rsqr in |- *; reflexivity.
+ unfold Rsqr; reflexivity.
apply INR_fact_neq_0.
apply INR_fact_neq_0.
omega.
apply INR_fact_neq_0.
- unfold Rdiv in |- *; rewrite Rmult_comm.
- unfold Binomial.C in |- *.
- unfold Rdiv in |- *; repeat rewrite <- Rmult_assoc.
+ unfold Rdiv; rewrite Rmult_comm.
+ unfold Binomial.C.
+ unfold Rdiv; repeat rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
replace (2 * S (N + n) - 2 * S (n0 + n))%nat with (2 * (N - n0))%nat.
@@ -271,17 +271,17 @@ Proof.
apply pow_le.
left; apply Rlt_le_trans with 1.
apply Rlt_0_1.
- unfold C in |- *; apply RmaxLess1.
+ unfold C; apply RmaxLess1.
apply Rle_trans with (Rsqr (/ INR (fact (S (N + n)))) * INR N).
apply Rmult_le_compat_l.
apply Rle_0_sqr.
apply le_INR.
omega.
- rewrite Rmult_comm; unfold Rdiv in |- *; apply Rmult_le_compat_l.
+ rewrite Rmult_comm; unfold Rdiv; apply Rmult_le_compat_l.
apply pos_INR.
apply Rle_trans with (/ INR (fact (S (N + n)))).
- pattern (/ INR (fact (S (N + n)))) at 2 in |- *; rewrite <- Rmult_1_r.
- unfold Rsqr in |- *.
+ pattern (/ INR (fact (S (N + n)))) at 2; rewrite <- Rmult_1_r.
+ unfold Rsqr.
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
apply Rmult_le_reg_l with (INR (fact (S (N + n)))).
@@ -313,14 +313,14 @@ Proof.
rewrite sum_cte.
apply Rle_trans with (C ^ (4 * N) / INR (fact (pred N))).
rewrite <- (Rmult_comm (C ^ (4 * N))).
- unfold Rdiv in |- *; rewrite Rmult_assoc; apply Rmult_le_compat_l.
+ unfold Rdiv; rewrite Rmult_assoc; apply Rmult_le_compat_l.
apply pow_le.
left; apply Rlt_le_trans with 1.
apply Rlt_0_1.
- unfold C in |- *; apply RmaxLess1.
+ unfold C; apply RmaxLess1.
cut (S (pred N) = N).
intro; rewrite H0.
- pattern N at 2 in |- *; rewrite <- H0.
+ pattern N at 2; rewrite <- H0.
do 2 rewrite fact_simpl.
rewrite H0.
repeat rewrite mult_INR.
@@ -329,7 +329,7 @@ Proof.
repeat rewrite <- Rmult_assoc.
rewrite <- Rinv_r_sym.
rewrite Rmult_1_l.
- pattern (/ INR (fact (pred N))) at 2 in |- *; rewrite <- Rmult_1_r.
+ pattern (/ INR (fact (pred N))) at 2; rewrite <- Rmult_1_r.
rewrite Rmult_assoc.
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
@@ -340,19 +340,19 @@ Proof.
apply le_INR; apply le_n_Sn.
apply not_O_INR; discriminate.
apply not_O_INR.
- red in |- *; intro; rewrite H1 in H; elim (lt_irrefl _ H).
+ red; intro; rewrite H1 in H; elim (lt_irrefl _ H).
apply not_O_INR.
- red in |- *; intro; rewrite H1 in H; elim (lt_irrefl _ H).
+ red; intro; rewrite H1 in H; elim (lt_irrefl _ H).
apply INR_fact_neq_0.
apply not_O_INR; discriminate.
apply prod_neq_R0.
apply not_O_INR.
- red in |- *; intro; rewrite H1 in H; elim (lt_irrefl _ H).
+ red; intro; rewrite H1 in H; elim (lt_irrefl _ H).
apply INR_fact_neq_0.
- symmetry in |- *; apply S_pred with 0%nat; assumption.
+ symmetry ; apply S_pred with 0%nat; assumption.
right.
- unfold Majxy in |- *.
- unfold C in |- *.
+ unfold Majxy.
+ unfold C.
replace (S (pred N)) with N.
reflexivity.
apply S_pred with 0%nat; assumption.
@@ -363,7 +363,7 @@ Lemma reste2_maj :
Proof.
intros.
set (C := Rmax 1 (Rmax (Rabs x) (Rabs y))).
- unfold Reste2 in |- *.
+ unfold Reste2.
apply Rle_trans with
(sum_f_R0
(fun k:nat =>
@@ -415,7 +415,7 @@ Proof.
pred N)).
apply sum_Rle; intros.
apply sum_Rle; intros.
