summaryrefslogtreecommitdiff
path: root/theories/Numbers/Rational/BigQ
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Rational/BigQ')
-rw-r--r--theories/Numbers/Rational/BigQ/BigQ.v35
-rw-r--r--theories/Numbers/Rational/BigQ/Q0Make.v1412
-rw-r--r--theories/Numbers/Rational/BigQ/QMake_base.v34
-rw-r--r--theories/Numbers/Rational/BigQ/QbiMake.v1066
-rw-r--r--theories/Numbers/Rational/BigQ/QifMake.v979
-rw-r--r--theories/Numbers/Rational/BigQ/QpMake.v901
-rw-r--r--theories/Numbers/Rational/BigQ/QvMake.v1151
7 files changed, 5578 insertions, 0 deletions
diff --git a/theories/Numbers/Rational/BigQ/BigQ.v b/theories/Numbers/Rational/BigQ/BigQ.v
new file mode 100644
index 00000000..39e120f7
--- /dev/null
+++ b/theories/Numbers/Rational/BigQ/BigQ.v
@@ -0,0 +1,35 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: BigQ.v 11028 2008-06-01 17:34:19Z letouzey $ i*)
+
+Require Export QMake_base.
+Require Import QpMake.
+Require Import QvMake.
+Require Import Q0Make.
+Require Import QifMake.
+Require Import QbiMake.
+
+(* We choose for Q the implemention with
+ multiple representation of 0: 0, 1/0, 2/0 etc *)
+
+Module BigQ <: QSig.QType := Q0.
+
+Notation bigQ := BigQ.t.
+
+Delimit Scope bigQ_scope with bigQ.
+Bind Scope bigQ_scope with bigQ.
+Bind Scope bigQ_scope with BigQ.t.
+
+Notation " i + j " := (BigQ.add i j) : bigQ_scope.
+Notation " i - j " := (BigQ.sub i j) : bigQ_scope.
+Notation " i * j " := (BigQ.mul i j) : bigQ_scope.
+Notation " i / j " := (BigQ.div i j) : bigQ_scope.
+Notation " i ?= j " := (BigQ.compare i j) : bigQ_scope.
diff --git a/theories/Numbers/Rational/BigQ/Q0Make.v b/theories/Numbers/Rational/BigQ/Q0Make.v
new file mode 100644
index 00000000..93f52c03
--- /dev/null
+++ b/theories/Numbers/Rational/BigQ/Q0Make.v
@@ -0,0 +1,1412 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: Q0Make.v 11028 2008-06-01 17:34:19Z letouzey $ i*)
+
+Require Import Bool.
+Require Import ZArith.
+Require Import Znumtheory.
+Require Import BigNumPrelude.
+Require Import Arith.
+Require Export BigN.
+Require Export BigZ.
+Require Import QArith.
+Require Import Qcanon.
+Require Import Qpower.
+Require Import QSig.
+Require Import QMake_base.
+
+Module Q0 <: QType.
+
+ Import BinInt Zorder.
+
+ (** The notation of a rational number is either an integer x,
+ interpreted as itself or a pair (x,y) of an integer x and a natural
+ number y interpreted as x/y. The pairs (x,0) and (0,y) are all
+ interpreted as 0. *)
+
+ Definition t := q_type.
+
+ (** Specification with respect to [QArith] *)
+
+ Open Local Scope Q_scope.
+
+ Definition of_Z x: t := Qz (BigZ.of_Z x).
+
+ Definition of_Q q: t :=
+ match q with x # y =>
+ Qq (BigZ.of_Z x) (BigN.of_N (Npos y))
+ end.
+
+ Definition to_Q (q: t) :=
+ match q with
+ Qz x => BigZ.to_Z x # 1
+ |Qq x y => if BigN.eq_bool y BigN.zero then 0
+ else BigZ.to_Z x # Z2P (BigN.to_Z y)
+ end.
+
+ Notation "[ x ]" := (to_Q x).
+
+ Theorem strong_spec_of_Q: forall q: Q, [of_Q q] = q.
+ Proof.
+ intros (x,y); simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ rewrite BigN.spec_of_pos; intros HH; discriminate HH.
+ rewrite BigZ.spec_of_Z; simpl.
+ rewrite (BigN.spec_of_pos); auto.
+ Qed.
+
+ Theorem spec_of_Q: forall q: Q, [of_Q q] == q.
+ Proof.
+ intros; rewrite strong_spec_of_Q; red; auto.
+ Qed.
+
+ Definition eq x y := [x] == [y].
+
+ Definition zero: t := Qz BigZ.zero.
+ Definition one: t := Qz BigZ.one.
+ Definition minus_one: t := Qz BigZ.minus_one.
+
+ Lemma spec_0: [zero] == 0.
+ Proof.
+ reflexivity.
+ Qed.
+
+ Lemma spec_1: [one] == 1.
+ Proof.
+ reflexivity.
+ Qed.
+
+ Lemma spec_m1: [minus_one] == -(1).
+ Proof.
+ reflexivity.
+ Qed.
+
+ Definition opp (x: t): t :=
+ match x with
+ | Qz zx => Qz (BigZ.opp zx)
+ | Qq nx dx => Qq (BigZ.opp nx) dx
+ end.
+
+ Theorem strong_spec_opp: forall q, [opp q] = -[q].
+ Proof.
+ intros [z | x y]; simpl.
+ rewrite BigZ.spec_opp; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ rewrite BigZ.spec_opp; auto.
+ Qed.
+
+ Theorem spec_opp : forall q, [opp q] == -[q].
+ Proof.
+ intros; rewrite strong_spec_opp; red; auto.
+ Qed.
+
+ Definition compare (x y: t) :=
+ match x, y with
+ | Qz zx, Qz zy => BigZ.compare zx zy
+ | Qz zx, Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then BigZ.compare zx BigZ.zero
+ else BigZ.compare (BigZ.mul zx (BigZ.Pos dy)) ny
+ | Qq nx dx, Qz zy =>
+ if BigN.eq_bool dx BigN.zero then BigZ.compare BigZ.zero zy
+ else BigZ.compare nx (BigZ.mul zy (BigZ.Pos dx))
+ | Qq nx dx, Qq ny dy =>
+ match BigN.eq_bool dx BigN.zero, BigN.eq_bool dy BigN.zero with
+ | true, true => Eq
+ | true, false => BigZ.compare BigZ.zero ny
+ | false, true => BigZ.compare nx BigZ.zero
+ | false, false => BigZ.compare (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx))
+ end
+ end.
