diff options
Diffstat (limited to 'theories/PArith/Pnat.v')
-rw-r--r-- | theories/PArith/Pnat.v | 483 |
1 files changed, 483 insertions, 0 deletions
diff --git a/theories/PArith/Pnat.v b/theories/PArith/Pnat.v new file mode 100644 index 00000000..f9df70bd --- /dev/null +++ b/theories/PArith/Pnat.v @@ -0,0 +1,483 @@ +(* -*- coding: utf-8 -*- *) +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +Require Import BinPos Le Lt Gt Plus Mult Minus Compare_dec. + +(** Properties of the injection from binary positive numbers + to Peano natural numbers *) + +(** Original development by Pierre Crégut, CNET, Lannion, France *) + +Local Open Scope positive_scope. +Local Open Scope nat_scope. + +Module Pos2Nat. + Import Pos. + +(** [Pos.to_nat] is a morphism for successor, addition, multiplication *) + +Lemma inj_succ p : to_nat (succ p) = S (to_nat p). +Proof. + unfold to_nat. rewrite iter_op_succ. trivial. + apply plus_assoc. +Qed. + +Theorem inj_add p q : to_nat (p + q) = to_nat p + to_nat q. +Proof. + revert q. induction p using Pind; intros q. + now rewrite add_1_l, inj_succ. + now rewrite add_succ_l, !inj_succ, IHp. +Qed. + +Theorem inj_mul p q : to_nat (p * q) = to_nat p * to_nat q. +Proof. + revert q. induction p using peano_ind; simpl; intros; trivial. + now rewrite mul_succ_l, inj_add, IHp, inj_succ. +Qed. + +(** Mapping of xH, xO and xI through [Pos.to_nat] *) + +Lemma inj_1 : to_nat 1 = 1. +Proof. + reflexivity. +Qed. + +Lemma inj_xO p : to_nat (xO p) = 2 * to_nat p. +Proof. + exact (inj_mul 2 p). +Qed. + +Lemma inj_xI p : to_nat (xI p) = S (2 * to_nat p). +Proof. + now rewrite xI_succ_xO, inj_succ, inj_xO. +Qed. + +(** [Pos.to_nat] maps to the strictly positive subset of [nat] *) + +Lemma is_succ : forall p, exists n, to_nat p = S n. +Proof. + induction p using peano_ind. + now exists 0. + destruct IHp as (n,Hn). exists (S n). now rewrite inj_succ, Hn. +Qed. + +(** [Pos.to_nat] is strictly positive *) + +Lemma is_pos p : 0 < to_nat p. +Proof. + destruct (is_succ p) as (n,->). auto with arith. +Qed. + +(** [Pos.to_nat] is a bijection between [positive] and + non-zero [nat], with [Pos.of_nat] as reciprocal. + See [Nat2Pos.id] below for the dual equation. *) + +Theorem id p : of_nat (to_nat p) = p. +Proof. + induction p using peano_ind. trivial. + rewrite inj_succ. rewrite <- IHp at 2. + now destruct (is_succ p) as (n,->). +Qed. + +(** [Pos.to_nat] is hence injective *) + +Lemma inj p q : to_nat p = to_nat q -> p = q. +Proof. + intros H. now rewrite <- (id p), <- (id q), H. +Qed. + +Lemma inj_iff p q : to_nat p = to_nat q <-> p = q. +Proof. + split. apply inj. intros; now subst. +Qed. + +(** [Pos.to_nat] is a morphism for comparison *) + +Lemma inj_compare p q : (p ?