- unfold Rdiv in |- *; repeat rewrite Rabs_mult.
+ unfold Rdiv; repeat rewrite Rabs_mult.
do 2 rewrite pow_1_abs.
do 2 rewrite Rmult_1_l.
rewrite (Rabs_right (/ INR (fact (2 * S (n0 + n) + 1)))).
@@ -437,7 +437,7 @@ Proof.
apply pow_incr.
split.
apply Rabs_pos.
- unfold C in |- *.
+ unfold C.
apply Rle_trans with (Rmax (Rabs x) (Rabs y)); apply RmaxLess2.
apply Rle_trans with (C ^ (2 * S (n0 + n) + 1) * C ^ (2 * (N - n0) + 1)).
do 2 rewrite <- (Rmult_comm (C ^ (2 * (N - n0) + 1))).
@@ -445,11 +445,11 @@ Proof.
apply pow_le.
apply Rle_trans with 1.
left; apply Rlt_0_1.
- unfold C in |- *; apply RmaxLess1.
+ unfold C; apply RmaxLess1.
apply pow_incr.
split.
apply Rabs_pos.
- unfold C in |- *; apply Rle_trans with (Rmax (Rabs x) (Rabs y)).
+ unfold C; apply Rle_trans with (Rmax (Rabs x) (Rabs y)).
apply RmaxLess1.
apply RmaxLess2.
right.
@@ -477,7 +477,7 @@ Proof.
left; apply Rinv_0_lt_compat.
rewrite mult_INR; apply Rmult_lt_0_compat; apply INR_fact_lt_0.
apply Rle_pow.
- unfold C in |- *; apply RmaxLess1.
+ unfold C; apply RmaxLess1.
replace (4 * S N)%nat with (2 * (2 * S N))%nat; [ idtac | ring ].
apply (fun m n p:nat => mult_le_compat_l p n m).
replace (2 * S N)%nat with (S (S (N + N))).
@@ -500,14 +500,14 @@ Proof.
apply pow_le.
left; apply Rlt_le_trans with 1.
apply Rlt_0_1.
- unfold C in |- *; apply RmaxLess1.
+ unfold C; apply RmaxLess1.
replace (/ INR (fact (2 * S (n0 + n) + 1) * fact (2 * (N - n0) + 1))) with
(Binomial.C (2 * S (S (N + n))) (2 * S (n0 + n) + 1) /
INR (fact (2 * S (S (N + n))))).
apply Rle_trans with
(Binomial.C (2 * S (S (N + n))) (S (S (N + n))) /
INR (fact (2 * S (S (N + n))))).
- unfold Rdiv in |- *;
+ unfold Rdiv;
do 2 rewrite <- (Rmult_comm (/ INR (fact (2 * S (S (N + n)))))).
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
@@ -518,21 +518,21 @@ Proof.
ring.
omega.
right.
- unfold Rdiv in |- *; rewrite Rmult_comm.
- unfold Binomial.C in |- *.
- unfold Rdiv in |- *; repeat rewrite <- Rmult_assoc.
+ unfold Rdiv; rewrite Rmult_comm.
+ unfold Binomial.C.
+ unfold Rdiv; repeat rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
replace (2 * S (S (N + n)) - S (S (N + n)))%nat with (S (S (N + n))).
rewrite Rinv_mult_distr.
- unfold Rsqr in |- *; reflexivity.
+ unfold Rsqr; reflexivity.
apply INR_fact_neq_0.
apply INR_fact_neq_0.
omega.
apply INR_fact_neq_0.
- unfold Rdiv in |- *; rewrite Rmult_comm.
- unfold Binomial.C in |- *.
- unfold Rdiv in |- *; repeat rewrite <- Rmult_assoc.
+ unfold Rdiv; rewrite Rmult_comm.
+ unfold Binomial.C.
+ unfold Rdiv; repeat rewrite <- Rmult_assoc.
rewrite <- Rinv_l_sym.
rewrite Rmult_1_l.
replace (2 * S (S (N + n)) - (2 * S (n0 + n) + 1))%nat with
@@ -556,7 +556,7 @@ Proof.
apply pow_le.
left; apply Rlt_le_trans with 1.
apply Rlt_0_1.
- unfold C in |- *; apply RmaxLess1.
+ unfold C; apply RmaxLess1.
apply Rle_trans with (Rsqr (/ INR (fact (S (S (N + n))))) * INR N).
apply Rmult_le_compat_l.
apply Rle_0_sqr.
