summaryrefslogtreecommitdiff
path: root/theories/Reals/AltSeries.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/AltSeries.v')
-rw-r--r--theories/Reals/AltSeries.v448
1 files changed, 448 insertions, 0 deletions
diff --git a/theories/Reals/AltSeries.v b/theories/Reals/AltSeries.v
new file mode 100644
index 00000000..166a8a46
--- /dev/null
+++ b/theories/Reals/AltSeries.v
@@ -0,0 +1,448 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: AltSeries.v,v 1.12.2.1 2004/07/16 19:31:10 herbelin Exp $ i*)
+
+Require Import Rbase.
+Require Import Rfunctions.
+Require Import Rseries.
+Require Import SeqProp.
+Require Import PartSum.
+Require Import Max.
+Open Local Scope R_scope.
+
+(**********)
+Definition tg_alt (Un:nat -> R) (i:nat) : R := (-1) ^ i * Un i.
+Definition positivity_seq (Un:nat -> R) : Prop := forall n:nat, 0 <= Un n.
+
+Lemma CV_ALT_step0 :
+ forall Un:nat -> R,
+ Un_decreasing Un ->
+ Un_growing (fun N:nat => sum_f_R0 (tg_alt Un) (S (2 * N))).
+intros; unfold Un_growing in |- *; intro.
+cut ((2 * S n)%nat = S (S (2 * n))).
+intro; rewrite H0.
+do 4 rewrite tech5; repeat rewrite Rplus_assoc; apply Rplus_le_compat_l.
+pattern (tg_alt Un (S (2 * n))) at 1 in |- *; rewrite <- Rplus_0_r.
+apply Rplus_le_compat_l.
+unfold tg_alt in |- *; rewrite <- H0; rewrite pow_1_odd; rewrite pow_1_even;
+ rewrite Rmult_1_l.
+apply Rplus_le_reg_l with (Un (S (2 * S n))).
+rewrite Rplus_0_r;
+ replace (Un (S (2 * S n)) + (Un (2 * S n)%nat + -1 * Un (S (2 * S n)))) with
+ (Un (2 * S n)%nat); [ idtac | ring ].
+apply H.
+cut (forall n:nat, S n = (n + 1)%nat); [ intro | intro; ring ].
+rewrite (H0 n); rewrite (H0 (S (2 * n))); rewrite (H0 (2 * n)%nat); ring.
+Qed.
+
+Lemma CV_ALT_step1 :
+ forall Un:nat -> R,
+ Un_decreasing Un ->
+ Un_decreasing (fun N:nat => sum_f_R0 (tg_alt Un) (2 * N)).
+intros; unfold Un_decreasing in |- *; intro.
+cut ((2 * S n)%nat = S (S (2 * n))).
+intro; rewrite H0; do 2 rewrite tech5; repeat rewrite Rplus_assoc.
+pattern (sum_f_R0 (tg_alt Un) (2 * n)) at 2 in |- *; rewrite <- Rplus_0_r.
+apply Rplus_le_compat_l.
+unfold tg_alt in |- *; rewrite <- H0; rewrite pow_1_odd; rewrite pow_1_even;
+ rewrite Rmult_1_l.
+apply Rplus_le_reg_l with (Un (S (2 * n))).
+rewrite Rplus_0_r;
+ replace (Un (S (2 * n)) + (-1 * Un (S (2 * n)) + Un (2 * S n)%nat)) with
+ (Un (2 * S n)%nat); [ idtac | ring ].
+rewrite H0; apply H.
+cut (forall n:nat, S n = (n + 1)%nat); [ intro | intro; ring ].
+rewrite (H0 n); rewrite (H0 (S (2 * n))); rewrite (H0 (2 * n)%nat); ring.
+Qed.
+
+(**********)
+Lemma CV_ALT_step2 :
+ forall (Un:nat -> R) (N:nat),
+ Un_decreasing Un ->
+ positivity_seq Un ->
+ sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * N)) <= 0.
+intros; induction N as [| N HrecN].