+
+ Theorem spec_compare: forall q1 q2, (compare q1 q2) = ([q1] ?= [q2]).
+ Proof.
+ intros [z1 | x1 y1] [z2 | x2 y2];
+ unfold Qcompare, compare, to_Q, Qnum, Qden.
+ repeat rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare z1 z2); case BigZ.compare; intros H; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ rewrite Zmult_1_r.
+ generalize (BigN.spec_eq_bool y2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ rewrite Zmult_1_r; generalize (BigZ.spec_compare z1 BigZ.zero);
+ case BigZ.compare; auto.
+ rewrite BigZ.spec_0; intros HH1; rewrite HH1; rewrite Zcompare_refl; auto.
+ rewrite Z2P_correct; auto with zarith.
+ 2: generalize (BigN.spec_pos y2); auto with zarith.
+ generalize (BigZ.spec_compare (z1 * BigZ.Pos y2) x2)%bigZ; case BigZ.compare;
+ rewrite BigZ.spec_mul; simpl; intros H; apply sym_equal; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ generalize (BigN.spec_eq_bool y1 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ rewrite Zmult_0_l; rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare BigZ.zero z2);
+ case BigZ.compare; auto.
+ rewrite BigZ.spec_0; intros HH1; rewrite <- HH1; rewrite Zcompare_refl; auto.
+ rewrite Z2P_correct; auto with zarith.
+ 2: generalize (BigN.spec_pos y1); auto with zarith.
+ rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare x1 (z2 * BigZ.Pos y1))%bigZ; case BigZ.compare;
+ rewrite BigZ.spec_mul; simpl; intros H; apply sym_equal; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ generalize (BigN.spec_eq_bool y1 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ generalize (BigN.spec_eq_bool y2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ rewrite Zcompare_refl; auto.
+ rewrite Zmult_0_l; rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare BigZ.zero x2);
+ case BigZ.compare; auto.
+ rewrite BigZ.spec_0; intros HH2; rewrite <- HH2; rewrite Zcompare_refl; auto.
+ generalize (BigN.spec_eq_bool y2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ rewrite Zmult_0_l; rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare x1 BigZ.zero)%bigZ; case BigZ.compare;
+ auto; rewrite BigZ.spec_0.
+ intros HH2; rewrite <- HH2; rewrite Zcompare_refl; auto.
+ repeat rewrite Z2P_correct.
+ 2: generalize (BigN.spec_pos y1); auto with zarith.
+ 2: generalize (BigN.spec_pos y2); auto with zarith.
+ generalize (BigZ.spec_compare (x1 * BigZ.Pos y2)
+ (x2 * BigZ.Pos y1))%bigZ; case BigZ.compare;
+ repeat rewrite BigZ.spec_mul; simpl; intros H; apply sym_equal; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ Qed.
+
+ Definition lt n m := compare n m = Lt.
+ Definition le n m := compare n m <> Gt.
+ Definition min n m := match compare n m with Gt => m | _ => n end.
+ Definition max n m := match compare n m with Lt => m | _ => n end.
+
+(* Je pense que cette fonction normalise bien ... *)
+ Definition norm n d: t :=
+ let gcd := BigN.gcd (BigZ.to_N n) d in
+ match BigN.compare BigN.one gcd with
+ | Lt =>
+ let n := BigZ.div n (BigZ.Pos gcd) in
+ let d := BigN.div d gcd in
+ match BigN.compare d BigN.one with
+ | Gt => Qq n d
+ | Eq => Qz n
+ | Lt => zero
+ end
+ | Eq => Qq n d
+ | Gt => zero (* gcd = 0 => both numbers are 0 *)
+ end.
+
+ Theorem spec_norm: forall n q, [norm n q] == [Qq n q].
+ Proof.
+ intros p q; unfold norm.
+ assert (Hp := BigN.spec_pos (BigZ.to_N p)).
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; auto; rewrite BigN.spec_1; rewrite BigN.spec_gcd; intros H1.
+ apply Qeq_refl.
+ generalize (BigN.spec_pos (q / BigN.gcd (BigZ.to_N p) q)%bigN).
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; auto; rewrite BigN.spec_1; rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; auto with zarith; intros H2 HH.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H3; simpl;
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd;
+ auto with zarith.
+ generalize H2; rewrite H3;
+ rewrite Zdiv_0_l; auto with zarith.
+ generalize H1 H2 H3 (BigN.spec_pos q); clear H1 H2 H3.
+ rewrite spec_to_N.
+ set (a := (BigN.to_Z (BigZ.to_N p))).
+ set (b := (BigN.to_Z q)).
+ intros H1 H2 H3 H4; rewrite Z2P_correct; auto with zarith.
+ rewrite Zgcd_div_swap; auto with zarith.
+ rewrite H2; ring.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H3; simpl.
+ case H3.
+ generalize H1 H2 H3 HH; clear H1 H2 H3 HH.
+ set (a := (BigN.to_Z (BigZ.to_N p))).
+ set (b := (BigN.to_Z q)).
+ intros H1 H2 H3 HH.
+ rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto with zarith.
+ case (Zle_lt_or_eq _ _ HH); auto with zarith.
+ intros HH1; rewrite <- HH1; ring.
+ generalize (Zgcd_is_gcd a b); intros HH1; inversion HH1; auto.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; auto with zarith; intros H3.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H4.
+ case H3; rewrite H4; rewrite Zdiv_0_l; auto with zarith.
+ simpl.
+ assert (FF := BigN.spec_pos q).
+ rewrite Z2P_correct; auto with zarith.
+ rewrite <- BigN.spec_gcd; rewrite <- BigN.spec_div; auto with zarith.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigN.spec_div; rewrite BigN.spec_gcd; auto with zarith.
+ simpl; rewrite BigZ.spec_div; simpl.
+ rewrite BigN.spec_gcd; auto with zarith.
+ generalize H1 H2 H3 H4 HH FF; clear H1 H2 H3 H4 HH FF.
+ set (a := (BigN.to_Z (BigZ.to_N p))).
+ set (b := (BigN.to_Z q)).
+ intros H1 H2 H3 H4 HH FF.
+ rewrite spec_to_N; fold a.
+ rewrite Zgcd_div_swap; auto with zarith.
