diff options
Diffstat (limited to 'theories/Program/Combinators.v')
-rw-r--r-- | theories/Program/Combinators.v | 71 |
1 files changed, 71 insertions, 0 deletions
diff --git a/theories/Program/Combinators.v b/theories/Program/Combinators.v new file mode 100644 index 00000000..e267fbbe --- /dev/null +++ b/theories/Program/Combinators.v @@ -0,0 +1,71 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(* Proofs about standard combinators, exports functional extensionality. + * + * Author: Matthieu Sozeau + * Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud + * 91405 Orsay, France *) + +Require Import Coq.Program.Basics. +Require Export Coq.Program.FunctionalExtensionality. + +Open Scope program_scope. + +(** Composition has [id] for neutral element and is associative. *) + +Lemma compose_id_left : forall A B (f : A -> B), id ∘ f = f. +Proof. + intros. + unfold id, compose. + symmetry. apply eta_expansion. +Qed. + +Lemma compose_id_right : forall A B (f : A -> B), f ∘ id = f. +Proof. + intros. + unfold id, compose. + symmetry ; apply eta_expansion. +Qed. + +Lemma compose_assoc : forall A B C D (f : A -> B) (g : B -> C) (h : C -> D), + h ∘ g ∘ f = h ∘ (g ∘ f). +Proof. + intros. + reflexivity. +Qed. + +Hint Rewrite @compose_id_left @compose_id_right @compose_assoc : core. + +(** [flip] is involutive. *) + +Lemma flip_flip : forall A B C, @flip A B C ∘ flip = id. +Proof. + unfold flip, compose. + intros. + extensionality x ; extensionality y ; extensionality z. + reflexivity. +Qed. + +(** [prod_curry] and [prod_uncurry] are each others inverses. *) + +Lemma prod_uncurry_curry : forall A B C, @prod_uncurry A B C ∘ prod_curry = id. +Proof. + simpl ; intros. + unfold prod_uncurry, prod_curry, compose. + extensionality x ; extensionality y ; extensionality z. + reflexivity. +Qed. + +Lemma prod_curry_uncurry : forall A B C, @prod_curry A B C ∘ prod_uncurry = id. +Proof. + simpl ; intros. + unfold prod_uncurry, prod_curry, compose. + extensionality x ; extensionality p. + destruct p ; simpl ; reflexivity. +Qed. |