summaryrefslogtreecommitdiff
path: root/theories/Reals/Binomial.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Binomial.v')
-rw-r--r--theories/Reals/Binomial.v204
1 files changed, 204 insertions, 0 deletions
diff --git a/theories/Reals/Binomial.v b/theories/Reals/Binomial.v
new file mode 100644
index 00000000..e31b623c
--- /dev/null
+++ b/theories/Reals/Binomial.v
@@ -0,0 +1,204 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Binomial.v,v 1.9.2.1 2004/07/16 19:31:10 herbelin Exp $ i*)
+
+Require Import Rbase.
+Require Import Rfunctions.
+Require Import PartSum.
+Open Local Scope R_scope.
+
+Definition C (n p:nat) : R :=
+ INR (fact n) / (INR (fact p) * INR (fact (n - p))).
+
+Lemma pascal_step1 : forall n i:nat, (i <= n)%nat -> C n i = C n (n - i).
+intros; unfold C in |- *; replace (n - (n - i))%nat with i.
+rewrite Rmult_comm.
+reflexivity.
+apply plus_minus; rewrite plus_comm; apply le_plus_minus; assumption.
+Qed.
+
+Lemma pascal_step2 :
+ forall n i:nat,
+ (i <= n)%nat -> C (S n) i = INR (S n) / INR (S n - i) * C n i.
+intros; unfold C in |- *; replace (S n - i)%nat with (S (n - i)).
+cut (forall n:nat, fact (S n) = (S n * fact n)%nat).
+intro; repeat rewrite H0.
+unfold Rdiv in |- *; repeat rewrite mult_INR; repeat rewrite Rinv_mult_distr.
+ring.
+apply INR_fact_neq_0.
+apply INR_fact_neq_0.
+apply not_O_INR; discriminate.
+apply INR_fact_neq_0.
+apply INR_fact_neq_0.
+apply prod_neq_R0.
+apply not_O_INR; discriminate.
+apply INR_fact_neq_0.
+intro; reflexivity.
+apply minus_Sn_m; assumption.
+Qed.
+
+Lemma pascal_step3 :
+ forall n i:nat, (i < n)%nat -> C n (S i) = INR (n - i) / INR (S i) * C n i.
+intros; unfold C in |- *.
+cut (forall n:nat, fact (S n) = (S n * fact n)%nat).
+intro.
+cut ((n - i)%nat = S (n - S i)).
+intro.
+pattern (n - i)%nat at 2 in |- *; rewrite H1.
+repeat rewrite H0; unfold Rdiv in |- *; repeat rewrite mult_INR;
+ repeat rewrite Rinv_mult_distr.
+rewrite <- H1; rewrite (Rmult_comm (/ INR (n - i)));
+ repeat rewrite Rmult_assoc; rewrite (Rmult_comm (INR (n - i)));
+ repeat rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
+ring.
+apply not_O_INR; apply minus_neq_O; assumption.
+apply not_O_INR; discriminate.
+apply INR_fact_neq_0.
+apply INR_fact_neq_0.
+apply prod_neq_R0; [ apply not_O_INR; discriminate | apply INR_fact_neq_0 ].
+apply not_O_INR; discriminate.
+apply INR_fact_neq_0.
+apply prod_neq_R0; [ apply not_O_INR; discriminate | apply INR_fact_neq_0 ].
+apply INR_fact_neq_0.
+rewrite minus_Sn_m.
+simpl in |- *; reflexivity.
+apply lt_le_S; assumption.
+intro; reflexivity.
+Qed.
+
+(**********)
+Lemma pascal :
+ forall n i:nat, (i < n)%nat -> C n i + C n (S i) = C (S n) (S i).
+intros.
+rewrite pascal_step3; [ idtac | assumption ].
+replace (C n i + INR (n - i) / INR (S i) * C n i) with
+ (C n i * (1 + INR (n - i) / INR (S i))); [ idtac | ring ].
+replace (1 + INR (n - i) / INR (S i)) with (INR (S n) / INR (S i)).
+rewrite pascal_step1.
+rewrite Rmult_comm; replace (S i) with (S n - (n - i))%nat.
+rewrite <- pascal_step2.
+apply pascal_step1.
+apply le_trans with n.
+apply le_minusni_n.
+apply lt_le_weak; assumption.
+apply le_n_Sn.
+apply le_minusni_n.
+apply lt_le_weak; assumption.
+rewrite <- minus_Sn_m.
+cut ((n - (n - i))%nat = i).
+intro; rewrite H0; reflexivity.
+symmetry in |- *; apply plus_minus.
+rewrite plus_comm; rewrite le_plus_minus_r.
+reflexivity.
+apply lt_le_weak; assumption.
+apply le_minusni_n; apply lt_le_weak; assumption.
+apply lt_le_weak; assumption.
+unfold Rdiv in |- *.
+repeat rewrite S_INR.
+rewrite minus_INR.
+cut (INR i + 1 <> 0).
+intro.
+apply Rmult_eq_reg_l with (INR i + 1); [ idtac | assumption ].
+rewrite Rmult_plus_distr_l.
+rewrite Rmult_1_r.
+do 2 rewrite (Rmult_comm (INR i + 1)).
+repeat rewrite Rmult_assoc.
+rewrite <- Rinv_l_sym; [ idtac | assumption ].
+ring.
+rewrite <- S_INR.
+apply not_O_INR; discriminate.
+apply lt_le_weak; assumption.
+Qed.
+
+(*********************)
+(*********************)
+Lemma binomial :
+ forall (x y:R) (n:nat),
+ (x + y) ^ n = sum_f_R0 (fun i:nat => C n i * x ^ i * y ^ (n - i)) n.
