summaryrefslogtreecommitdiff
path: root/theories/PArith/Pnat.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/PArith/Pnat.v')
-rw-r--r--theories/PArith/Pnat.v136
1 files changed, 70 insertions, 66 deletions
diff --git a/theories/PArith/Pnat.v b/theories/PArith/Pnat.v
index 449a6700..e529a8c4 100644
--- a/theories/PArith/Pnat.v
+++ b/theories/PArith/Pnat.v
@@ -1,13 +1,13 @@
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-Require Import BinPos Le Lt Gt Plus Mult Minus Compare_dec.
+Require Import BinPos PeanoNat.
(** Properties of the injection from binary positive numbers
to Peano natural numbers *)
@@ -25,7 +25,7 @@ Module Pos2Nat.
Lemma inj_succ p : to_nat (succ p) = S (to_nat p).
Proof.
unfold to_nat. rewrite iter_op_succ. trivial.
- apply plus_assoc.
+ apply Nat.add_assoc.
Qed.
Theorem inj_add p q : to_nat (p + q) = to_nat p + to_nat q.
@@ -99,38 +99,38 @@ Qed.
(** [Pos.to_nat] is a morphism for comparison *)
-Lemma inj_compare p q : (p ?= q) = nat_compare (to_nat p) (to_nat q).
+Lemma inj_compare p q : (p ?= q)%positive = (to_nat p ?= to_nat q).
Proof.
revert q. induction p as [ |p IH] using peano_ind; intros q.
- destruct (succ_pred_or q) as [Hq|Hq]; [now subst|].
- rewrite <- Hq, lt_1_succ, inj_succ, inj_1, nat_compare_S.
- symmetry. apply nat_compare_lt, is_pos.
- destruct (succ_pred_or q) as [Hq|Hq]; [subst|].
- rewrite compare_antisym, lt_1_succ, inj_succ. simpl.
- symmetry. apply nat_compare_gt, is_pos.
- now rewrite <- Hq, 2 inj_succ, compare_succ_succ, IH.
+ - destruct (succ_pred_or q) as [Hq|Hq]; [now subst|].
+ rewrite <- Hq, lt_1_succ, inj_succ, inj_1, Nat.compare_succ.
+ symmetry. apply Nat.compare_lt_iff, is_pos.
+ - destruct (succ_pred_or q) as [Hq|Hq]; [subst|].
+ rewrite compare_antisym, lt_1_succ, inj_succ. simpl.
+ symmetry. apply Nat.compare_gt_iff, is_pos.
+ now rewrite <- Hq, 2 inj_succ, compare_succ_succ, IH.
Qed.
(** [Pos.to_nat] is a morphism for [lt], [le], etc *)
Lemma inj_lt p q : (p < q)%positive <-> to_nat p < to_nat q.
Proof.
- unfold lt. now rewrite inj_compare, nat_compare_lt.
+ unfold lt. now rewrite inj_compare, Nat.compare_lt_iff.
Qed.
Lemma inj_le p q : (p <= q)%positive <-> to_nat p <= to_nat q.
Proof.
- unfold le. now rewrite inj_compare, nat_compare_le.
+ unfold le. now rewrite inj_compare, Nat.compare_le_iff.
Qed.
Lemma inj_gt p q : (p > q)%positive <-> to_nat p > to_nat q.
Proof.
- unfold gt. now rewrite inj_compare, nat_compare_gt.
+ unfold gt. now rewrite inj_compare, Nat.compare_gt_iff.
Qed.
Lemma inj_ge p q : (p >= q)%positive <-> to_nat p >= to_nat q.
Proof.
- unfold ge. now rewrite inj_compare, nat_compare_ge.
+ unfold ge. now rewrite inj_compare, Nat.compare_ge_iff.
Qed.
(** [Pos.to_nat] is a morphism for subtraction *)
@@ -138,64 +138,66 @@ Qed.
Theorem inj_sub p q : (q < p)%positive ->
to_nat (p - q) = to_nat p - to_nat q.
Proof.
- intro H; apply plus_reg_l with (to_nat q); rewrite le_plus_minus_r.
