diff options
Diffstat (limited to 'theories/Numbers/Rational/SpecViaQ/QSig.v')
-rw-r--r-- | theories/Numbers/Rational/SpecViaQ/QSig.v | 10 |
1 files changed, 8 insertions, 2 deletions
diff --git a/theories/Numbers/Rational/SpecViaQ/QSig.v b/theories/Numbers/Rational/SpecViaQ/QSig.v index a40d9405..8e20fd06 100644 --- a/theories/Numbers/Rational/SpecViaQ/QSig.v +++ b/theories/Numbers/Rational/SpecViaQ/QSig.v @@ -115,7 +115,10 @@ Ltac solve_wd2 := intros x x' Hx y y' Hy; qify; now rewrite Hx, Hy. Local Obligation Tactic := solve_wd2 || solve_wd1. Instance : Measure to_Q. -Instance eq_equiv : Equivalence eq := {}. +Instance eq_equiv : Equivalence eq. +Proof. + change eq with (RelCompFun Qeq to_Q); apply _. +Defined. Program Instance lt_wd : Proper (eq==>eq==>iff) lt. Program Instance le_wd : Proper (eq==>eq==>iff) le. @@ -141,7 +144,10 @@ Proof. intros. qify. destruct (Qcompare_spec [x] [y]); auto. Qed. (** Let's implement [TotalOrder] *) Definition lt_compat := lt_wd. -Instance lt_strorder : StrictOrder lt := {}. +Instance lt_strorder : StrictOrder lt. +Proof. + change lt with (RelCompFun Qlt to_Q); apply _. +Qed. Lemma le_lteq : forall x y, x<=y <-> x<y \/ x==y. Proof. intros. qify. apply Qle_lteq. Qed. |