summaryrefslogtreecommitdiff
path: root/theories/Program/Equality.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Program/Equality.v')
-rw-r--r--theories/Program/Equality.v12
1 files changed, 8 insertions, 4 deletions
diff --git a/theories/Program/Equality.v b/theories/Program/Equality.v
index d408845e..323e80cc 100644
--- a/theories/Program/Equality.v
+++ b/theories/Program/Equality.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -290,12 +290,14 @@ Lemma simplification_heq A B (x y : A) :
(x = y -> B) -> (JMeq x y -> B).
Proof. intros H J; apply H; apply (JMeq_eq J). Defined.
+Definition conditional_eq {A} (x y : A) := eq x y.
+
Lemma simplification_existT2 A (P : A -> Type) B (p : A) (x y : P p) :
- (x = y -> B) -> (existT P p x = existT P p y -> B).
+ (x = y -> B) -> (conditional_eq (existT P p x) (existT P p y) -> B).
Proof. intros H E. apply H. apply inj_pair2. assumption. Defined.
Lemma simplification_existT1 A (P : A -> Type) B (p q : A) (x : P p) (y : P q) :
- (p = q -> existT P p x = existT P q y -> B) -> (existT P p x = existT P q y -> B).
+ (p = q -> conditional_eq (existT P p x) (existT P q y) -> B) -> (existT P p x = existT P q y -> B).
Proof. injection 2. auto. Defined.
Lemma simplification_K A (x : A) (B : x = x -> Type) :
@@ -319,8 +321,10 @@ Ltac simplify_one_dep_elim_term c :=
| @JMeq _ _ _ _ -> _ => refine (simplification_heq _ _ _ _ _)
| ?t = ?t -> _ => intros _ || refine (simplification_K _ t _ _)
| eq (existT _ _ _) (existT _ _ _) -> _ =>
- refine (simplification_existT2 _ _ _ _ _ _ _) ||
refine (simplification_existT1 _ _ _ _ _ _ _ _)
+ | conditional_eq (existT _ _ _) (existT _ _ _) -> _ =>
+ refine (simplification_existT2 _ _ _ _ _ _ _) ||
+ (unfold conditional_eq; intro)
| ?x = ?y -> _ => (* variables case *)
(unfold x) || (unfold y) ||
(let hyp := fresh in intros hyp ;