- now rewrite <- inj_add, add_comm, sub_add.
- now apply lt_le_weak, inj_lt.
+ intro H. apply Nat.add_cancel_r with (to_nat q).
+ rewrite Nat.sub_add.
+ now rewrite <- inj_add, sub_add.
+ now apply Nat.lt_le_incl, inj_lt.
Qed.
Theorem inj_sub_max p q :
- to_nat (p - q) = Peano.max 1 (to_nat p - to_nat q).
+ to_nat (p - q) = Nat.max 1 (to_nat p - to_nat q).
Proof.
destruct (ltb_spec q p).
- rewrite <- inj_sub by trivial.
- now destruct (is_succ (p - q)) as (m,->).
- rewrite sub_le by trivial.
- replace (to_nat p - to_nat q) with 0; trivial.
- apply le_n_0_eq.
- rewrite <- (minus_diag (to_nat p)).
- now apply minus_le_compat_l, inj_le.
+ - (* q < p *)
+ rewrite <- inj_sub by trivial.
+ now destruct (is_succ (p - q)) as (m,->).
+ - (* p <= q *)
+ rewrite sub_le by trivial.
+ apply inj_le, Nat.sub_0_le in H. now rewrite H.
Qed.
Theorem inj_pred p : (1 < p)%positive ->
- to_nat (pred p) = Peano.pred (to_nat p).
+ to_nat (pred p) = Nat.pred (to_nat p).
Proof.
- intros H. now rewrite <- Pos.sub_1_r, inj_sub, pred_of_minus.
+ intros. now rewrite <- Pos.sub_1_r, inj_sub, Nat.sub_1_r.
Qed.
Theorem inj_pred_max p :
- to_nat (pred p) = Peano.max 1 (Peano.pred (to_nat p)).
+ to_nat (pred p) = Nat.max 1 (Peano.pred (to_nat p)).
Proof.
- rewrite <- Pos.sub_1_r, pred_of_minus. apply inj_sub_max.
+ rewrite <- Pos.sub_1_r, <- Nat.sub_1_r. apply inj_sub_max.
Qed.
(** [Pos.to_nat] and other operations *)
Lemma inj_min p q :
- to_nat (min p q) = Peano.min (to_nat p) (to_nat q).
+ to_nat (min p q) = Nat.min (to_nat p) (to_nat q).
Proof.
unfold min. rewrite inj_compare.
- case nat_compare_spec; intros H; symmetry.
- apply Peano.min_l. now rewrite H.
- now apply Peano.min_l, lt_le_weak.
- now apply Peano.min_r, lt_le_weak.
+ case Nat.compare_spec; intros H; symmetry.
+ - apply Nat.min_l. now rewrite H.
+ - now apply Nat.min_l, Nat.lt_le_incl.
+ - now apply Nat.min_r, Nat.lt_le_incl.
Qed.
Lemma inj_max p q :
- to_nat (max p q) = Peano.max (to_nat p) (to_nat q).
+ to_nat (max p q) = Nat.max (to_nat p) (to_nat q).
Proof.
unfold max. rewrite inj_compare.
- case nat_compare_spec; intros H; symmetry.
- apply Peano.max_r. now rewrite H.
- now apply Peano.max_r, lt_le_weak.
- now apply Peano.max_l, lt_le_weak.
+ case Nat.compare_spec; intros H; symmetry.
+ - apply Nat.max_r. now rewrite H.
+ - now apply Nat.max_r, Nat.lt_le_incl.
+ - now apply Nat.max_l, Nat.lt_le_incl.
Qed.
Theorem inj_iter :
forall p {A} (f:A->A) (x:A),
- Pos.iter p f x = nat_iter (to_nat p) f x.
+ Pos.iter f x p = nat_rect _ x (fun _ => f) (to_nat p).
Proof.
- induction p using peano_ind. trivial.
- intros. rewrite inj_succ, iter_succ. simpl. now f_equal.
+ induction p using peano_ind.
+ - trivial.
+ - intros. rewrite inj_succ, iter_succ.
+ simpl. f_equal. apply IHp.
Qed.
End Pos2Nat.
