summaryrefslogtreecommitdiff
path: root/theories/Program/Equality.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Program/Equality.v')
-rw-r--r--theories/Program/Equality.v29
1 files changed, 21 insertions, 8 deletions
diff --git a/theories/Program/Equality.v b/theories/Program/Equality.v
index d19f29c3..c776070a 100644
--- a/theories/Program/Equality.v
+++ b/theories/Program/Equality.v
@@ -7,7 +7,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Equality.v 11023 2008-05-30 11:08:39Z msozeau $ i*)
+(*i $Id: Equality.v 11282 2008-07-28 11:51:53Z msozeau $ i*)
(** Tactics related to (dependent) equality and proof irrelevance. *)
@@ -82,7 +82,7 @@ Ltac simpl_uip :=
(** Simplify equalities appearing in the context and goal. *)
-Ltac simpl_eq := simpl ; repeat (elim_eq_rect ; simpl) ; repeat (simpl_uip ; simpl).
+Ltac simpl_eq := simpl ; unfold eq_rec_r, eq_rec ; repeat (elim_eq_rect ; simpl) ; repeat (simpl_uip ; simpl).
(** Try to abstract a proof of equality, if no proof of the same equality is present in the context. *)
@@ -235,30 +235,43 @@ Ltac simpl_depind := subst* ; autoinjections ; try discriminates ;
and starts a dependent induction using this tactic. *)
Ltac do_depind tac H :=
+ generalize_eqs_vars H ; tac H ; repeat progress simpl_depind.
+
+(** A variant where generalized variables should be given by the user. *)
+
+Ltac do_depind' tac H :=
generalize_eqs H ; tac H ; repeat progress simpl_depind.
(** Calls [destruct] on the generalized hypothesis, results should be similar to inversion. *)
Tactic Notation "dependent" "destruction" ident(H) :=
- do_depind ltac:(fun H => destruct H ; intros) H ; subst*.
+ do_depind ltac:(fun hyp => destruct hyp ; intros) H ; subst*.
Tactic Notation "dependent" "destruction" ident(H) "using" constr(c) :=
- do_depind ltac:(fun H => destruct H using c ; intros) H.
+ do_depind ltac:(fun hyp => destruct hyp using c ; intros) H.
+
+(** This tactic also generalizes the goal by the given variables before the induction. *)
+
+Tactic Notation "dependent" "destruction" ident(H) "generalizing" ne_hyp_list(l) :=
+ do_depind' ltac:(fun hyp => revert l ; destruct hyp ; intros) H.
+
+Tactic Notation "dependent" "destruction" ident(H) "generalizing" ne_hyp_list(l) "using" constr(c) :=
+ do_depind' ltac:(fun hyp => revert l ; destruct hyp using c ; intros) H.
(** Then we have wrappers for usual calls to induction. One can customize the induction tactic by
writting another wrapper calling do_depind. *)
Tactic Notation "dependent" "induction" ident(H) :=
- do_depind ltac:(fun H => induction H ; intros) H.
+ do_depind ltac:(fun hyp => induction hyp ; intros) H.
Tactic Notation "dependent" "induction" ident(H) "using" constr(c) :=
- do_depind ltac:(fun H => induction H using c ; intros) H.
+ do_depind ltac:(fun hyp => induction hyp using c ; intros) H.
(** This tactic also generalizes the goal by the given variables before the induction. *)
Tactic Notation "dependent" "induction" ident(H) "generalizing" ne_hyp_list(l) :=
- do_depind ltac:(fun H => generalize l ; clear l ; induction H ; intros) H.
+ do_depind' ltac:(fun hyp => generalize l ; clear l ; induction hyp ; intros) H.
Tactic Notation "dependent" "induction" ident(H) "generalizing" ne_hyp_list(l) "using" constr(c) :=
- do_depind ltac:(fun H => generalize l ; clear l ; induction H using c ; intros) H.
+ do_depind' ltac:(fun hyp => generalize l ; clear l ; induction hyp using c ; intros) H.