summaryrefslogtreecommitdiff
path: root/theories/QArith/Qreduction.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/QArith/Qreduction.v')
-rw-r--r--theories/QArith/Qreduction.v52
1 files changed, 20 insertions, 32 deletions
diff --git a/theories/QArith/Qreduction.v b/theories/QArith/Qreduction.v
index eb8c1164..e39eca0c 100644
--- a/theories/QArith/Qreduction.v
+++ b/theories/QArith/Qreduction.v
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Qreduction.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
(** Normalisation functions for rational numbers. *)
Require Export QArith_base.
@@ -43,23 +41,16 @@ Definition Qred (q:Q) :=
Lemma Qred_correct : forall q, (Qred q) == q.
Proof.
unfold Qred, Qeq; intros (n,d); simpl.
- generalize (Zggcd_gcd n ('d)) (Zgcd_is_pos n ('d))
- (Zgcd_is_gcd n ('d)) (Zggcd_correct_divisors n ('d)).
+ generalize (Zggcd_gcd n ('d)) (Zgcd_nonneg n ('d))
+ (Zggcd_correct_divisors n ('d)).
destruct (Zggcd n (Zpos d)) as (g,(nn,dd)); simpl.
Open Scope Z_scope.
- intuition.
- rewrite <- H in H0,H1; clear H.
- rewrite H3; rewrite H4.
- assert (0 <> g).
- intro; subst g; discriminate.
-
- assert (0 < dd).
- apply Zmult_gt_0_lt_0_reg_r with g.
- omega.
- rewrite Zmult_comm.
- rewrite <- H4; compute; auto.
- rewrite Z2P_correct; auto.
- ring.
+ intros Hg LE (Hn,Hd). rewrite Hd, Hn.
+ rewrite <- Hg in LE; clear Hg.
+ assert (0 <> g) by (intro; subst; discriminate).
+ rewrite Z2P_correct. ring.
+ apply Zmult_gt_0_lt_0_reg_r with g; auto with zarith.
+ now rewrite Zmult_comm, <- Hd.
Close Scope Z_scope.
Qed.
@@ -69,10 +60,10 @@ Proof.
unfold Qred, Qeq in *; simpl in *.
Open Scope Z_scope.
generalize (Zggcd_gcd a ('b)) (Zgcd_is_gcd a ('b))
- (Zgcd_is_pos a ('b)) (Zggcd_correct_divisors a ('b)).
+ (Zgcd_nonneg a ('b)) (Zggcd_correct_divisors a ('b)).
destruct (Zggcd a (Zpos b)) as (g,(aa,bb)).
generalize (Zggcd_gcd c ('d)) (Zgcd_is_gcd c ('d))
- (Zgcd_is_pos c ('d)) (Zggcd_correct_divisors c ('d)).
+ (Zgcd_nonneg c ('d)) (Zggcd_correct_divisors c ('d)).
destruct (Zggcd c (Zpos d)) as (g',(cc,dd)).
simpl.
intro H; rewrite <- H; clear H.
@@ -80,10 +71,9 @@ Proof.
intro H; rewrite <- H; clear H.
intros Hg1 Hg2 (Hg3,Hg4).
intros.
- assert (g <> 0).
- intro; subst g; discriminate.
- assert (g' <> 0).
- intro; subst g'; discriminate.
+ assert (g <> 0) by (intro; subst g; discriminate).
+ assert (g' <> 0) by (intro; subst g'; discriminate).
+
elim (rel_prime_cross_prod aa bb cc dd).
congruence.
unfold rel_prime in |- *.
@@ -93,14 +83,13 @@ Proof.
exists bb; auto with zarith.
intros.
inversion Hg1.
- destruct (H6 (g*x)).
+ destruct (H6 (g*x)) as (x',Hx).
rewrite Hg3.
destruct H2 as (xa,Hxa); exists xa; rewrite Hxa; ring.
rewrite Hg4.
destruct H3 as (xb,Hxb); exists xb; rewrite Hxb; ring.
- exists q.
- apply Zmult_reg_l with g; auto.
- pattern g at 1; rewrite H7; ring.
+ exists x'.
+ apply Zmult_reg_l with g; auto. rewrite Hx at 1; ring.
(* /rel_prime *)
unfold rel_prime in |- *.
(* rel_prime *)
@@ -109,14 +98,13 @@ Proof.
exists dd; auto with zarith.
intros.
inversion Hg'1.
- destruct (H6 (g'*x)).
+ destruct (H6 (g'*x)) as (x',Hx).
rewrite Hg'3.
destruct H2 as (xc,Hxc); exists xc; rewrite Hxc; ring.
rewrite Hg'4.
destruct H3 as (xd,Hxd); exists xd; rewrite Hxd; ring.
- exists q.
- apply Zmult_reg_l with g'; auto.
- pattern g' at 1; rewrite H7; ring.
+ exists x'.
+ apply Zmult_reg_l with g'; auto. rewrite Hx at 1; ring.
(* /rel_prime *)
assert (0<bb); [|auto with zarith].
apply Zmult_gt_0_lt_0_reg_r with g.