+ rewrite BigN.spec_gcd; auto with zarith.
+ rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; auto with zarith.
+ rewrite BigN.spec_gcd; auto with zarith.
+ case (Zle_lt_or_eq _ _
+ (BigN.spec_pos (BigN.gcd (BigZ.to_N p) q)));
+ rewrite BigN.spec_gcd; auto with zarith.
+ intros; apply False_ind; auto with zarith.
+ intros HH2; assert (FF1 := Zgcd_inv_0_l _ _ (sym_equal HH2)).
+ assert (FF2 := Zgcd_inv_0_l _ _ (sym_equal HH2)).
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H2; simpl.
+ rewrite spec_to_N.
+ rewrite FF2; ring.
+ Qed.
+
+
+ Definition add (x y: t): t :=
+ match x with
+ | Qz zx =>
+ match y with
+ | Qz zy => Qz (BigZ.add zx zy)
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else Qq (BigZ.add (BigZ.mul zx (BigZ.Pos dy)) ny) dy
+ end
+ | Qq nx dx =>
+ if BigN.eq_bool dx BigN.zero then y
+ else match y with
+ | Qz zy => Qq (BigZ.add nx (BigZ.mul zy (BigZ.Pos dx))) dx
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else
+ let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx)) in
+ let d := BigN.mul dx dy in
+ Qq n d
+ end
+ end.
+
+ Theorem spec_add : forall x y, [add x y] == [x] + [y].
+ Proof.
+ intros [x | nx dx] [y | ny dy]; unfold Qplus; simpl.
+ rewrite BigZ.spec_add; repeat rewrite Zmult_1_r; auto.
+ intros; apply Qeq_refl; auto.
+ assert (F1:= BigN.spec_pos dy).
+ rewrite Zmult_1_r; red; simpl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH; simpl; try ring.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH1; simpl; try ring.
+ case HH; auto.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigZ.spec_add; rewrite BigZ.spec_mul; simpl; auto.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH; simpl; try ring.
+ rewrite Zmult_1_r; apply Qeq_refl.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH1; simpl; try ring.
+ case HH; auto.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigZ.spec_add; rewrite BigZ.spec_mul; simpl; auto.
+ rewrite Zmult_1_r; rewrite Pmult_1_r.
+ apply Qeq_refl.
+ assert (F1:= BigN.spec_pos dx); auto with zarith.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ simpl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ apply Qeq_refl.
+ case HH2; auto.
+ simpl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ case HH2; auto.
+ case HH1; auto.
+ rewrite Zmult_1_r; apply Qeq_refl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ simpl.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ case HH; auto.
+ rewrite Zmult_1_r; rewrite Zplus_0_r; rewrite Pmult_1_r.
+ apply Qeq_refl.
+ simpl.
+ generalize (BigN.spec_eq_bool (dx * dy)%bigN BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_mul;
+ rewrite BigN.spec_0; intros HH2.
+ (case (Zmult_integral _ _ HH2); intros HH3);
+ [case HH| case HH1]; auto.
+ rewrite BigZ.spec_add; repeat rewrite BigZ.spec_mul; simpl.
+ assert (Fx: (0 < BigN.to_Z dx)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ assert (Fy: (0 < BigN.to_Z dy)%Z).
+ generalize (BigN.spec_pos dy); auto with zarith.
+ red; simpl; rewrite Zpos_mult_morphism.
+ repeat rewrite Z2P_correct; auto with zarith.
+ apply Zmult_lt_0_compat; auto.
+ Qed.
+
+ Definition add_norm (x y: t): t :=
+ match x with
+ | Qz zx =>
+ match y with
+ | Qz zy => Qz (BigZ.add zx zy)
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else norm (BigZ.add (BigZ.mul zx (BigZ.Pos dy)) ny) dy
+ end
+ | Qq nx dx =>
+ if BigN.eq_bool dx BigN.zero then y
+ else match y with
+ | Qz zy => norm (BigZ.add nx (BigZ.mul zy (BigZ.Pos dx))) dx
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else
+ let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx)) in
+ let d := BigN.mul dx dy in
+ norm n d
+ end
+ end.
+
+ Theorem spec_add_norm : forall x y, [add_norm x y] == [x] + [y].
+ Proof.
+ intros x y; rewrite <- spec_add; auto.
+ case x; case y; clear x y; unfold add_norm, add.
+ intros; apply Qeq_refl.
+ intros p1 n p2.
+ generalize (BigN.spec_eq_bool n BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ apply Qeq_refl.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end.
+ simpl.
+ generalize (BigN.spec_eq_bool n BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ apply Qeq_refl.
+ apply Qeq_refl.
+ intros p1 p2 n.
+ generalize (BigN.spec_eq_bool n BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ apply Qeq_refl.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end.
+ apply Qeq_refl.
+ intros p1 q1 p2 q2.
+ generalize (BigN.spec_eq_bool q2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ apply Qeq_refl.
+ generalize (BigN.spec_eq_bool q1 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ apply Qeq_refl.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end.
+ apply Qeq_refl.
+ Qed.
+
+ Definition sub x y := add x (opp y).
+
+ Theorem spec_sub : forall x y, [sub x y] == [x] - [y].
+ Proof.
+ intros x y; unfold sub; rewrite spec_add; auto.
+ rewrite spec_opp; ring.
+ Qed.
+
+ Definition sub_norm x y := add_norm x (opp y).
+
+ Theorem spec_sub_norm : forall x y, [sub_norm x y] == [x] - [y].
+ Proof.
+ intros x y; unfold sub_norm; rewrite spec_add_norm; auto.
+ rewrite spec_opp; ring.
+ Qed.
+
+ Definition mul (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.mul zx zy)
+ | Qz zx, Qq ny dy => Qq (BigZ.mul zx ny) dy
+ | Qq nx dx, Qz zy => Qq (BigZ.mul nx zy) dx
+ | Qq nx dx, Qq ny dy => Qq (BigZ.mul nx ny) (BigN.mul dx dy)
+ end.
+
+ Theorem spec_mul : forall x y, [mul x y] == [x] * [y].
+ Proof.
+ intros [x | nx dx] [y | ny dy]; unfold Qmult; simpl.
+ rewrite BigZ.spec_mul; repeat rewrite Zmult_1_r; auto.
+ intros; apply Qeq_refl; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH1.
+ red; simpl; ring.
+ rewrite BigZ.spec_mul; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH1.