+simpl in |- *; unfold tg_alt in |- *; simpl in |- *; rewrite Rmult_1_r.
+replace (-1 * -1 * Un 2%nat) with (Un 2%nat); [ idtac | ring ].
+apply Rplus_le_reg_l with (Un 1%nat); rewrite Rplus_0_r.
+replace (Un 1%nat + (-1 * Un 1%nat + Un 2%nat)) with (Un 2%nat);
+ [ apply H | ring ].
+cut (S (2 * S N) = S (S (S (2 * N)))).
+intro; rewrite H1; do 2 rewrite tech5.
+apply Rle_trans with (sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * N))).
+pattern (sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * N))) at 2 in |- *;
+ rewrite <- Rplus_0_r.
+rewrite Rplus_assoc; apply Rplus_le_compat_l.
+unfold tg_alt in |- *; rewrite <- H1.
+rewrite pow_1_odd.
+cut (S (S (2 * S N)) = (2 * S (S N))%nat).
+intro; rewrite H2; rewrite pow_1_even; rewrite Rmult_1_l; rewrite <- H2.
+apply Rplus_le_reg_l with (Un (S (2 * S N))).
+rewrite Rplus_0_r;
+ replace (Un (S (2 * S N)) + (-1 * Un (S (2 * S N)) + Un (S (S (2 * S N)))))
+ with (Un (S (S (2 * S N)))); [ idtac | ring ].
+apply H.
+apply INR_eq; rewrite mult_INR; repeat rewrite S_INR; rewrite mult_INR;
+ repeat rewrite S_INR; ring.
+apply HrecN.
+apply INR_eq; repeat rewrite S_INR; do 2 rewrite mult_INR;
+ repeat rewrite S_INR; ring.
+Qed.
+
+(* A more general inequality *)
+Lemma CV_ALT_step3 :
+ forall (Un:nat -> R) (N:nat),
+ Un_decreasing Un ->
+ positivity_seq Un -> sum_f_R0 (fun i:nat => tg_alt Un (S i)) N <= 0.
+intros; induction N as [| N HrecN].
+simpl in |- *; unfold tg_alt in |- *; simpl in |- *; rewrite Rmult_1_r.
+apply Rplus_le_reg_l with (Un 1%nat).
+rewrite Rplus_0_r; replace (Un 1%nat + -1 * Un 1%nat) with 0;
+ [ apply H0 | ring ].
+assert (H1 := even_odd_cor N).
+elim H1; intros.
+elim H2; intro.
+rewrite H3; apply CV_ALT_step2; assumption.
+rewrite H3; rewrite tech5.
+apply Rle_trans with (sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * x))).
+pattern (sum_f_R0 (fun i:nat => tg_alt Un (S i)) (S (2 * x))) at 2 in |- *;
+ rewrite <- Rplus_0_r.
+apply Rplus_le_compat_l.
+unfold tg_alt in |- *; simpl in |- *.
+replace (x + (x + 0))%nat with (2 * x)%nat; [ idtac | ring ].
+rewrite pow_1_even.
+replace (-1 * (-1 * (-1 * 1)) * Un (S (S (S (2 * x))))) with
+ (- Un (S (S (S (2 * x))))); [ idtac | ring ].
+apply Rplus_le_reg_l with (Un (S (S (S (2 * x))))).
+rewrite Rplus_0_r; rewrite Rplus_opp_r.
+apply H0.
+apply CV_ALT_step2; assumption.
+Qed.
+
+(**********)
+Lemma CV_ALT_step4 :
+ forall Un:nat -> R,
+ Un_decreasing Un ->
+ positivity_seq Un ->
+ has_ub (fun N:nat => sum_f_R0 (tg_alt Un) (S (2 * N))).
+intros; unfold has_ub in |- *; unfold bound in |- *.
+exists (Un 0%nat).
+unfold is_upper_bound in |- *; intros; elim H1; intros.
+rewrite H2; rewrite decomp_sum.
+replace (tg_alt Un 0) with (Un 0%nat).