+intros; induction n as [| n Hrecn].
+unfold C in |- *; simpl in |- *; unfold Rdiv in |- *;
+ repeat rewrite Rmult_1_r; rewrite Rinv_1; ring.
+pattern (S n) at 1 in |- *; replace (S n) with (n + 1)%nat; [ idtac | ring ].
+rewrite pow_add; rewrite Hrecn.
+replace ((x + y) ^ 1) with (x + y); [ idtac | simpl in |- *; ring ].
+rewrite tech5.
+cut (forall p:nat, C p p = 1).
+cut (forall p:nat, C p 0 = 1).
+intros; rewrite H0; rewrite <- minus_n_n; rewrite Rmult_1_l.
+replace (y ^ 0) with 1; [ rewrite Rmult_1_r | simpl in |- *; reflexivity ].
+induction n as [| n Hrecn0].
+simpl in |- *; do 2 rewrite H; ring.
+(* N >= 1 *)
+set (N := S n).
+rewrite Rmult_plus_distr_l.
+replace (sum_f_R0 (fun i:nat => C N i * x ^ i * y ^ (N - i)) N * x) with
+ (sum_f_R0 (fun i:nat => C N i * x ^ S i * y ^ (N - i)) N).
+replace (sum_f_R0 (fun i:nat => C N i * x ^ i * y ^ (N - i)) N * y) with
+ (sum_f_R0 (fun i:nat => C N i * x ^ i * y ^ (S N - i)) N).
+rewrite (decomp_sum (fun i:nat => C (S N) i * x ^ i * y ^ (S N - i)) N).
+rewrite H; replace (x ^ 0) with 1; [ idtac | reflexivity ].
+do 2 rewrite Rmult_1_l.
+replace (S N - 0)%nat with (S N); [ idtac | reflexivity ].
+set (An := fun i:nat => C N i * x ^ S i * y ^ (N - i)).
+set (Bn := fun i:nat => C N (S i) * x ^ S i * y ^ (N - i)).
+replace (pred N) with n.
+replace (sum_f_R0 (fun i:nat => C (S N) (S i) * x ^ S i * y ^ (S N - S i)) n)
+ with (sum_f_R0 (fun i:nat => An i + Bn i) n).
+rewrite plus_sum.
+replace (x ^ S N) with (An (S n)).
+rewrite (Rplus_comm (sum_f_R0 An n)).
+repeat rewrite Rplus_assoc.
+rewrite <- tech5.
+fold N in |- *.
+set (Cn := fun i:nat => C N i * x ^ i * y ^ (S N - i)).
+cut (forall i:nat, (i < N)%nat -> Cn (S i) = Bn i).
+intro; replace (sum_f_R0 Bn n) with (sum_f_R0 (fun i:nat => Cn (S i)) n).
+replace (y ^ S N) with (Cn 0%nat).
+rewrite <- Rplus_assoc; rewrite (decomp_sum Cn N).
+replace (pred N) with n.
+ring.
+unfold N in |- *; simpl in |- *; reflexivity.
+unfold N in |- *; apply lt_O_Sn.
+unfold Cn in |- *; rewrite H; simpl in |- *; ring.
+apply sum_eq.
+intros; apply H1.
+unfold N in |- *; apply le_lt_trans with n; [ assumption | apply lt_n_Sn ].
+intros; unfold Bn, Cn in |- *.
+replace (S N - S i)%nat with (N - i)%nat; reflexivity.
+unfold An in |- *; fold N in |- *; rewrite <- minus_n_n; rewrite H0;
+ simpl in |- *; ring.
+apply sum_eq.
+intros; unfold An, Bn in |- *; replace (S N - S i)%nat with (N - i)%nat;
+ [ idtac | reflexivity ].
+rewrite <- pascal;
+ [ ring
+ | apply le_lt_trans with n; [ assumption | unfold N in |- *; apply lt_n_Sn ] ].
+unfold N in |- *; reflexivity.
+unfold N in |- *; apply lt_O_Sn.
+rewrite <- (Rmult_comm y); rewrite scal_sum; apply sum_eq.
+intros; replace (S N - i)%nat with (S (N - i)).
+replace (S (N - i)) with (N - i + 1)%nat; [ idtac | ring ].
+rewrite pow_add; replace (y ^ 1) with y; [ idtac | simpl in |- *; ring ];
+ ring.
+apply minus_Sn_m; assumption.
+rewrite <- (Rmult_comm x); rewrite scal_sum; apply sum_eq.
+intros; replace (S i) with (i + 1)%nat; [ idtac | ring ]; rewrite pow_add;
+ replace (x ^ 1) with x; [ idtac | simpl in |- *; ring ];
+ ring.
+intro; unfold C in |- *.
+replace (INR (fact 0)) with 1; [ idtac | reflexivity ].
+replace (p - 0)%nat with p; [ idtac | apply minus_n_O ].
+rewrite Rmult_1_l; unfold Rdiv in |- *; rewrite <- Rinv_r_sym;
+ [ reflexivity | apply INR_fact_neq_0 ].
+intro; unfold C in |- *.
+replace (p - p)%nat with 0%nat; [ idtac | apply minus_n_n ].
+replace (INR (fact 0)) with 1; [ idtac | reflexivity ].
+rewrite Rmult_1_r; unfold Rdiv in |- *; rewrite <- Rinv_r_sym;
+ [ reflexivity | apply INR_fact_neq_0 ].
+Qed. \ No newline at end of file