+ red; simpl; ring.
+ rewrite BigZ.spec_mul; rewrite Pmult_1_r.
+ apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; rewrite BigN.spec_mul;
+ intros HH1.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH2.
+ red; simpl; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH3.
+ red; simpl; ring.
+ case (Zmult_integral _ _ HH1); intros HH.
+ case HH2; auto.
+ case HH3; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH2.
+ case HH1; rewrite HH2; ring.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH3.
+ case HH1; rewrite HH3; ring.
+ rewrite BigZ.spec_mul.
+ assert (tmp:
+ (forall a b, 0 < a -> 0 < b -> Z2P (a * b) = (Z2P a * Z2P b)%positive)%Z).
+ intros [|a|a] [|b|b]; simpl; auto; intros; apply False_ind; auto with zarith.
+ rewrite tmp; auto.
+ apply Qeq_refl.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ generalize (BigN.spec_pos dy); auto with zarith.
+ Qed.
+
+Definition mul_norm (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.mul zx zy)
+ | Qz zx, Qq ny dy =>
+ if BigZ.eq_bool zx BigZ.zero then zero
+ else
+ let gcd := BigN.gcd (BigZ.to_N zx) dy in
+ match BigN.compare gcd BigN.one with
+ Gt =>
+ let zx := BigZ.div zx (BigZ.Pos gcd) in
+ let d := BigN.div dy gcd in
+ if BigN.eq_bool d BigN.one then Qz (BigZ.mul zx ny)
+ else Qq (BigZ.mul zx ny) d
+ | _ => Qq (BigZ.mul zx ny) dy
+ end
+ | Qq nx dx, Qz zy =>
+ if BigZ.eq_bool zy BigZ.zero then zero
+ else
+ let gcd := BigN.gcd (BigZ.to_N zy) dx in
+ match BigN.compare gcd BigN.one with
+ Gt =>
+ let zy := BigZ.div zy (BigZ.Pos gcd) in
+ let d := BigN.div dx gcd in
+ if BigN.eq_bool d BigN.one then Qz (BigZ.mul zy nx)
+ else Qq (BigZ.mul zy nx) d
+ | _ => Qq (BigZ.mul zy nx) dx
+ end
+ | Qq nx dx, Qq ny dy =>
+ let (nx, dy) :=
+ let gcd := BigN.gcd (BigZ.to_N nx) dy in
+ match BigN.compare gcd BigN.one with
+ Gt => (BigZ.div nx (BigZ.Pos gcd), BigN.div dy gcd)
+ | _ => (nx, dy)
+ end in
+ let (ny, dx) :=
+ let gcd := BigN.gcd (BigZ.to_N ny) dx in
+ match BigN.compare gcd BigN.one with
+ Gt => (BigZ.div ny (BigZ.Pos gcd), BigN.div dx gcd)
+ | _ => (ny, dx)
+ end in
+ let d := (BigN.mul dx dy) in
+ if BigN.eq_bool d BigN.one then Qz (BigZ.mul ny nx)
+ else Qq (BigZ.mul ny nx) d
+ end.
+
+ Theorem spec_mul_norm : forall x y, [mul_norm x y] == [x] * [y].
+ Proof.
+ intros x y; rewrite <- spec_mul; auto.
+ unfold mul_norm, mul; case x; case y; clear x y.
+ intros; apply Qeq_refl.
+ intros p1 n p2.
+ set (a := BigN.to_Z (BigZ.to_N p2)).
+ set (b := BigN.to_Z n).
+ match goal with |- context[BigZ.eq_bool ?X ?Y] =>
+ generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
+ end; unfold zero, to_Q; repeat rewrite BigZ.spec_0; intros H.
+ case BigN.eq_bool; try apply Qeq_refl.
+ rewrite BigZ.spec_mul; rewrite H.
+ red; simpl; ring.
+ assert (F: (0 < a)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos (BigZ.to_N p2))); auto.
+ intros H1; case H; rewrite spec_to_N; rewrite <- H1; ring.
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; rewrite BigN.spec_1; rewrite BigN.spec_gcd;
+ fold a b; intros H1.
+ apply Qeq_refl.
+ apply Qeq_refl.
+ assert (F0 : (0 < (Zgcd a b))%Z).
+ apply Zlt_trans with 1%Z.
+ red; auto.
+ apply Zgt_lt; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1; rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; auto with zarith;
+ fold a b; intros H2.
+ assert (F1: b = Zgcd a b).
+ pattern b at 1; rewrite (Zdivide_Zdiv_eq (Zgcd a b) b);
+ auto with zarith.
+ rewrite H2; ring.
+ assert (FF := Zgcd_is_gcd a b); inversion FF; auto.
+ assert (F2: (0 < b)%Z).
+ rewrite F1; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; fold b; intros H3.
+ rewrite H3 in F2; discriminate F2.
+ rewrite BigZ.spec_mul.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd;
+ fold a b; auto with zarith.
+ rewrite BigZ.spec_mul.
+ red; simpl; rewrite Z2P_correct; auto.
+ rewrite Zmult_1_r; rewrite spec_to_N; fold a b.
+ repeat rewrite <- Zmult_assoc.
+ rewrite (Zmult_comm (BigZ.to_Z p1)).
+ repeat rewrite Zmult_assoc.
+ rewrite Zgcd_div_swap; auto with zarith.
+ rewrite H2; ring.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; fold a b; auto; intros H3.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H4.
+ apply Qeq_refl.
+ case H4; fold b.
+ rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
+ rewrite H3; ring.
+ assert (FF := Zgcd_is_gcd a b); inversion FF; auto.
+ simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; fold b; intros H4.
+ case H3; rewrite H4; rewrite Zdiv_0_l; auto.
+ rewrite BigZ.spec_mul; rewrite BigZ.spec_div; simpl;
+ rewrite BigN.spec_gcd; fold a b; auto with zarith.
+ assert (F1: (0 < b)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos n)); fold b; auto with zarith.
+ red; simpl.
+ rewrite BigZ.spec_mul.
+ repeat rewrite Z2P_correct; auto.
+ rewrite spec_to_N; fold a.
+ repeat rewrite <- Zmult_assoc.
+ rewrite (Zmult_comm (BigZ.to_Z p1)).
+ repeat rewrite Zmult_assoc.
+ rewrite Zgcd_div_swap; auto with zarith.
+ ring.