= q) = nat_compare (to_nat p) (to_nat q). +Proof. + revert q. induction p as [ |p IH] using peano_ind; intros q. + destruct (succ_pred_or q) as [Hq|Hq]; [now subst|]. + rewrite <- Hq, lt_1_succ, inj_succ, inj_1, nat_compare_S. + symmetry. apply nat_compare_lt, is_pos. + destruct (succ_pred_or q) as [Hq|Hq]; [subst|]. + rewrite compare_antisym, lt_1_succ, inj_succ. simpl. + symmetry. apply nat_compare_gt, is_pos. + now rewrite <- Hq, 2 inj_succ, compare_succ_succ, IH. +Qed. + +(** [Pos.to_nat] is a morphism for [lt], [le], etc *) + +Lemma inj_lt p q : (p < q)%positive <-> to_nat p < to_nat q. +Proof. + unfold lt. now rewrite inj_compare, nat_compare_lt. +Qed. + +Lemma inj_le p q : (p <= q)%positive <-> to_nat p <= to_nat q. +Proof. + unfold le. now rewrite inj_compare, nat_compare_le. +Qed. + +Lemma inj_gt p q : (p > q)%positive <-> to_nat p > to_nat q. +Proof. + unfold gt. now rewrite inj_compare, nat_compare_gt. +Qed. + +Lemma inj_ge p q : (p >= q)%positive <-> to_nat p >= to_nat q. +Proof. + unfold ge. now rewrite inj_compare, nat_compare_ge. +Qed. + +(** [Pos.to_nat] is a morphism for subtraction *) + +Theorem inj_sub p q : (q < p)%positive -> + to_nat (p - q) = to_nat p - to_nat q. +Proof. + intro H; apply plus_reg_l with (to_nat q); rewrite le_plus_minus_r. + now rewrite <- inj_add, add_comm, sub_add. + now apply lt_le_weak, inj_lt. +Qed. + +Theorem inj_sub_max p q : + to_nat (p - q) = Peano.max 1 (to_nat p - to_nat q). +Proof. + destruct (ltb_spec q p). + rewrite <- inj_sub by trivial. + now destruct (is_succ (p - q)) as (m,->). + rewrite sub_le by trivial. + replace (to_nat p - to_nat q) with 0; trivial. + apply le_n_0_eq. + rewrite <- (minus_diag (to_nat p)). + now apply minus_le_compat_l, inj_le. +Qed. + +Theorem inj_pred p : (1 < p)%positive -> + to_nat (pred p) = Peano.pred (to_nat p). +Proof. + intros H. now rewrite <- Pos.sub_1_r, inj_sub, pred_of_minus. +Qed. + +Theorem inj_pred_max p : + to_nat (pred p) = Peano.max 1 (Peano.pred (to_nat p)). +Proof. + rewrite <- Pos.sub_1_r, pred_of_minus. apply inj_sub_max. +Qed. + +(** [Pos.to_nat] and other operations *) + +Lemma inj_min p q : + to_nat (min p q) = Peano.min (to_nat p) (to_nat q). +Proof. + unfold min. rewrite inj_compare. + case nat_compare_spec; intros H; symmetry. + apply Peano.min_l. now rewrite H. + now apply Peano.min_l, lt_le_weak. + now apply Peano.min_r, lt_le_weak. +Qed. + +Lemma inj_max p q : + to_nat (max p q) = Peano.max (to_nat p) (to_nat q). +Proof. + unfold max. rewrite inj_compare. + case nat_compare_spec; intros H; symmetry. + apply Peano.max_r. now rewrite H. + now apply Peano.max_r, lt_le_weak. + now apply Peano.max_l, lt_le_weak. +Qed. + +Theorem inj_iter : + forall p {A} (f:A->A) (x:A), + Pos.iter p f x = nat_iter (to_nat p) f x. +Proof. + induction p using peano_ind. trivial. + intros. rewrite inj_succ, iter_succ. simpl. now f_equal. +Qed. + +End Pos2Nat. + +Module Nat2Pos. + +(** [Pos.of_nat] is a bijection between non-zero [nat] and + [positive], with [Pos.to_nat] as reciprocal. + See [Pos2Nat.id] above for the dual equation. *) + +Theorem id (n:nat) : n<>0 -> Pos.to_nat (Pos.of_nat n) = n. +Proof. + induction n as [|n H]; trivial. now destruct 1. + intros _. simpl. destruct n. trivial. + rewrite