summaryrefslogtreecommitdiff
path: root/theories/Reals/ArithProp.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/ArithProp.v')
-rw-r--r--theories/Reals/ArithProp.v178
1 files changed, 178 insertions, 0 deletions
diff --git a/theories/Reals/ArithProp.v b/theories/Reals/ArithProp.v
new file mode 100644
index 00000000..ad535a9d
--- /dev/null
+++ b/theories/Reals/ArithProp.v
@@ -0,0 +1,178 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: ArithProp.v,v 1.11.2.1 2004/07/16 19:31:10 herbelin Exp $ i*)
+
+Require Import Rbase.
+Require Import Rbasic_fun.
+Require Import Even.
+Require Import Div2.
+Open Local Scope Z_scope.
+Open Local Scope R_scope.
+
+Lemma minus_neq_O : forall n i:nat, (i < n)%nat -> (n - i)%nat <> 0%nat.
+intros; red in |- *; intro.
+cut (forall n m:nat, (m <= n)%nat -> (n - m)%nat = 0%nat -> n = m).
+intro; assert (H2 := H1 _ _ (lt_le_weak _ _ H) H0); rewrite H2 in H;
+ elim (lt_irrefl _ H).
+set (R := fun n m:nat => (m <= n)%nat -> (n - m)%nat = 0%nat -> n = m).
+cut
+ ((forall n m:nat, R n m) ->
+ forall n0 m:nat, (m <= n0)%nat -> (n0 - m)%nat = 0%nat -> n0 = m).
+intro; apply H1.
+apply nat_double_ind.
+unfold R in |- *; intros; inversion H2; reflexivity.
+unfold R in |- *; intros; simpl in H3; assumption.
+unfold R in |- *; intros; simpl in H4; assert (H5 := le_S_n _ _ H3);
+ assert (H6 := H2 H5 H4); rewrite H6; reflexivity.
+unfold R in |- *; intros; apply H1; assumption.
+Qed.
+
+Lemma le_minusni_n : forall n i:nat, (i <= n)%nat -> (n - i <= n)%nat.
+set (R := fun m n:nat => (n <= m)%nat -> (m - n <= m)%nat).
+cut
+ ((forall m n:nat, R m n) -> forall n i:nat, (i <= n)%nat -> (n - i <= n)%nat).
+intro; apply H.
+apply nat_double_ind.
+unfold R in |- *; intros; simpl in |- *; apply le_n.
+unfold R in |- *; intros; simpl in |- *; apply le_n.
+unfold R in |- *; intros; simpl in |- *; apply le_trans with n.
+apply H0; apply le_S_n; assumption.
+apply le_n_Sn.
+unfold R in |- *; intros; apply H; assumption.
+Qed.
+
+Lemma lt_minus_O_lt : forall m n:nat, (m < n)%nat -> (0 < n - m)%nat.
+intros n m; pattern n, m in |- *; apply nat_double_ind;
+ [ intros; rewrite <- minus_n_O; assumption
+ | intros; elim (lt_n_O _ H)
+ | intros; simpl in |- *; apply H; apply lt_S_n; assumption ].
+Qed.
+
+Lemma even_odd_cor :
+ forall n:nat, exists p : nat, n = (2 * p)%nat \/ n = S (2 * p).
+intro.
+assert (H := even_or_odd n).
+exists (div2 n).
+assert (H0 := even_odd_double n).
+elim H0; intros.
+elim H1; intros H3 _.
+elim H2; intros H4 _.
+replace (2 * div2 n)%nat with (double (div2 n)).
+elim H; intro.
+left.
+apply H3; assumption.
+right.
+apply H4; assumption.
+unfold double in |- *; ring.
+Qed.
+
+(* 2m <= 2n => m<=n *)
+Lemma le_double : forall m n:nat, (2 * m <= 2 * n)%nat -> (m <= n)%nat.
+intros; apply INR_le.
+assert (H1 := le_INR _ _ H).
+do 2 rewrite mult_INR in H1.
+apply Rmult_le_reg_l with (INR 2).
+replace (INR 2) with 2; [ prove_sup0 | reflexivity ].
+assumption.
+Qed.
+
+(* Here, we have the euclidian division *)
+(* This lemma is used in the proof of sin_eq_0 : (sin x)=0<->x=kPI *)
+Lemma euclidian_division :
+ forall x y:R,
+ y <> 0 ->
+ exists k : Z, (exists r : R, x = IZR k * y + r /\ 0 <= r < Rabs y).
+intros.
+set
+ (k0 :=
+ match Rcase_abs y with
+ | left _ => (1 - up (x / - y))%Z
+ | right _ => (up (x / y) - 1)%Z
+ end).
+exists k0.
+exists (x - IZR k0 * y).
+split.
+ring.
+unfold k0 in |- *; case (Rcase_abs y); intro.
+assert (H0 := archimed (x / - y)); rewrite <- Z_R_minus; simpl in |- *;
+ unfold Rminus in |- *.
+replace (- ((1 + - IZR (up (x / - y))) * y)) with
+ ((IZR (up (x / - y)) - 1) * y); [ idtac | ring ].