+ apply Zgcd_div_pos; auto.
+ intros p1 p2 n.
+ set (a := BigN.to_Z (BigZ.to_N p1)).
+ set (b := BigN.to_Z n).
+ match goal with |- context[BigZ.eq_bool ?X ?Y] =>
+ generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
+ end; unfold zero, to_Q; repeat rewrite BigZ.spec_0; intros H.
+ case BigN.eq_bool; try apply Qeq_refl.
+ rewrite BigZ.spec_mul; rewrite H.
+ red; simpl; ring.
+ assert (F: (0 < a)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos (BigZ.to_N p1))); auto.
+ intros H1; case H; rewrite spec_to_N; rewrite <- H1; ring.
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; rewrite BigN.spec_1; rewrite BigN.spec_gcd;
+ fold a b; intros H1.
+ repeat rewrite BigZ.spec_mul; rewrite Zmult_comm.
+ apply Qeq_refl.
+ repeat rewrite BigZ.spec_mul; rewrite Zmult_comm.
+ apply Qeq_refl.
+ assert (F0 : (0 < (Zgcd a b))%Z).
+ apply Zlt_trans with 1%Z.
+ red; auto.
+ apply Zgt_lt; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1; rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; auto with zarith;
+ fold a b; intros H2.
+ assert (F1: b = Zgcd a b).
+ pattern b at 1; rewrite (Zdivide_Zdiv_eq (Zgcd a b) b);
+ auto with zarith.
+ rewrite H2; ring.
+ assert (FF := Zgcd_is_gcd a b); inversion FF; auto.
+ assert (F2: (0 < b)%Z).
+ rewrite F1; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; fold b; intros H3.
+ rewrite H3 in F2; discriminate F2.
+ rewrite BigZ.spec_mul.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd;
+ fold a b; auto with zarith.
+ rewrite BigZ.spec_mul.
+ red; simpl; rewrite Z2P_correct; auto.
+ rewrite Zmult_1_r; rewrite spec_to_N; fold a b.
+ repeat rewrite <- Zmult_assoc.
+ rewrite (Zmult_comm (BigZ.to_Z p2)).
+ repeat rewrite Zmult_assoc.
+ rewrite Zgcd_div_swap; auto with zarith.
+ rewrite H2; ring.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; fold a b; auto; intros H3.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H4.
+ apply Qeq_refl.
+ case H4; fold b.
+ rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
+ rewrite H3; ring.
+ assert (FF := Zgcd_is_gcd a b); inversion FF; auto.
+ simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; fold b; intros H4.
+ case H3; rewrite H4; rewrite Zdiv_0_l; auto.
+ rewrite BigZ.spec_mul; rewrite BigZ.spec_div; simpl;
+ rewrite BigN.spec_gcd; fold a b; auto with zarith.
+ assert (F1: (0 < b)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos n)); fold b; auto with zarith.
+ red; simpl.
+ rewrite BigZ.spec_mul.
+ repeat rewrite Z2P_correct; auto.
+ rewrite spec_to_N; fold a.
+ repeat rewrite <- Zmult_assoc.
+ rewrite (Zmult_comm (BigZ.to_Z p2)).
+ repeat rewrite Zmult_assoc.
+ rewrite Zgcd_div_swap; auto with zarith.
+ ring.
+ apply Zgcd_div_pos; auto.
+ set (f := fun p t =>
+ match (BigN.gcd (BigZ.to_N p) t ?= BigN.one)%bigN with
+ | Eq => (p, t)
+ | Lt => (p, t)
+ | Gt =>
+ ((p / BigZ.Pos (BigN.gcd (BigZ.to_N p) t))%bigZ,
+ (t / BigN.gcd (BigZ.to_N p) t)%bigN)
+ end).
+ assert (F: forall p t,
+ let (n, d) := f p t in [Qq p t] == [Qq n d]).
+ intros p t1; unfold f.
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; rewrite BigN.spec_1; rewrite BigN.spec_gcd; intros H1.
+ apply Qeq_refl.
+ apply Qeq_refl.
+ set (a := BigN.to_Z (BigZ.to_N p)).
+ set (b := BigN.to_Z t1).
+ fold a b in H1.
+ assert (F0 : (0 < (Zgcd a b))%Z).
+ apply Zlt_trans with 1%Z.
+ red; auto.
+ apply Zgt_lt; auto.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; fold b; intros HH1.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; fold b; intros HH2.
+ simpl; ring.
+ case HH2.
+ rewrite BigN.spec_div; rewrite BigN.spec_gcd; fold a b; auto.
+ rewrite HH1; rewrite Zdiv_0_l; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0;
+ rewrite BigN.spec_div; rewrite BigN.spec_gcd; fold a b; auto;
+ intros HH2.
+ case HH1.
+ rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
+ rewrite HH2; ring.
+ assert (FF := Zgcd_is_gcd a b); inversion FF; auto.
+ simpl.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; fold a b; auto with zarith.
+ assert (F1: (0 < b)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos t1)); fold b; auto with zarith.
+ intros HH; case HH1; auto.
+ repeat rewrite Z2P_correct; auto.
+ rewrite spec_to_N; fold a.
+ rewrite Zgcd_div_swap; auto.
+ apply Zgcd_div_pos; auto.
+ intros HH; rewrite HH in F0; discriminate F0.
+ intros p1 n1 p2 n2.
+ change ([let (nx , dy) := f p2 n1 in
+ let (ny, dx) := f p1 n2 in
+ if BigN.eq_bool (dx * dy)%bigN BigN.one
+ then Qz (ny * nx)
+ else Qq (ny * nx) (dx * dy)] == [Qq (p2 * p1) (n2 * n1)]).
+ generalize (F p2 n1) (F p1 n2).
+ case f; case f.
+ intros u1 u2 v1 v2 Hu1 Hv1.
+ apply Qeq_trans with [mul (Qq p2 n1) (Qq p1 n2)].
+ rewrite spec_mul; rewrite Hu1; rewrite Hv1.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1; rewrite BigN.spec_mul; intros HH1.
+ assert (F1: BigN.to_Z u2 = 1%Z).
+ case (Zmult_1_inversion_l _ _ HH1); auto.
+ generalize (BigN.spec_pos u2); auto with zarith.
+ assert (F2: BigN.to_Z v2 = 1%Z).
+ rewrite Zmult_comm in HH1.
+ case (Zmult_1_inversion_l _ _ HH1); auto.