@@ -564,11 +564,11 @@ Proof.
apply le_INR.
omega.
omega.
- rewrite Rmult_comm; unfold Rdiv in |- *; apply Rmult_le_compat_l.
+ rewrite Rmult_comm; unfold Rdiv; apply Rmult_le_compat_l.
apply pos_INR.
apply Rle_trans with (/ INR (fact (S (S (N + n))))).
- pattern (/ INR (fact (S (S (N + n))))) at 2 in |- *; rewrite <- Rmult_1_r.
- unfold Rsqr in |- *.
+ pattern (/ INR (fact (S (S (N + n))))) at 2; rewrite <- Rmult_1_r.
+ unfold Rsqr.
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
apply Rmult_le_reg_l with (INR (fact (S (S (N + n))))).
@@ -599,11 +599,11 @@ Proof.
rewrite sum_cte.
apply Rle_trans with (C ^ (4 * S N) / INR (fact N)).
rewrite <- (Rmult_comm (C ^ (4 * S N))).
- unfold Rdiv in |- *; rewrite Rmult_assoc; apply Rmult_le_compat_l.
+ unfold Rdiv; rewrite Rmult_assoc; apply Rmult_le_compat_l.
apply pow_le.
left; apply Rlt_le_trans with 1.
apply Rlt_0_1.
- unfold C in |- *; apply RmaxLess1.
+ unfold C; apply RmaxLess1.
cut (S (pred N) = N).
intro; rewrite H0.
do 2 rewrite fact_simpl.
@@ -642,10 +642,10 @@ Proof.
apply INR_fact_neq_0.
apply not_O_INR; discriminate.
apply prod_neq_R0; [ apply not_O_INR; discriminate | apply INR_fact_neq_0 ].
- symmetry in |- *; apply S_pred with 0%nat; assumption.
+ symmetry ; apply S_pred with 0%nat; assumption.
right.
- unfold Majxy in |- *.
- unfold C in |- *.
+ unfold Majxy.
+ unfold C.
reflexivity.
Qed.
@@ -654,10 +654,10 @@ Proof.
intros.
assert (H := Majxy_cv_R0 x y).
unfold Un_cv in H; unfold R_dist in H.
- unfold Un_cv in |- *; unfold R_dist in |- *; intros.
+ unfold Un_cv; unfold R_dist; intros.
elim (H eps H0); intros N0 H1.
exists (S N0); intros.
- unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r.
+ unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r.
apply Rle_lt_trans with (Rabs (Majxy x y (pred n))).
rewrite (Rabs_right (Majxy x y (pred n))).
apply reste1_maj.
@@ -665,8 +665,8 @@ Proof.
apply lt_O_Sn.
assumption.
apply Rle_ge.
- unfold Majxy in |- *.
- unfold Rdiv in |- *; apply Rmult_le_pos.
+ unfold Majxy.
+ unfold Rdiv; apply Rmult_le_pos.
apply pow_le.
apply Rle_trans with 1.
left; apply Rlt_0_1.
@@ -674,7 +674,7 @@ Proof.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
replace (Majxy x y (pred n)) with (Majxy x y (pred n) - 0); [ idtac | ring ].
apply H1.
- unfold ge in |- *; apply le_S_n.
+ unfold ge; apply le_S_n.
replace (S (pred n)) with n.
assumption.
apply S_pred with 0%nat.
@@ -686,10 +686,10 @@ Proof.
intros.
assert (H := Majxy_cv_R0 x y).
unfold Un_cv in H; unfold R_dist in H.
- unfold Un_cv in |- *; unfold R_dist in |- *; intros.
+ unfold Un_cv; unfold R_dist; intros.
elim (H eps H0); intros N0 H1.
exists (S N0); intros.
- unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r.
+ unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r.
apply Rle_lt_trans with (Rabs (Majxy x y n)).
rewrite (Rabs_right (Majxy x y n)).
apply reste2_maj.
@@ -697,8 +697,8 @@ Proof.
apply lt_O_Sn.
assumption.
apply Rle_ge.
- unfold Majxy in |- *.
- unfold Rdiv in |- *; apply Rmult_le_pos.
+ unfold Majxy.
+ unfold Rdiv; apply Rmult_le_pos.
apply pow_le.
apply Rle_trans with 1.
left; apply Rlt_0_1.
@@ -706,7 +706,7 @@ Proof.
left; apply Rinv_0_lt_compat; apply INR_fact_lt_0.
replace (Majxy x y n) with (Majxy x y n - 0); [ idtac | ring ].
apply H1.
- unfold ge in |- *; apply le_trans with (S N0).