+split.
+apply Rmult_le_reg_l with (/ - y).
+apply Rinv_0_lt_compat; apply Ropp_0_gt_lt_contravar; exact r.
+rewrite Rmult_0_r; rewrite (Rmult_comm (/ - y)); rewrite Rmult_plus_distr_r;
+ rewrite <- Ropp_inv_permute; [ idtac | assumption ].
+rewrite Rmult_assoc; repeat rewrite Ropp_mult_distr_r_reverse;
+ rewrite <- Rinv_r_sym; [ rewrite Rmult_1_r | assumption ].
+apply Rplus_le_reg_l with (IZR (up (x / - y)) - x / - y).
+rewrite Rplus_0_r; unfold Rdiv in |- *; pattern (/ - y) at 4 in |- *;
+ rewrite <- Ropp_inv_permute; [ idtac | assumption ].
+replace
+ (IZR (up (x * / - y)) - x * - / y +
+ (- (x * / y) + - (IZR (up (x * / - y)) - 1))) with 1;
+ [ idtac | ring ].
+elim H0; intros _ H1; unfold Rdiv in H1; exact H1.
+rewrite (Rabs_left _ r); apply Rmult_lt_reg_l with (/ - y).
+apply Rinv_0_lt_compat; apply Ropp_0_gt_lt_contravar; exact r.
+rewrite <- Rinv_l_sym.
+rewrite (Rmult_comm (/ - y)); rewrite Rmult_plus_distr_r;
+ rewrite <- Ropp_inv_permute; [ idtac | assumption ].
+rewrite Rmult_assoc; repeat rewrite Ropp_mult_distr_r_reverse;
+ rewrite <- Rinv_r_sym; [ rewrite Rmult_1_r | assumption ];
+ apply Rplus_lt_reg_r with (IZR (up (x / - y)) - 1).
+replace (IZR (up (x / - y)) - 1 + 1) with (IZR (up (x / - y)));
+ [ idtac | ring ].
+replace (IZR (up (x / - y)) - 1 + (- (x * / y) + - (IZR (up (x / - y)) - 1)))
+ with (- (x * / y)); [ idtac | ring ].
+rewrite <- Ropp_mult_distr_r_reverse; rewrite (Ropp_inv_permute _ H); elim H0;
+ unfold Rdiv in |- *; intros H1 _; exact H1.
+apply Ropp_neq_0_compat; assumption.
+assert (H0 := archimed (x / y)); rewrite <- Z_R_minus; simpl in |- *;
+ cut (0 < y).
+intro; unfold Rminus in |- *;
+ replace (- ((IZR (up (x / y)) + -1) * y)) with ((1 - IZR (up (x / y))) * y);
+ [ idtac | ring ].
+split.
+apply Rmult_le_reg_l with (/ y).
+apply Rinv_0_lt_compat; assumption.
+rewrite Rmult_0_r; rewrite (Rmult_comm (/ y)); rewrite Rmult_plus_distr_r;
+ rewrite Rmult_assoc; rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_r | assumption ];
+ apply Rplus_le_reg_l with (IZR (up (x / y)) - x / y);
+ rewrite Rplus_0_r; unfold Rdiv in |- *;
+ replace
+ (IZR (up (x * / y)) - x * / y + (x * / y + (1 - IZR (up (x * / y))))) with
+ 1; [ idtac | ring ]; elim H0; intros _ H2; unfold Rdiv in H2;
+ exact H2.
+rewrite (Rabs_right _ r); apply Rmult_lt_reg_l with (/ y).
+apply Rinv_0_lt_compat; assumption.
+rewrite <- (Rinv_l_sym _ H); rewrite (Rmult_comm (/ y));
+ rewrite Rmult_plus_distr_r; rewrite Rmult_assoc; rewrite <- Rinv_r_sym;
+ [ rewrite Rmult_1_r | assumption ];
+ apply Rplus_lt_reg_r with (IZR (up (x / y)) - 1);
+ replace (IZR (up (x / y)) - 1 + 1) with (IZR (up (x / y)));
+ [ idtac | ring ];
+ replace (IZR (up (x / y)) - 1 + (x * / y + (1 - IZR (up (x / y))))) with
+ (x * / y); [ idtac | ring ]; elim H0; unfold Rdiv in |- *;
+ intros H2 _; exact H2.
+case (total_order_T 0 y); intro.
+elim s; intro.
+assumption.
+elim H; symmetry in |- *; exact b.
+assert (H1 := Rge_le _ _ r); elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H1 r0)).
+Qed.
+
+Lemma tech8 : forall n i:nat, (n <= S n + i)%nat.
+intros; induction i as [| i Hreci].
+replace (S n + 0)%nat with (S n); [ apply le_n_Sn | ring ].
+replace (S n + S i)%nat with (S (S n + i)).
+apply le_S; assumption.
+apply INR_eq; rewrite S_INR; do 2 rewrite plus_INR; do 2 rewrite S_INR; ring.
+Qed. \ No newline at end of file