+ generalize (BigN.spec_pos v2); auto with zarith.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1.
+ rewrite H1 in F2; discriminate F2.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2.
+ rewrite H2 in F1; discriminate F1.
+ simpl; rewrite BigZ.spec_mul.
+ rewrite F1; rewrite F2; simpl; ring.
+ rewrite Qmult_comm; rewrite <- spec_mul.
+ apply Qeq_refl.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; rewrite BigN.spec_mul;
+ rewrite Zmult_comm; intros H1.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; rewrite BigN.spec_mul; intros H2; auto.
+ case H2; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; rewrite BigN.spec_mul; intros H2; auto.
+ case H1; auto.
+ Qed.
+
+
+Definition inv (x: t): t :=
+ match x with
+ | Qz (BigZ.Pos n) => Qq BigZ.one n
+ | Qz (BigZ.Neg n) => Qq BigZ.minus_one n
+ | Qq (BigZ.Pos n) d => Qq (BigZ.Pos d) n
+ | Qq (BigZ.Neg n) d => Qq (BigZ.Neg d) n
+ end.
+
+ Theorem spec_inv : forall x, [inv x] == /[x].
+ Proof.
+ intros [ [x | x] | [nx | nx] dx]; unfold inv, Qinv; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ rewrite H1; apply Qeq_refl.
+ generalize H1 (BigN.spec_pos x); case (BigN.to_Z x); auto.
+ intros HH; case HH; auto.
+ intros; red; simpl; auto.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ rewrite H1; apply Qeq_refl.
+ generalize H1 (BigN.spec_pos x); case (BigN.to_Z x); simpl;
+ auto.
+ intros HH; case HH; auto.
+ intros; red; simpl; auto.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ apply Qeq_refl.
+ rewrite H1; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ rewrite H2; red; simpl; auto.
+ generalize H1 (BigN.spec_pos nx); case (BigN.to_Z nx); simpl;
+ auto.
+ intros HH; case HH; auto.
+ intros; red; simpl.
+ rewrite Zpos_mult_morphism.
+ rewrite Z2P_correct; auto.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ apply Qeq_refl.
+ rewrite H1; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ rewrite H2; red; simpl; auto.
+ generalize H1 (BigN.spec_pos nx); case (BigN.to_Z nx); simpl;
+ auto.
+ intros HH; case HH; auto.
+ intros; red; simpl.
+ assert (tmp: forall x, Zneg x = Zopp (Zpos x)); auto.
+ rewrite tmp.
+ rewrite Zpos_mult_morphism.
+ rewrite Z2P_correct; auto.
+ ring.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ intros p _ HH; case HH; auto.
+ Qed.
+
+Definition inv_norm (x: t): t :=
+ match x with
+ | Qz (BigZ.Pos n) =>
+ match BigN.compare n BigN.one with
+ Gt => Qq BigZ.one n
+ | _ => x
+ end
+ | Qz (BigZ.Neg n) =>
+ match BigN.compare n BigN.one with
+ Gt => Qq BigZ.minus_one n
+ | _ => x
+ end
+ | Qq (BigZ.Pos n) d =>
+ match BigN.compare n BigN.one with
+ Gt => Qq (BigZ.Pos d) n
+ | Eq => Qz (BigZ.Pos d)
+ | Lt => Qz (BigZ.zero)
+ end
+ | Qq (BigZ.Neg n) d =>
+ match BigN.compare n BigN.one with
+ Gt => Qq (BigZ.Neg d) n
+ | Eq => Qz (BigZ.Neg d)
+ | Lt => Qz (BigZ.zero)
+ end
+ end.
+
+ Theorem spec_inv_norm : forall x, [inv_norm x] == /[x].
+ Proof.
+ intros [ [x | x] | [nx | nx] dx]; unfold inv_norm, Qinv.
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; rewrite BigN.spec_1; intros H.
+ simpl; rewrite H; apply Qeq_refl.
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); simpl.
+ generalize H; case BigN.to_Z.
+ intros _ HH; discriminate HH.
+ intros p; case p; auto.
+ intros p1 HH; discriminate HH.
+ intros p1 HH; discriminate HH.
+ intros HH; discriminate HH.
+ intros p _ HH; discriminate HH.
+ intros HH; rewrite <- HH.
+ apply Qeq_refl.
+ generalize H; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1.
+ rewrite H1; intros HH; discriminate.
+ generalize H; case BigN.to_Z.
+ intros HH; discriminate HH.
+ intros; red; simpl; auto.
+ intros p HH; discriminate HH.
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; rewrite BigN.spec_1; intros H.
+ simpl; rewrite H; apply Qeq_refl.
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); simpl.
+ generalize H; case BigN.to_Z.
+ intros _ HH; discriminate HH.
+ intros p; case p; auto.
+ intros p1 HH; discriminate HH.
+ intros p1 HH; discriminate HH.
+ intros HH; discriminate HH.
+ intros p _ HH; discriminate HH.
+ intros HH; rewrite <- HH.
+ apply Qeq_refl.
+ generalize H; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1.
+ rewrite H1; intros HH; discriminate.
+ generalize H; case BigN.to_Z.
+ intros HH; discriminate HH.
+ intros; red; simpl; auto.
+ intros p HH; discriminate HH.
+ simpl Qnum.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; simpl.
+ case BigN.compare; red; simpl; auto.
+ rewrite H1; auto.
+ case BigN.eq_bool; auto.
+ simpl; rewrite H1; auto.
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; rewrite BigN.spec_1; intros H2.
+ rewrite H2.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H3.
+ case H1; auto.
+ red; simpl.
+ rewrite Zmult_1_r; rewrite Pmult_1_r; rewrite Z2P_correct; auto.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H3.
+ case H1; auto.
+ generalize H2 (BigN.spec_pos nx); case (BigN.to_Z nx).
+ intros; apply Qeq_refl.
+ intros p; case p; clear p.
+ intros p HH; discriminate HH.
+ intros p HH; discriminate HH.
+ intros HH; discriminate HH.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H3.
+ case H1; auto.
+ simpl; generalize H2; case (BigN.to_Z nx).
+ intros HH; discriminate HH.
+ intros p Hp.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H4.
+ rewrite H4 in H2; discriminate H2.
+ red; simpl.
+ rewrite Zpos_mult_morphism.
+ rewrite Z2P_correct; auto.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ intros p HH; discriminate HH.