+ unfold ge; apply le_trans with (S N0).
apply le_n_Sn.
exact H2.
Qed.
@@ -714,7 +714,7 @@ Qed.
Lemma reste_cv_R0 : forall x y:R, Un_cv (Reste x y) 0.
Proof.
intros.
- unfold Reste in |- *.
+ unfold Reste.
set (An := fun n:nat => Reste2 x y n).
set (Bn := fun n:nat => Reste1 x y (S n)).
cut
@@ -723,21 +723,21 @@ Proof.
intro.
apply H.
apply CV_minus.
- unfold An in |- *.
+ unfold An.
replace (fun n:nat => Reste2 x y n) with (Reste2 x y).
apply reste2_cv_R0.
reflexivity.
- unfold Bn in |- *.
+ unfold Bn.
assert (H0 := reste1_cv_R0 x y).
unfold Un_cv in H0; unfold R_dist in H0.
- unfold Un_cv in |- *; unfold R_dist in |- *; intros.
+ unfold Un_cv; unfold R_dist; intros.
elim (H0 eps H1); intros N0 H2.
exists N0; intros.
apply H2.
- unfold ge in |- *; apply le_trans with (S N0).
+ unfold ge; apply le_trans with (S N0).
apply le_n_Sn.
apply le_n_S; assumption.
- unfold An, Bn in |- *.
+ unfold An, Bn.
intro.
replace 0 with (0 - 0); [ idtac | ring ].
exact H.
@@ -751,7 +751,7 @@ Proof.
intros.
apply UL_sequence with (C1 x y); assumption.
apply C1_cvg.
- unfold Un_cv in |- *; unfold R_dist in |- *.
+ unfold Un_cv; unfold R_dist.
intros.
assert (H0 := A1_cvg x).
assert (H1 := A1_cvg y).
@@ -764,7 +764,7 @@ Proof.
unfold R_dist in H4; unfold R_dist in H5; unfold R_dist in H6.
cut (0 < eps / 3);
[ intro
- | unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ | unfold Rdiv; apply Rmult_lt_0_compat;
[ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ].
elim (H4 (eps / 3) H7); intros N1 H8.
elim (H5 (eps / 3) H7); intros N2 H9.
@@ -788,8 +788,8 @@ Proof.
replace eps with (eps / 3 + (eps / 3 + eps / 3)).
apply Rplus_lt_compat.
apply H8.
- unfold ge in |- *; apply le_trans with N.
- unfold N in |- *.
+ unfold ge; apply le_trans with N.
+ unfold N.
apply le_trans with (max N1 N2).
apply le_max_l.
apply le_trans with (max (max N1 N2) N3).
@@ -804,12 +804,12 @@ Proof.
rewrite <- Rabs_Ropp.
rewrite Ropp_minus_distr.
apply H9.
- unfold ge in |- *; apply le_trans with (max N1 N2).
+ unfold ge; apply le_trans with (max N1 N2).
apply le_max_r.
apply le_S_n.
rewrite <- H12.
apply le_trans with N.
- unfold N in |- *.
+ unfold N.
apply le_n_S.
apply le_trans with (max (max N1 N2) N3).
apply le_max_l.
@@ -817,35 +817,35 @@ Proof.
assumption.
replace (Reste x y (pred n)) with (Reste x y (pred n) - 0).
apply H10.
- unfold ge in |- *.
+ unfold ge.
apply le_S_n.
rewrite <- H12.
apply le_trans with N.
- unfold N in |- *.
+ unfold N.
apply le_n_S.
apply le_trans with (max (max N1 N2) N3).
apply le_max_r.
apply le_n_Sn.
assumption.
ring.
- pattern eps at 4 in |- *; replace eps with (3 * (eps / 3)).
+ pattern eps at 4; replace eps with (3 * (eps / 3)).
ring.
- unfold Rdiv in |- *.
+ unfold Rdiv.
rewrite <- Rmult_assoc.
apply Rinv_r_simpl_m.
discrR.
apply lt_le_trans with (pred N).
- unfold N in |- *; simpl in |- *; apply lt_O_Sn.
+ unfold N; simpl; apply lt_O_Sn.
apply le_S_n.
rewrite <- H12.
replace (S (pred N)) with N.
assumption.
- unfold N in |- *; simpl in |- *; reflexivity.
+ unfold N; simpl; reflexivity.
cut (0 < N)%nat.
intro.
cut (0 < n)%nat.
intro.
apply S_pred with 0%nat; assumption.
apply lt_le_trans with N; assumption.
- unfold N in |- *; apply lt_O_Sn.
+ unfold N; apply lt_O_Sn.
Qed.