summaryrefslogtreecommitdiff
path: root/theories/Program/Combinators.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Program/Combinators.v')
-rw-r--r--theories/Program/Combinators.v71
1 files changed, 71 insertions, 0 deletions
diff --git a/theories/Program/Combinators.v b/theories/Program/Combinators.v
new file mode 100644
index 00000000..e267fbbe
--- /dev/null
+++ b/theories/Program/Combinators.v
@@ -0,0 +1,71 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* Proofs about standard combinators, exports functional extensionality.
+ *
+ * Author: Matthieu Sozeau
+ * Institution: LRI, CNRS UMR 8623 - UniversitÃcopyright Paris Sud
+ * 91405 Orsay, France *)
+
+Require Import Coq.Program.Basics.
+Require Export Coq.Program.FunctionalExtensionality.
+
+Open Scope program_scope.
+
+(** Composition has [id] for neutral element and is associative. *)
+
+Lemma compose_id_left : forall A B (f : A -> B), id ∘ f = f.
+Proof.
+ intros.
+ unfold id, compose.
+ symmetry. apply eta_expansion.
+Qed.
+
+Lemma compose_id_right : forall A B (f : A -> B), f ∘ id = f.
+Proof.
+ intros.
+ unfold id, compose.
+ symmetry ; apply eta_expansion.
+Qed.
+
+Lemma compose_assoc : forall A B C D (f : A -> B) (g : B -> C) (h : C -> D),
+ h ∘ g ∘ f = h ∘ (g ∘ f).
+Proof.
+ intros.
+ reflexivity.
+Qed.
+
+Hint Rewrite @compose_id_left @compose_id_right @compose_assoc : core.
+
+(** [flip] is involutive. *)
+
+Lemma flip_flip : forall A B C, @flip A B C ∘ flip = id.
+Proof.
+ unfold flip, compose.
+ intros.
+ extensionality x ; extensionality y ; extensionality z.
+ reflexivity.
+Qed.
+
+(** [prod_curry] and [prod_uncurry] are each others inverses. *)
+
+Lemma prod_uncurry_curry : forall A B C, @prod_uncurry A B C ∘ prod_curry = id.
+Proof.
+ simpl ; intros.
+ unfold prod_uncurry, prod_curry, compose.
+ extensionality x ; extensionality y ; extensionality z.
+ reflexivity.
+Qed.
+
+Lemma prod_curry_uncurry : forall A B C, @prod_curry A B C ∘ prod_uncurry = id.
+Proof.
+ simpl ; intros.
+ unfold prod_uncurry, prod_curry, compose.
+ extensionality x ; extensionality p.
+ destruct p ; simpl ; reflexivity.
+Qed.