+ simpl Qnum.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; simpl.
+ case BigN.compare; red; simpl; auto.
+ rewrite H1; auto.
+ case BigN.eq_bool; auto.
+ simpl; rewrite H1; auto.
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; rewrite BigN.spec_1; intros H2.
+ rewrite H2.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H3.
+ case H1; auto.
+ red; simpl.
+ assert (tmp: forall x, Zneg x = Zopp (Zpos x)); auto.
+ rewrite tmp.
+ rewrite Zmult_1_r; rewrite Pmult_1_r; rewrite Z2P_correct; auto.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H3.
+ case H1; auto.
+ generalize H2 (BigN.spec_pos nx); case (BigN.to_Z nx).
+ intros; apply Qeq_refl.
+ intros p; case p; clear p.
+ intros p HH; discriminate HH.
+ intros p HH; discriminate HH.
+ intros HH; discriminate HH.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H3.
+ case H1; auto.
+ simpl; generalize H2; case (BigN.to_Z nx).
+ intros HH; discriminate HH.
+ intros p Hp.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H4.
+ rewrite H4 in H2; discriminate H2.
+ red; simpl.
+ assert (tmp: forall x, Zneg x = Zopp (Zpos x)); auto.
+ rewrite tmp.
+ rewrite Zpos_mult_morphism.
+ rewrite Z2P_correct; auto.
+ ring.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ intros p HH; discriminate HH.
+ Qed.
+
+ Definition div x y := mul x (inv y).
+
+ Theorem spec_div x y: [div x y] == [x] / [y].
+ Proof.
+ intros x y; unfold div; rewrite spec_mul; auto.
+ unfold Qdiv; apply Qmult_comp.
+ apply Qeq_refl.
+ apply spec_inv; auto.
+ Qed.
+
+ Definition div_norm x y := mul_norm x (inv y).
+
+ Theorem spec_div_norm x y: [div_norm x y] == [x] / [y].
+ Proof.
+ intros x y; unfold div_norm; rewrite spec_mul_norm; auto.
+ unfold Qdiv; apply Qmult_comp.
+ apply Qeq_refl.
+ apply spec_inv; auto.
+ Qed.
+
+ Definition square (x: t): t :=
+ match x with
+ | Qz zx => Qz (BigZ.square zx)
+ | Qq nx dx => Qq (BigZ.square nx) (BigN.square dx)
+ end.
+
+ Theorem spec_square : forall x, [square x] == [x] ^ 2.
+ Proof.
+ intros [ x | nx dx]; unfold square.
+ red; simpl; rewrite BigZ.spec_square; auto with zarith.
+ simpl Qpower.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H.
+ red; simpl.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_square;
+ intros H1.
+ case H1; rewrite H; auto.
+ red; simpl.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_square;
+ intros H1.
+ case H; case (Zmult_integral _ _ H1); auto.
+ simpl.
+ rewrite BigZ.spec_square.
+ rewrite Zpos_mult_morphism.
+ assert (tmp:
+ (forall a b, 0 < a -> 0 < b -> Z2P (a * b) = (Z2P a * Z2P b)%positive)%Z).
+ intros [|a|a] [|b|b]; simpl; auto; intros; apply False_ind; auto with zarith.
+ rewrite tmp; auto.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ Qed.
+
+ Definition power_pos (x: t) p: t :=
+ match x with
+ | Qz zx => Qz (BigZ.power_pos zx p)
+ | Qq nx dx => Qq (BigZ.power_pos nx p) (BigN.power_pos dx p)
+ end.
+
+ Theorem spec_power_pos : forall x p, [power_pos x p] == [x] ^ Zpos p.
+ Proof.
+ intros [x | nx dx] p; unfold power_pos.
+ unfold power_pos; red; simpl.
+ generalize (Qpower_decomp p (BigZ.to_Z x) 1).
+ unfold Qeq; simpl.
+ rewrite Zpower_pos_1_l; simpl Z2P.
+ rewrite Zmult_1_r.
+ intros H; rewrite H.
+ rewrite BigZ.spec_power_pos; simpl; ring.
+ simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_power_pos; intros H1.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H2.
+ elim p; simpl.
+ intros; red; simpl; auto.
+ intros p1 Hp1; rewrite <- Hp1; red; simpl; auto.
+ apply Qeq_refl.
+ case H2; generalize H1.
+ elim p; simpl.
+ intros p1 Hrec.
+ change (xI p1) with (1 + (xO p1))%positive.
+ rewrite Zpower_pos_is_exp; rewrite Zpower_pos_1_r.
+ intros HH; case (Zmult_integral _ _ HH); auto.
+ rewrite <- Pplus_diag.
+ rewrite Zpower_pos_is_exp.
+ intros HH1; case (Zmult_integral _ _ HH1); auto.
+ intros p1 Hrec.
+ rewrite <- Pplus_diag.
+ rewrite Zpower_pos_is_exp.
+ intros HH1; case (Zmult_integral _ _ HH1); auto.
+ rewrite Zpower_pos_1_r; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H2.
+ case H1; rewrite H2; auto.
+ simpl; rewrite Zpower_pos_0_l; auto.
+ assert (F1: (0 < BigN.to_Z dx)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ assert (F2: (0 < BigN.to_Z dx ^ ' p)%Z).
+ unfold Zpower; apply Zpower_pos_pos; auto.
+ unfold power_pos; red; simpl.
+ generalize (Qpower_decomp p (BigZ.to_Z nx)
+ (Z2P (BigN.to_Z dx))).
+ unfold Qeq; simpl.
+ repeat rewrite Z2P_correct; auto.
+ unfold Qeq; simpl; intros HH.
+ rewrite HH.
+ rewrite BigZ.spec_power_pos; simpl; ring.
+ Qed.
+
+ (** Interaction with [Qcanon.Qc] *)
+
+ Open Scope Qc_scope.
+
+ Definition of_Qc q := of_Q (this q).
+
+ Definition to_Qc q := !!(to_Q q).
+
+ Notation "[[ x ]]" := (to_Qc x).
+
+ Theorem spec_of_Qc: forall q, [[of_Qc q]] = q.
+ Proof.
+ intros (x, Hx); unfold of_Qc, to_Qc; simpl.
+ apply Qc_decomp; simpl.
+ intros.
+ rewrite <- H0 at 2; apply Qred_complete.
+ apply spec_of_Q.
