summaryrefslogtreecommitdiff
path: root/theories/Program/FunctionalExtensionality.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Program/FunctionalExtensionality.v')
-rw-r--r--theories/Program/FunctionalExtensionality.v109
1 files changed, 109 insertions, 0 deletions
diff --git a/theories/Program/FunctionalExtensionality.v b/theories/Program/FunctionalExtensionality.v
new file mode 100644
index 00000000..b5ad5b4d
--- /dev/null
+++ b/theories/Program/FunctionalExtensionality.v
@@ -0,0 +1,109 @@
+(* -*- coq-prog-args: ("-emacs-U" "-nois") -*- *)
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: FunctionalExtensionality.v 10739 2008-04-01 14:45:20Z herbelin $ i*)
+
+(** This module states the axiom of (dependent) functional extensionality and (dependent) eta-expansion.
+ It introduces a tactic [extensionality] to apply the axiom of extensionality to an equality goal.
+
+ It also defines two lemmas for expansion of fixpoint defs using extensionnality and proof-irrelevance
+ to avoid a side condition on the functionals. *)
+
+Require Import Coq.Program.Utils.
+Require Import Coq.Program.Wf.
+Require Import Coq.Program.Equality.
+
+Set Implicit Arguments.
+Unset Strict Implicit.
+
+(** The converse of functional equality. *)
+
+Lemma equal_f : forall A B : Type, forall (f g : A -> B),
+ f = g -> forall x, f x = g x.
+Proof.
+ intros.
+ rewrite H.
+ auto.
+Qed.
+
+(** Statements of functional equality for simple and dependent functions. *)
+
+Axiom fun_extensionality_dep : forall A, forall B : (A -> Type),
+ forall (f g : forall x : A, B x),
+ (forall x, f x = g x) -> f = g.
+
+Lemma fun_extensionality : forall A B (f g : A -> B),
+ (forall x, f x = g x) -> f = g.
+Proof.
+ intros ; apply fun_extensionality_dep.
+ assumption.
+Qed.
+
+Hint Resolve fun_extensionality fun_extensionality_dep : program.
+
+(** Apply [fun_extensionality], introducing variable x. *)
+
+Tactic Notation "extensionality" ident(x) :=
+ match goal with
+ [ |- ?X = ?Y ] => apply (@fun_extensionality _ _ X Y) || apply (@fun_extensionality_dep _ _ X Y) ; intro x
+ end.
+
+(** Eta expansion follows from extensionality. *)
+
+Lemma eta_expansion_dep : forall A (B : A -> Type) (f : forall x : A, B x),
+ f = fun x => f x.
+Proof.
+ intros.
+ extensionality x.
+ reflexivity.
+Qed.
+
+Lemma eta_expansion : forall A B (f : A -> B),
+ f = fun x => f x.
+Proof.
+ intros ; apply eta_expansion_dep.
+Qed.
+
+(** The two following lemmas allow to unfold a well-founded fixpoint definition without
+ restriction using the functional extensionality axiom. *)
+
+(** For a function defined with Program using a well-founded order. *)
+
+Program Lemma fix_sub_eq_ext :
+ forall (A : Set) (R : A -> A -> Prop) (Rwf : well_founded R)
+ (P : A -> Set)
+ (F_sub : forall x : A, (forall (y : A | R y x), P y) -> P x),
+ forall x : A,
+ Fix_sub A R Rwf P F_sub x =
+ F_sub x (fun (y : A | R y x) => Fix A R Rwf P F_sub y).
+Proof.
+ intros ; apply Fix_eq ; auto.
+ intros.
+ assert(f = g).
+ extensionality y ; apply H.
+ rewrite H0 ; auto.
+Qed.
+
+(** For a function defined with Program using a measure. *)
+
+Program Lemma fix_sub_measure_eq_ext :
+ forall (A : Type) (f : A -> nat) (P : A -> Type)
+ (F_sub : forall x : A, (forall (y : A | f y < f x), P y) -> P x),
+ forall x : A,
+ Fix_measure_sub A f P F_sub x =
+ F_sub x (fun (y : A | f y < f x) => Fix_measure_sub A f P F_sub y).
+Proof.
+ intros ; apply Fix_measure_eq ; auto.
+ intros.
+ assert(f0 = g).
+ extensionality y ; apply H.
+ rewrite H0 ; auto.
+Qed.
+
+