+pattern (Un 0%nat) at 2 in |- *; rewrite <- Rplus_0_r.
+apply Rplus_le_compat_l.
+apply CV_ALT_step3; assumption.
+unfold tg_alt in |- *; simpl in |- *; ring.
+apply lt_O_Sn.
+Qed.
+
+(* This lemma gives an interesting result about alternated series *)
+Lemma CV_ALT :
+ forall Un:nat -> R,
+ Un_decreasing Un ->
+ positivity_seq Un ->
+ Un_cv Un 0 ->
+ sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 (tg_alt Un) N) l).
+intros.
+assert (H2 := CV_ALT_step0 _ H).
+assert (H3 := CV_ALT_step4 _ H H0).
+assert (X := growing_cv _ H2 H3).
+elim X; intros.
+apply existT with x.
+unfold Un_cv in |- *; unfold R_dist in |- *; unfold Un_cv in H1;
+ unfold R_dist in H1; unfold Un_cv in p; unfold R_dist in p.
+intros; cut (0 < eps / 2);
+ [ intro
+ | unfold Rdiv in |- *; apply Rmult_lt_0_compat;
+ [ assumption | apply Rinv_0_lt_compat; prove_sup0 ] ].
+elim (H1 (eps / 2) H5); intros N2 H6.
+elim (p (eps / 2) H5); intros N1 H7.
+set (N := max (S (2 * N1)) N2).
+exists N; intros.
+assert (H9 := even_odd_cor n).
+elim H9; intros P H10.
+cut (N1 <= P)%nat.
+intro; elim H10; intro.
+replace (sum_f_R0 (tg_alt Un) n - x) with
+ (sum_f_R0 (tg_alt Un) (S n) - x + - tg_alt Un (S n)).
+apply Rle_lt_trans with
+ (Rabs (sum_f_R0 (tg_alt Un) (S n) - x) + Rabs (- tg_alt Un (S n))).
+apply Rabs_triang.
+rewrite (double_var eps); apply Rplus_lt_compat.
+rewrite H12; apply H7; assumption.
+rewrite Rabs_Ropp; unfold tg_alt in |- *; rewrite Rabs_mult;
+ rewrite pow_1_abs; rewrite Rmult_1_l; unfold Rminus in H6;
+ rewrite Ropp_0 in H6; rewrite <- (Rplus_0_r (Un (S n)));
+ apply H6.
+unfold ge in |- *; apply le_trans with n.
+apply le_trans with N; [ unfold N in |- *; apply le_max_r | assumption ].
+apply le_n_Sn.
+rewrite tech5; ring.
+rewrite H12; apply Rlt_trans with (eps / 2).
+apply H7; assumption.
+unfold Rdiv in |- *; apply Rmult_lt_reg_l with 2.
+prove_sup0.
+rewrite (Rmult_comm 2); rewrite Rmult_assoc; rewrite <- Rinv_l_sym;
+ [ rewrite Rmult_1_r | discrR ].
+rewrite double.
+pattern eps at 1 in |- *; rewrite <- (Rplus_0_r eps); apply Rplus_lt_compat_l;
+ assumption.
+elim H10; intro; apply le_double.
+rewrite <- H11; apply le_trans with N.
+unfold N in |- *; apply le_trans with (S (2 * N1));
+ [ apply le_n_Sn | apply le_max_l ].
+assumption.
+apply lt_n_Sm_le.
+rewrite <- H11.
+apply lt_le_trans with N.
+unfold N in |- *; apply lt_le_trans with (S (2 * N1)).
+apply lt_n_Sn.
+apply le_max_l.
+assumption.
+Qed.
+
+(************************************************)
+(* Convergence of alternated series *)
+(* *)
+(* Applications: PI, cos, sin *)
+(************************************************)
+Theorem alternated_series :
+ forall Un:nat -> R,
+ Un_decreasing Un ->
+ Un_cv Un 0 ->
+ sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 (tg_alt Un) N) l).
+intros; apply CV_ALT.