Pos2Nat.inj_succ. f_equal. now apply H. +Qed. + +Theorem id_max (n:nat) : Pos.to_nat (Pos.of_nat n) = max 1 n. +Proof. + destruct n. trivial. now rewrite id. +Qed. + +(** [Pos.of_nat] is hence injective for non-zero numbers *) + +Lemma inj (n m : nat) : n<>0 -> m<>0 -> Pos.of_nat n = Pos.of_nat m -> n = m. +Proof. + intros Hn Hm H. now rewrite <- (id n), <- (id m), H. +Qed. + +Lemma inj_iff (n m : nat) : n<>0 -> m<>0 -> + (Pos.of_nat n = Pos.of_nat m <-> n = m). +Proof. + split. now apply inj. intros; now subst. +Qed. + +(** Usual operations are morphisms with respect to [Pos.of_nat] + for non-zero numbers. *) + +Lemma inj_succ (n:nat) : n<>0 -> Pos.of_nat (S n) = Pos.succ (Pos.of_nat n). +Proof. +intro H. apply Pos2Nat.inj. now rewrite Pos2Nat.inj_succ, !id. +Qed. + +Lemma inj_pred (n:nat) : Pos.of_nat (pred n) = Pos.pred (Pos.of_nat n). +Proof. + destruct n as [|[|n]]; trivial. simpl. now rewrite Pos.pred_succ. +Qed. + +Lemma inj_add (n m : nat) : n<>0 -> m<>0 -> + Pos.of_nat (n+m) = (Pos.of_nat n + Pos.of_nat m)%positive. +Proof. +intros Hn Hm. apply Pos2Nat.inj. +rewrite Pos2Nat.inj_add, !id; trivial. +intros H. destruct n. now destruct Hn. now simpl in H. +Qed. + +Lemma inj_mul (n m : nat) : n<>0 -> m<>0 -> + Pos.of_nat (n*m) = (Pos.of_nat n * Pos.of_nat m)%positive. +Proof. +intros Hn Hm. apply Pos2Nat.inj. +rewrite Pos2Nat.inj_mul, !id; trivial. +intros H. apply mult_is_O in H. destruct H. now elim Hn. now elim Hm. +Qed. + +Lemma inj_compare (n m : nat) : n<>0 -> m<>0 -> + nat_compare n m = (Pos.of_nat n ?= Pos.of_nat m). +Proof. +intros Hn Hm. rewrite Pos2Nat.inj_compare, !id; trivial. +Qed. + +Lemma inj_sub (n m : nat) : m<>0 -> + Pos.of_nat (n-m) = (Pos.of_nat n - Pos.of_nat m)%positive. +Proof. + intros Hm. + apply Pos2Nat.inj. + rewrite Pos2Nat.inj_sub_max. + rewrite (id m) by trivial. rewrite !id_max. + destruct n, m; trivial. +Qed. + +Lemma inj_min (n m : nat) : + Pos.of_nat (min n m) = Pos.min (Pos.of_nat n) (Pos.of_nat m). +Proof. + destruct n as [|n]. simpl. symmetry. apply Pos.min_l, Pos.le_1_l. + destruct m as [|m]. simpl. symmetry. apply Pos.min_r, Pos.le_1_l. + unfold Pos.min. rewrite <- inj_compare by easy. + case nat_compare_spec; intros H; f_equal; apply min_l || apply min_r. + rewrite H; auto. now apply lt_le_weak. now apply lt_le_weak. +Qed. + +Lemma inj_max (n m : nat) : + Pos.of_nat (max n m) = Pos.max (Pos.of_nat n) (Pos.of_nat m). +Proof. + destruct n as [|n]. simpl. symmetry. apply Pos.max_r, Pos.le_1_l. + destruct m as [|m]. simpl. symmetry. apply Pos.max_l, Pos.le_1_l. + unfold Pos.max. rewrite <- inj_compare by easy. + case nat_compare_spec; intros H; f_equal; apply max_l || apply max_r. + rewrite H; auto. now apply lt_le_weak. now apply lt_le_weak. +Qed. + +End Nat2Pos. + +(**********************************************************************) +(** Properties of the shifted injection from Peano natural numbers + to binary positive numbers *) + +Module Pos2SuccNat. + +(** Composition of [Pos.to_nat] and [Pos.of_succ_nat] is successor + on [positive] *) + +Theorem id_succ p : Pos.of_succ_nat (Pos.to_nat p) = Pos.succ p. +Proof. +rewrite Pos.of_nat_succ, <- Pos2Nat.inj_succ. apply Pos2Nat.id. +Qed. + +(** Composition of [Pos.to_nat], [Pos.of_succ_nat] and [Pos.pred] + is identity on [positive] *) + +Theorem pred_id p : Pos.pred (Pos.of_succ_nat (Pos.to_nat p)) = p. +Proof. +now rewrite id_succ, Pos.pred_succ. +Qed. + +End Pos2SuccNat. + +Module SuccNat2Pos. + +(** Composition of [Pos.of_succ_nat] and [Pos.to_nat] is successor on [nat] *) + +Theorem id_succ (n:nat) : Pos.to_nat (Pos.of_succ_nat n) = S n. +Proof. +rewrite Pos.of_nat_succ. now apply Nat2Pos.id. +Qed. + +Theorem pred_id (n:nat) : pred (Pos.to_nat (Pos.of_succ_nat n)) = n. +Proof. +now rewrite id_succ. +Qed. + +(** [Pos.of_succ_nat] is hence injective *) + +Lemma inj (n m : nat) : Pos.of_succ_nat n = Pos.of_succ_nat m -> n = m. +Proof. + intro H. apply (f_equal Pos.to_nat) in H. rewrite !id_succ in H. + now injection H. +Qed. + +Lemma inj_iff (n m : nat) : Pos.of_succ_nat n = Pos.of_succ_nat m <-> n = m. +Proof. + split. apply inj. intros; now subst. +Qed. + +(** Another formulation *) + +Theorem inv n p : Pos.to_nat p = S n -> Pos.of_succ_nat n = p. +Proof. + intros H. apply Pos2Nat.inj. now rewrite id_succ. +Qed. + +(** Successor and comparison are morphisms with respect to + [Pos.of_succ_nat] *) + +Lemma inj_succ n : Pos.of_succ_nat (S n) = Pos.succ (Pos.of_succ_nat n). +Proof. +apply Pos2Nat.inj. now rewrite Pos2Nat.inj_succ, !id_succ. +Qed. + +Lemma inj_compare n m : + nat_compare n m = (Pos.of_succ_nat n ?= Pos.of_succ_nat m). +Proof. +rewrite Pos2Nat.inj_compare, !id_succ; trivial. +Qed. + +(** Other operations, for instance [Pos.add] and [plus] aren't + directly related this way (we would need to compensate for + the successor hidden in [Pos.of_succ_nat] *) + +End SuccNat2Pos. + +(** For compatibility, old names and old-style lemmas *) + +Notation Psucc_S := Pos2Nat.inj_succ (only parsing). +Notation Pplus_plus := Pos2Nat.inj_add (only parsing). +Notation Pmult_mult := Pos2Nat.inj_mul (only parsing). +Notation Pcompare_nat_compare := Pos2Nat.inj_compare (only parsing). +Notation nat_of_P_xH := Pos2Nat.inj_1 (only parsing). +Notation nat_of_P_xO := Pos2Nat.inj_xO (only parsing). +Notation nat_of_P_xI := Pos2Nat.inj_xI (only parsing). +Notation nat_of_P_is_S := Pos2Nat.is_succ (only parsing). +Notation nat_of_P_pos := Pos2Nat.is_pos (only parsing). +Notation nat_of_P_inj_iff := Pos2Nat.inj_iff (only parsing). +Notation nat_of_P_inj := Pos2Nat.inj (only parsing). +Notation Plt_lt := Pos2Nat.inj_lt (only parsing). +Notation Pgt_gt := Pos2Nat.inj_gt (only parsing). +Notation Ple_le := Pos2Nat.inj_le (only parsing). +Notation Pge_ge := Pos2Nat.inj_ge (only parsing). +Notation Pminus_minus := Pos2Nat.inj_sub (only parsing). +Notation iter_nat_of_P := @Pos2Nat.inj_iter (only parsing). + +Notation nat_of_P_of_succ_nat := SuccNat2Pos.id_succ (only parsing). +Notation P_of_succ_nat_of_P := Pos2SuccNat.id_succ (only parsing). + +Notation nat_of_P_succ_morphism := Pos2Nat.inj_succ (only parsing). +Notation nat_of_P_plus_morphism := Pos2Nat.inj_add (only parsing). +Notation nat_of_P_mult_morphism := Pos2Nat.inj_mul (only parsing). +Notation nat_of_P_compare_morphism := Pos2Nat.inj_compare (only parsing). +Notation lt_O_nat_of_P := Pos2Nat.is_pos (only parsing). +Notation ZL4 := Pos2Nat.is_succ (only parsing). +Notation nat_of_P_o_P_of_succ_nat_eq_succ := SuccNat2Pos.id_succ (only parsing). +Notation P_of_succ_nat_o_nat_of_P_eq_succ := Pos2SuccNat.id_succ (only parsing). +Notation pred_o_P_of_succ_nat_o_nat_of_P_eq_id := Pos2SuccNat.pred_id (only parsing). + +Lemma nat_of_P_minus_morphism p q : + Pcompare p q Eq = Gt -> Pos.to_nat (p - q) = Pos.to_nat p - Pos.to_nat q. +Proof (fun H => Pos2Nat.inj_sub p q (ZC1 _ _ H)). + +Lemma nat_of_P_lt_Lt_compare_morphism p q : + Pcompare p q Eq = Lt -> Pos.to_nat p < Pos.to_nat q. +Proof (proj1 (Pos2Nat.inj_lt p q)). + +Lemma nat_of_P_gt_Gt_compare_morphism p q : + Pcompare p q Eq = Gt -> Pos.to_nat p > Pos.to_nat q. +Proof (proj1 (Pos2Nat.inj_gt p q)). + +Lemma nat_of_P_lt_Lt_compare_complement_morphism p q : + Pos.to_nat p < Pos.to_nat q -> Pcompare p q Eq = Lt. +Proof (proj2 (Pos2Nat.inj_lt p q)). + +Definition nat_of_P_gt_Gt_compare_complement_morphism p q : + Pos.to_nat p > Pos.to_nat q -> Pcompare p q Eq = Gt. +Proof (proj2 (Pos2Nat.inj_gt p q)). + +(** Old intermediate results about [Pmult_nat] *) + +Section ObsoletePmultNat. + +Lemma Pmult_nat_mult : forall p n, + Pmult_nat p n = Pos.to_nat p * n. +Proof. + induction p; intros n; unfold Pos.to_nat; simpl. + f_equal. rewrite 2 IHp. rewrite <- mult_assoc. + f_equal. simpl. now rewrite <- plus_n_O. + rewrite 2 IHp. rewrite <- mult_assoc. + f_equal. simpl. now rewrite <- plus_n_O. + simpl. now rewrite <- plus_n_O. +Qed. + +Lemma Pmult_nat_succ_morphism : + forall p n, Pmult_nat (Psucc p) n = n + Pmult_nat p n. +Proof. + intros. now rewrite !Pmult_nat_mult, Pos2Nat.inj_succ. +Qed. + +Theorem Pmult_nat_l_plus_morphism : + forall p q n, Pmult_nat (p + q) n = Pmult_nat p n + Pmult_nat q n. +Proof. + intros. rewrite !Pmult_nat_mult, Pos2Nat.inj_add. apply mult_plus_distr_r. +Qed. + +Theorem Pmult_nat_plus_carry_morphism : + forall p q n, Pmult_nat (Pplus_carry p q) n = n + Pmult_nat (p + q) n. +Proof. + intros. now rewrite Pos.add_carry_spec, Pmult_nat_succ_morphism. +Qed. + +Lemma Pmult_nat_r_plus_morphism : + forall p n, Pmult_nat p (n + n) = Pmult_nat p n + Pmult_nat p n. +Proof. + intros. rewrite !Pmult_nat_mult. apply mult_plus_distr_l. +Qed. + +Lemma ZL6 : forall p, Pmult_nat p 2 = Pos.to_nat p + Pos.to_nat p. +Proof. + intros. rewrite Pmult_nat_mult, mult_comm. simpl. now rewrite <- plus_n_O. +Qed. + +Lemma le_Pmult_nat : forall p n, n <= Pmult_nat p n. +Proof. + intros. rewrite Pmult_nat_mult. + apply le_trans with (1*n). now rewrite mult_1_l. + apply mult_le_compat_r. apply Pos2Nat.is_pos. +Qed. + +End ObsoletePmultNat. |