diff options
Diffstat (limited to 'theories/Reals/ArithProp.v')
-rw-r--r-- | theories/Reals/ArithProp.v | 12 |
1 files changed, 6 insertions, 6 deletions
diff --git a/theories/Reals/ArithProp.v b/theories/Reals/ArithProp.v index 7327c64c..f22ff5cb 100644 --- a/theories/Reals/ArithProp.v +++ b/theories/Reals/ArithProp.v @@ -6,7 +6,7 @@ (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) - (*i $Id: ArithProp.v 9454 2006-12-15 15:30:59Z bgregoir $ i*) + (*i $Id$ i*) Require Import Rbase. Require Import Rbasic_fun. @@ -124,7 +124,7 @@ Proof. rewrite <- Ropp_inv_permute; [ idtac | assumption ]. replace (IZR (up (x * / - y)) - x * - / y + - (- (x * / y) + - (IZR (up (x * / - y)) - 1))) with 1; + (- (x * / y) + - (IZR (up (x * / - y)) - 1))) with 1; [ idtac | ring ]. elim H0; intros _ H1; unfold Rdiv in H1; exact H1. rewrite (Rabs_left _ r); apply Rmult_lt_reg_l with (/ - y). @@ -153,11 +153,11 @@ Proof. rewrite Rmult_0_r; rewrite (Rmult_comm (/ y)); rewrite Rmult_plus_distr_r; rewrite Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_r | assumption ]; - apply Rplus_le_reg_l with (IZR (up (x / y)) - x / y); + apply Rplus_le_reg_l with (IZR (up (x / y)) - x / y); rewrite Rplus_0_r; unfold Rdiv in |- *; replace (IZR (up (x * / y)) - x * / y + (x * / y + (1 - IZR (up (x * / y))))) with - 1; [ idtac | ring ]; elim H0; intros _ H2; unfold Rdiv in H2; + 1; [ idtac | ring ]; elim H0; intros _ H2; unfold Rdiv in H2; exact H2. rewrite (Rabs_right _ r); apply Rmult_lt_reg_l with (/ y). apply Rinv_0_lt_compat; assumption. @@ -165,10 +165,10 @@ Proof. rewrite Rmult_plus_distr_r; rewrite Rmult_assoc; rewrite <- Rinv_r_sym; [ rewrite Rmult_1_r | assumption ]; apply Rplus_lt_reg_r with (IZR (up (x / y)) - 1); - replace (IZR (up (x / y)) - 1 + 1) with (IZR (up (x / y))); + replace (IZR (up (x / y)) - 1 + 1) with (IZR (up (x / y))); [ idtac | ring ]; replace (IZR (up (x / y)) - 1 + (x * / y + (1 - IZR (up (x / y))))) with - (x * / y); [ idtac | ring ]; elim H0; unfold Rdiv in |- *; + (x * / y); [ idtac | ring ]; elim H0; unfold Rdiv in |- *; intros H2 _; exact H2. case (total_order_T 0 y); intro. elim s; intro. |