+assumption.
+unfold positivity_seq in |- *; apply decreasing_ineq; assumption.
+assumption.
+Qed.
+
+Theorem alternated_series_ineq :
+ forall (Un:nat -> R) (l:R) (N:nat),
+ Un_decreasing Un ->
+ Un_cv Un 0 ->
+ Un_cv (fun N:nat => sum_f_R0 (tg_alt Un) N) l ->
+ sum_f_R0 (tg_alt Un) (S (2 * N)) <= l <= sum_f_R0 (tg_alt Un) (2 * N).
+intros.
+cut (Un_cv (fun N:nat => sum_f_R0 (tg_alt Un) (2 * N)) l).
+cut (Un_cv (fun N:nat => sum_f_R0 (tg_alt Un) (S (2 * N))) l).
+intros; split.
+apply (growing_ineq (fun N:nat => sum_f_R0 (tg_alt Un) (S (2 * N)))).
+apply CV_ALT_step0; assumption.
+assumption.
+apply (decreasing_ineq (fun N:nat => sum_f_R0 (tg_alt Un) (2 * N))).
+apply CV_ALT_step1; assumption.
+assumption.
+unfold Un_cv in |- *; unfold R_dist in |- *; unfold Un_cv in H1;
+ unfold R_dist in H1; intros.
+elim (H1 eps H2); intros.
+exists x; intros.
+apply H3.
+unfold ge in |- *; apply le_trans with (2 * n)%nat.
+apply le_trans with n.
+assumption.
+assert (H5 := mult_O_le n 2).
+elim H5; intro.
+cut (0%nat <> 2%nat);
+ [ intro; elim H7; symmetry in |- *; assumption | discriminate ].
+assumption.
+apply le_n_Sn.
+unfold Un_cv in |- *; unfold R_dist in |- *; unfold Un_cv in H1;
+ unfold R_dist in H1; intros.
+elim (H1 eps H2); intros.
+exists x; intros.
+apply H3.
+unfold ge in |- *; apply le_trans with n.
+assumption.
+assert (H5 := mult_O_le n 2).
+elim H5; intro.
+cut (0%nat <> 2%nat);
+ [ intro; elim H7; symmetry in |- *; assumption | discriminate ].
+assumption.
+Qed.
+
+(************************************)
+(* Application : construction of PI *)
+(************************************)
+
+Definition PI_tg (n:nat) := / INR (2 * n + 1).
+
+Lemma PI_tg_pos : forall n:nat, 0 <= PI_tg n.
+intro; unfold PI_tg in |- *; left; apply Rinv_0_lt_compat; apply lt_INR_0;
+ replace (2 * n + 1)%nat with (S (2 * n)); [ apply lt_O_Sn | ring ].
+Qed.
+
+Lemma PI_tg_decreasing : Un_decreasing PI_tg.
+unfold PI_tg, Un_decreasing in |- *; intro.
+apply Rmult_le_reg_l with (INR (2 * n + 1)).
+apply lt_INR_0.
+replace (2 * n + 1)%nat with (S (2 * n)); [ apply lt_O_Sn | ring ].
+rewrite <- Rinv_r_sym.
+apply Rmult_le_reg_l with (INR (2 * S n + 1)).
+apply lt_INR_0.
+replace (2 * S n + 1)%nat with (S (2 * S n)); [ apply lt_O_Sn | ring ].
+rewrite (Rmult_comm (INR (2 * S n + 1))); rewrite Rmult_assoc;
+ rewrite <- Rinv_l_sym.
+do 2 rewrite Rmult_1_r; apply le_INR.
+replace (2 * S n + 1)%nat with (S (S (2 * n + 1))).
+apply le_trans with (S (2 * n + 1)); apply le_n_Sn.
+apply INR_eq; do 2 rewrite S_INR; do 2 rewrite plus_INR;
+ do 2 rewrite mult_INR; repeat rewrite S_INR; ring.
+apply not_O_INR; discriminate.