@@ -209,7 +211,7 @@ Module Nat2Pos.
Theorem id (n:nat) : n<>0 -> Pos.to_nat (Pos.of_nat n) = n.
Proof.
induction n as [|n H]; trivial. now destruct 1.
- intros _. simpl. destruct n. trivial.
+ intros _. simpl Pos.of_nat. destruct n. trivial.
rewrite Pos2Nat.inj_succ. f_equal. now apply H.
Qed.
@@ -257,11 +259,11 @@ Lemma inj_mul (n m : nat) : n<>0 -> m<>0 ->
Proof.
intros Hn Hm. apply Pos2Nat.inj.
rewrite Pos2Nat.inj_mul, !id; trivial.
-intros H. apply mult_is_O in H. destruct H. now elim Hn. now elim Hm.
+intros H. apply Nat.mul_eq_0 in H. destruct H. now elim Hn. now elim Hm.
Qed.
Lemma inj_compare (n m : nat) : n<>0 -> m<>0 ->
- nat_compare n m = (Pos.of_nat n ?= Pos.of_nat m).
+ (n ?= m) = (Pos.of_nat n ?= Pos.of_nat m)%positive.
Proof.
intros Hn Hm. rewrite Pos2Nat.inj_compare, !id; trivial.
Qed.
@@ -282,8 +284,9 @@ Proof.
destruct n as [|n]. simpl. symmetry. apply Pos.min_l, Pos.le_1_l.
destruct m as [|m]. simpl. symmetry. apply Pos.min_r, Pos.le_1_l.
unfold Pos.min. rewrite <- inj_compare by easy.
- case nat_compare_spec; intros H; f_equal; apply min_l || apply min_r.
- rewrite H; auto. now apply lt_le_weak. now apply lt_le_weak.
+ case Nat.compare_spec; intros H; f_equal;
+ apply Nat.min_l || apply Nat.min_r.
+ rewrite H; auto. now apply Nat.lt_le_incl. now apply Nat.lt_le_incl.
Qed.
Lemma inj_max (n m : nat) :
@@ -292,8 +295,9 @@ Proof.
destruct n as [|n]. simpl. symmetry. apply Pos.max_r, Pos.le_1_l.
destruct m as [|m]. simpl. symmetry. apply Pos.max_l, Pos.le_1_l.
unfold Pos.max. rewrite <- inj_compare by easy.
- case nat_compare_spec; intros H; f_equal; apply max_l || apply max_r.
- rewrite H; auto. now apply lt_le_weak. now apply lt_le_weak.
+ case Nat.compare_spec; intros H; f_equal;
+ apply Nat.max_l || apply Nat.max_r.
+ rewrite H; auto. now apply Nat.lt_le_incl. now apply Nat.lt_le_incl.
Qed.
End Nat2Pos.
@@ -365,7 +369,7 @@ apply Pos2Nat.inj. now rewrite Pos2Nat.inj_succ, !id_succ.
Qed.
Lemma inj_compare n m :
- nat_compare n m = (Pos.of_succ_nat n ?= Pos.of_succ_nat m).
+ (n ?= m) = (Pos.of_succ_nat n ?= Pos.of_succ_nat m)%positive.
Proof.
rewrite Pos2Nat.inj_compare, !id_succ; trivial.
Qed.
@@ -410,24 +414,24 @@ Notation P_of_succ_nat_o_nat_of_P_eq_succ := Pos2SuccNat.id_succ (compat "8.3").
Notation pred_o_P_of_succ_nat_o_nat_of_P_eq_id := Pos2SuccNat.pred_id (compat "8.3").
Lemma nat_of_P_minus_morphism p q :
- Pos.compare_cont p q Eq = Gt ->
+ Pos.compare_cont Eq p q = Gt ->
Pos.to_nat (p - q) = Pos.to_nat p - Pos.to_nat q.
Proof (fun H => Pos2Nat.inj_sub p q (Pos.gt_lt _ _ H)).
Lemma nat_of_P_lt_Lt_compare_morphism p q :
- Pos.compare_cont p q Eq = Lt -> Pos.to_nat p < Pos.to_nat q.
