summaryrefslogtreecommitdiff
path: root/theories/Reals/Cauchy_prod.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Cauchy_prod.v')
-rw-r--r--theories/Reals/Cauchy_prod.v6
1 files changed, 3 insertions, 3 deletions
diff --git a/theories/Reals/Cauchy_prod.v b/theories/Reals/Cauchy_prod.v
index 37429a90..6ea0767d 100644
--- a/theories/Reals/Cauchy_prod.v
+++ b/theories/Reals/Cauchy_prod.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
- (*i $Id: Cauchy_prod.v 9245 2006-10-17 12:53:34Z notin $ i*)
+ (*i $Id$ i*)
Require Import Rbase.
Require Import Rfunctions.
@@ -47,7 +47,7 @@ Theorem cauchy_finite :
sum_f_R0
(fun k:nat =>
sum_f_R0 (fun l:nat => An (S (l + k)) * Bn (N - l)%nat)
- (pred (N - k))) (pred N).
+ (pred (N - k))) (pred N).
Proof.
intros; induction N as [| N HrecN].
elim (lt_irrefl _ H).
@@ -124,7 +124,7 @@ Proof.
(fun k:nat =>
sum_f_R0 (fun l:nat => An (S (S (l + k))) * Bn (N - l)%nat)
(pred (pred (N - k)))) (pred (pred N)));
- set (Z2 := sum_f_R0 (fun i:nat => Bn (S i)) (pred N));
+ set (Z2 := sum_f_R0 (fun i:nat => Bn (S i)) (pred N));
ring.
rewrite
(sum_N_predN