+apply not_O_INR; replace (2 * n + 1)%nat with (S (2 * n));
+ [ discriminate | ring ].
+Qed.
+
+Lemma PI_tg_cv : Un_cv PI_tg 0.
+unfold Un_cv in |- *; unfold R_dist in |- *; intros.
+cut (0 < 2 * eps);
+ [ intro | apply Rmult_lt_0_compat; [ prove_sup0 | assumption ] ].
+assert (H1 := archimed (/ (2 * eps))).
+cut (0 <= up (/ (2 * eps)))%Z.
+intro; assert (H3 := IZN (up (/ (2 * eps))) H2).
+elim H3; intros N H4.
+cut (0 < N)%nat.
+intro; exists N; intros.
+cut (0 < n)%nat.
+intro; unfold Rminus in |- *; rewrite Ropp_0; rewrite Rplus_0_r;
+ rewrite Rabs_right.
+unfold PI_tg in |- *; apply Rlt_trans with (/ INR (2 * n)).
+apply Rmult_lt_reg_l with (INR (2 * n)).
+apply lt_INR_0.
+replace (2 * n)%nat with (n + n)%nat; [ idtac | ring ].
+apply lt_le_trans with n.
+assumption.
+apply le_plus_l.
+rewrite <- Rinv_r_sym.
+apply Rmult_lt_reg_l with (INR (2 * n + 1)).
+apply lt_INR_0.
+replace (2 * n + 1)%nat with (S (2 * n)); [ apply lt_O_Sn | ring ].
+rewrite (Rmult_comm (INR (2 * n + 1))).
+rewrite Rmult_assoc; rewrite <- Rinv_l_sym.
+do 2 rewrite Rmult_1_r; apply lt_INR.
+replace (2 * n + 1)%nat with (S (2 * n)); [ apply lt_n_Sn | ring ].
+apply not_O_INR; replace (2 * n + 1)%nat with (S (2 * n));
+ [ discriminate | ring ].
+replace n with (S (pred n)).
+apply not_O_INR; discriminate.
+symmetry in |- *; apply S_pred with 0%nat.
+assumption.
+apply Rle_lt_trans with (/ INR (2 * N)).
+apply Rmult_le_reg_l with (INR (2 * N)).
+rewrite mult_INR; apply Rmult_lt_0_compat;
+ [ simpl in |- *; prove_sup0 | apply lt_INR_0; assumption ].
+rewrite <- Rinv_r_sym.
+apply Rmult_le_reg_l with (INR (2 * n)).
+rewrite mult_INR; apply Rmult_lt_0_compat;
+ [ simpl in |- *; prove_sup0 | apply lt_INR_0; assumption ].
+rewrite (Rmult_comm (INR (2 * n))); rewrite Rmult_assoc;
+ rewrite <- Rinv_l_sym.
+do 2 rewrite Rmult_1_r; apply le_INR.
+apply (fun m n p:nat => mult_le_compat_l p n m); assumption.
+replace n with (S (pred n)).
+apply not_O_INR; discriminate.
+symmetry in |- *; apply S_pred with 0%nat.
+assumption.
+replace N with (S (pred N)).
+apply not_O_INR; discriminate.
+symmetry in |- *; apply S_pred with 0%nat.
+assumption.
+rewrite mult_INR.
+rewrite Rinv_mult_distr.
+replace (INR 2) with 2; [ idtac | reflexivity ].
+apply Rmult_lt_reg_l with 2.
+prove_sup0.
+rewrite <- Rmult_assoc; rewrite <- Rinv_r_sym; [ idtac | discrR ].
+rewrite Rmult_1_l; apply Rmult_lt_reg_l with (INR N).
+apply lt_INR_0; assumption.
+rewrite <- Rinv_r_sym.
+apply Rmult_lt_reg_l with (/ (2 * eps)).
+apply Rinv_0_lt_compat; assumption.
+rewrite Rmult_1_r;
+ replace (/ (2 * eps) * (INR N * (2 * eps))) with
+ (INR N * (2 * eps * / (2 * eps))); [ idtac | ring ].