+ Pos.compare_cont Eq p q = Lt -> Pos.to_nat p < Pos.to_nat q.
Proof (proj1 (Pos2Nat.inj_lt p q)).
Lemma nat_of_P_gt_Gt_compare_morphism p q :
- Pos.compare_cont p q Eq = Gt -> Pos.to_nat p > Pos.to_nat q.
+ Pos.compare_cont Eq p q = Gt -> Pos.to_nat p > Pos.to_nat q.
Proof (proj1 (Pos2Nat.inj_gt p q)).
Lemma nat_of_P_lt_Lt_compare_complement_morphism p q :
- Pos.to_nat p < Pos.to_nat q -> Pos.compare_cont p q Eq = Lt.
+ Pos.to_nat p < Pos.to_nat q -> Pos.compare_cont Eq p q = Lt.
Proof (proj2 (Pos2Nat.inj_lt p q)).
Definition nat_of_P_gt_Gt_compare_complement_morphism p q :
- Pos.to_nat p > Pos.to_nat q -> Pos.compare_cont p q Eq = Gt.
+ Pos.to_nat p > Pos.to_nat q -> Pos.compare_cont Eq p q = Gt.
Proof (proj2 (Pos2Nat.inj_gt p q)).
(** Old intermediate results about [Pmult_nat] *)
@@ -438,11 +442,11 @@ Lemma Pmult_nat_mult : forall p n,
Pmult_nat p n = Pos.to_nat p * n.
Proof.
induction p; intros n; unfold Pos.to_nat; simpl.
- f_equal. rewrite 2 IHp. rewrite <- mult_assoc.
- f_equal. simpl. now rewrite <- plus_n_O.
- rewrite 2 IHp. rewrite <- mult_assoc.
- f_equal. simpl. now rewrite <- plus_n_O.
- simpl. now rewrite <- plus_n_O.
+ f_equal. rewrite 2 IHp. rewrite <- Nat.mul_assoc.
+ f_equal. simpl. now rewrite Nat.add_0_r.
+ rewrite 2 IHp. rewrite <- Nat.mul_assoc.
+ f_equal. simpl. now rewrite Nat.add_0_r.
+ simpl. now rewrite Nat.add_0_r.
Qed.
Lemma Pmult_nat_succ_morphism :
@@ -454,7 +458,7 @@ Qed.
Theorem Pmult_nat_l_plus_morphism :
forall p q n, Pmult_nat (p + q) n = Pmult_nat p n + Pmult_nat q n.
Proof.
- intros. rewrite !Pmult_nat_mult, Pos2Nat.inj_add. apply mult_plus_distr_r.
+ intros. rewrite !Pmult_nat_mult, Pos2Nat.inj_add. apply Nat.mul_add_distr_r.
Qed.
Theorem Pmult_nat_plus_carry_morphism :
@@ -466,19 +470,19 @@ Qed.
Lemma Pmult_nat_r_plus_morphism :
forall p n, Pmult_nat p (n + n) = Pmult_nat p n + Pmult_nat p n.
Proof.
- intros. rewrite !Pmult_nat_mult. apply mult_plus_distr_l.
+ intros. rewrite !Pmult_nat_mult. apply Nat.mul_add_distr_l.
Qed.
Lemma ZL6 : forall p, Pmult_nat p 2 = Pos.to_nat p + Pos.to_nat p.
Proof.
- intros. rewrite Pmult_nat_mult, mult_comm. simpl. now rewrite <- plus_n_O.
+ intros. rewrite Pmult_nat_mult, Nat.mul_comm. simpl. now rewrite Nat.add_0_r.
Qed.
Lemma le_Pmult_nat : forall p n, n <= Pmult_nat p n.
Proof.
intros. rewrite Pmult_nat_mult.
- apply le_trans with (1*n). now rewrite mult_1_l.
- apply mult_le_compat_r. apply Pos2Nat.is_pos.
+ apply Nat.le_trans with (1*n). now rewrite Nat.mul_1_l.
+ apply Nat.mul_le_mono_r. apply Pos2Nat.is_pos.
Qed.
End ObsoletePmultNat.