summaryrefslogtreecommitdiff
path: root/theories/Program/Wf.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Program/Wf.v')
-rw-r--r--theories/Program/Wf.v23
1 files changed, 11 insertions, 12 deletions
diff --git a/theories/Program/Wf.v b/theories/Program/Wf.v
index 2a7a5e17..d89919b0 100644
--- a/theories/Program/Wf.v
+++ b/theories/Program/Wf.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -11,6 +11,7 @@
Require Import Coq.Init.Wf.
Require Import Coq.Program.Utils.
Require Import ProofIrrelevance.
+Require Import FunctionalExtensionality.
Local Open Scope program_scope.
@@ -32,14 +33,13 @@ Section Well_founded.
(* Notation Fix_F := (Fix_F_sub P F_sub) (only parsing). (* alias *) *)
(* Definition Fix (x:A) := Fix_F_sub P F_sub x (Rwf x). *)
- Hypothesis
- F_ext :
+ Hypothesis F_ext :
forall (x:A) (f g:forall y:{y:A | R y x}, P (`y)),
- (forall (y : A | R y x), f y = g y) -> F_sub x f = F_sub x g.
+ (forall y:{y : A | R y x}, f y = g y) -> F_sub x f = F_sub x g.
Lemma Fix_F_eq :
forall (x:A) (r:Acc R x),
- F_sub x (fun (y:A|R y x) => Fix_F_sub (`y) (Acc_inv r (proj2_sig y))) = Fix_F_sub x r.
+ F_sub x (fun y:{y:A | R y x} => Fix_F_sub (`y) (Acc_inv r (proj2_sig y))) = Fix_F_sub x r.
Proof.
destruct r using Acc_inv_dep; auto.
Qed.
@@ -50,7 +50,7 @@ Section Well_founded.
rewrite (proof_irrelevance (Acc R x) r s) ; auto.
Qed.
- Lemma Fix_eq : forall x:A, Fix_sub x = F_sub x (fun (y:A|R y x) => Fix_sub (proj1_sig y)).
+ Lemma Fix_eq : forall x:A, Fix_sub x = F_sub x (fun y:{ y:A | R y x} => Fix_sub (proj1_sig y)).
Proof.
intro x; unfold Fix_sub.
rewrite <- (Fix_F_eq ).
@@ -62,7 +62,8 @@ Section Well_founded.
forall x : A,
Fix_sub x =
let f_sub := F_sub in
- f_sub x (fun (y : A | R y x) => Fix_sub (`y)).
+ f_sub x (fun y: {y : A | R y x} => Fix_sub (`y)).
+ Proof.
exact Fix_eq.
Qed.
@@ -153,7 +154,7 @@ Section Fix_rects.
Hypothesis equiv_lowers:
forall x0 (g h: forall x: {y: A | R y x0}, P (proj1_sig x)),
- (forall x p p', g (exist (fun y: A => R y x0) x p) = h (exist _ x p')) ->
+ (forall x p p', g (exist (fun y: A => R y x0) x p) = h (exist (*FIXME shouldn't be needed *) (fun y => R y x0) x p')) ->
f g = f h.
(* From equiv_lowers, it follows that
@@ -221,8 +222,6 @@ Ltac fold_sub f :=
Module WfExtensionality.
- Require Import FunctionalExtensionality.
-
(** The two following lemmas allow to unfold a well-founded fixpoint definition without
restriction using the functional extensionality axiom. *)
@@ -231,10 +230,10 @@ Module WfExtensionality.
Program Lemma fix_sub_eq_ext :
forall (A : Type) (R : A -> A -> Prop) (Rwf : well_founded R)
(P : A -> Type)
- (F_sub : forall x : A, (forall (y : A | R y x), P y) -> P x),
+ (F_sub : forall x : A, (forall y:{y : A | R y x}, P (` y)) -> P x),
forall x : A,
Fix_sub A R Rwf P F_sub x =
- F_sub x (fun (y : A | R y x) => Fix_sub A R Rwf P F_sub y).
+ F_sub x (fun y:{y : A | R y x} => Fix_sub A R Rwf P F_sub (` y)).
Proof.
intros ; apply Fix_eq ; auto.
intros.