+rewrite <- Rinv_r_sym.
+rewrite Rmult_1_r; replace (INR N) with (IZR (Z_of_nat N)).
+rewrite <- H4.
+elim H1; intros; assumption.
+symmetry in |- *; apply INR_IZR_INZ.
+apply prod_neq_R0;
+ [ discrR | red in |- *; intro; rewrite H8 in H; elim (Rlt_irrefl _ H) ].
+apply not_O_INR.
+red in |- *; intro; rewrite H8 in H5; elim (lt_irrefl _ H5).
+replace (INR 2) with 2; [ discrR | reflexivity ].
+apply not_O_INR.
+red in |- *; intro; rewrite H8 in H5; elim (lt_irrefl _ H5).
+apply Rle_ge; apply PI_tg_pos.
+apply lt_le_trans with N; assumption.
+elim H1; intros H5 _.
+assert (H6 := lt_eq_lt_dec 0 N).
+elim H6; intro.
+elim a; intro.
+assumption.
+rewrite <- b in H4.
+rewrite H4 in H5.
+simpl in H5.
+cut (0 < / (2 * eps)); [ intro | apply Rinv_0_lt_compat; assumption ].
+elim (Rlt_irrefl _ (Rlt_trans _ _ _ H7 H5)).
+elim (lt_n_O _ b).
+apply le_IZR.
+simpl in |- *.
+left; apply Rlt_trans with (/ (2 * eps)).
+apply Rinv_0_lt_compat; assumption.
+elim H1; intros; assumption.
+Qed.
+
+Lemma exist_PI :
+ sigT (fun l:R => Un_cv (fun N:nat => sum_f_R0 (tg_alt PI_tg) N) l).
+apply alternated_series.
+apply PI_tg_decreasing.
+apply PI_tg_cv.
+Qed.
+
+(* Now, PI is defined *)
+Definition PI : R := 4 * match exist_PI with
+ | existT a b => a
+ end.
+
+(* We can get an approximation of PI with the following inequality *)
+Lemma PI_ineq :
+ forall N:nat,
+ sum_f_R0 (tg_alt PI_tg) (S (2 * N)) <= PI / 4 <=
+ sum_f_R0 (tg_alt PI_tg) (2 * N).
+intro; apply alternated_series_ineq.
+apply PI_tg_decreasing.
+apply PI_tg_cv.
+unfold PI in |- *; case exist_PI; intro.
+replace (4 * x / 4) with x.
+trivial.
+unfold Rdiv in |- *; rewrite (Rmult_comm 4); rewrite Rmult_assoc;
+ rewrite <- Rinv_r_sym; [ rewrite Rmult_1_r; reflexivity | discrR ].
+Qed.
+
+Lemma PI_RGT_0 : 0 < PI.
+assert (H := PI_ineq 0).
+apply Rmult_lt_reg_l with (/ 4).
+apply Rinv_0_lt_compat; prove_sup0.
+rewrite Rmult_0_r; rewrite Rmult_comm.
+elim H; clear H; intros H _.
+unfold Rdiv in H;
+ apply Rlt_le_trans with (sum_f_R0 (tg_alt PI_tg) (S (2 * 0))).
+simpl in |- *; unfold tg_alt in |- *; simpl in |- *; rewrite Rmult_1_l;
+ rewrite Rmult_1_r; apply Rplus_lt_reg_r with (PI_tg 1).
+rewrite Rplus_0_r;
+ replace (PI_tg 1 + (PI_tg 0 + -1 * PI_tg 1)) with (PI_tg 0);
+ [ unfold PI_tg in |- * | ring ].
+simpl in |- *; apply Rinv_lt_contravar.
+rewrite Rmult_1_l; replace (2 + 1) with 3; [ prove_sup0 | ring ].
+rewrite Rplus_comm; pattern 1 at 1 in |- *; rewrite <- Rplus_0_r;
+ apply Rplus_lt_compat_l; prove_sup0.
+assumption.
+Qed. \ No newline at end of file