+ Qed.
+
+ Theorem spec_oppc: forall q, [[opp q]] = -[[q]].
+ Proof.
+ intros q; unfold Qcopp, to_Qc, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ rewrite spec_opp.
+ rewrite <- Qred_opp.
+ rewrite Qred_correct; red; auto.
+ Qed.
+
+ Theorem spec_comparec: forall q1 q2,
+ compare q1 q2 = ([[q1]] ?= [[q2]]).
+ Proof.
+ unfold Qccompare, to_Qc.
+ intros q1 q2; rewrite spec_compare; simpl; auto.
+ apply Qcompare_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Theorem spec_addc x y:
+ [[add x y]] = [[x]] + [[y]].
+ Proof.
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] + [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_add; auto.
+ unfold Qcplus, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Theorem spec_add_normc x y:
+ [[add_norm x y]] = [[x]] + [[y]].
+ Proof.
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] + [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_add_norm; auto.
+ unfold Qcplus, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Theorem spec_subc x y: [[sub x y]] = [[x]] - [[y]].
+ Proof.
+ intros x y; unfold sub; rewrite spec_addc; auto.
+ rewrite spec_oppc; ring.
+ Qed.
+
+ Theorem spec_sub_normc x y:
+ [[sub_norm x y]] = [[x]] - [[y]].
+ intros x y; unfold sub_norm; rewrite spec_add_normc; auto.
+ rewrite spec_oppc; ring.
+ Qed.
+
+ Theorem spec_mulc x y:
+ [[mul x y]] = [[x]] * [[y]].
+ Proof.
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] * [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_mul; auto.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Theorem spec_mul_normc x y:
+ [[mul_norm x y]] = [[x]] * [[y]].
+ Proof.
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] * [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_mul_norm; auto.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Theorem spec_invc x:
+ [[inv x]] = /[[x]].
+ Proof.
+ intros x; unfold to_Qc.
+ apply trans_equal with (!! (/[x])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_inv; auto.
+ unfold Qcinv, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qinv_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Theorem spec_inv_normc x:
+ [[inv_norm x]] = /[[x]].
+ Proof.
+ intros x; unfold to_Qc.
+ apply trans_equal with (!! (/[x])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_inv_norm; auto.
+ unfold Qcinv, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qinv_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Theorem spec_divc x y: [[div x y]] = [[x]] / [[y]].
+ Proof.
+ intros x y; unfold div; rewrite spec_mulc; auto.
+ unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
+ apply spec_invc; auto.
+ Qed.
+
+ Theorem spec_div_normc x y: [[div_norm x y]] = [[x]] / [[y]].
+ Proof.
+ intros x y; unfold div_norm; rewrite spec_mul_normc; auto.
+ unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
+ apply spec_invc; auto.
+ Qed.
+
+ Theorem spec_squarec x: [[square x]] = [[x]]^2.
+ Proof.
+ intros x; unfold to_Qc.
+ apply trans_equal with (!! ([x]^2)).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_square; auto.
+ simpl Qcpower.
+ replace (!! [x] * 1) with (!![x]); try ring.
+ simpl.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Theorem spec_power_posc x p:
+ [[power_pos x p]] = [[x]] ^ nat_of_P p.
+ Proof.
+ intros x p; unfold to_Qc.
+ apply trans_equal with (!! ([x]^Zpos p)).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_power_pos; auto.
+ pattern p; apply Pind; clear p.
+ simpl; ring.
+ intros p Hrec.
+ rewrite nat_of_P_succ_morphism; simpl Qcpower.
+ rewrite <- Hrec.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _;
+ unfold this.
+ apply Qred_complete.
+ assert (F: [x] ^ ' Psucc p == [x] * [x] ^ ' p).
+ simpl; case x; simpl; clear x Hrec.
+ intros x; simpl; repeat rewrite Qpower_decomp; simpl.
+ red; simpl; repeat rewrite Zpower_pos_1_l; simpl Z2P.
+ rewrite Pplus_one_succ_l.
+ rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r; auto.
+ intros nx dx.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ unfold Qpower_positive.
+ assert (tmp: forall p, pow_pos Qmult 0%Q p = 0%Q).
+ intros p1; elim p1; simpl; auto; clear p1.
+ intros p1 Hp1; rewrite Hp1; auto.
+ intros p1 Hp1; rewrite Hp1; auto.
+ repeat rewrite tmp; intros; red; simpl; auto.
+ intros H1.
+ assert (F1: (0 < BigN.to_Z dx)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ simpl; repeat rewrite Qpower_decomp; simpl.
+ red; simpl; repeat rewrite Zpower_pos_1_l; simpl Z2P.
+ rewrite Pplus_one_succ_l.
+ rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r; auto.
+ repeat rewrite Zpos_mult_morphism.
+ repeat rewrite Z2P_correct; auto.
+ 2: apply Zpower_pos_pos; auto.
+ 2: apply Zpower_pos_pos; auto.
+ rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r; auto.
+ rewrite F.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+
+End Q0.
diff --git a/theories/Numbers/Rational/BigQ/QMake_base.v b/theories/Numbers/Rational/BigQ/QMake_base.v
new file mode 100644
index 00000000..547e74b7
--- /dev/null
+++ b/theories/Numbers/Rational/BigQ/QMake_base.v
@@ -0,0 +1,34 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(* $Id: QMake_base.v 10964 2008-05-22 11:08:13Z letouzey $ *)
+
+(** * An implementation of rational numbers based on big integers *)
+
+Require Export BigN.
+Require Export BigZ.
+
+(* Basic type for Q: a Z or a pair of a Z and an N *)
+
+Inductive q_type :=
+ | Qz : BigZ.t -> q_type
+ | Qq : BigZ.t -> BigN.t -> q_type.
+
+Definition print_type x :=
+ match x with
+ | Qz _ => Z
+ | _ => (Z*Z)%type
+ end.
+
+Definition print x :=
+ match x return print_type x with
+ | Qz zx => BigZ.to_Z zx
+ | Qq nx dx => (BigZ.to_Z nx, BigN.to_Z dx)
+ end.
diff --git a/theories/Numbers/Rational/BigQ/QbiMake.v b/theories/Numbers/Rational/BigQ/QbiMake.v
new file mode 100644
index 00000000..699f383e
--- /dev/null
+++ b/theories/Numbers/Rational/BigQ/QbiMake.v
@@ -0,0 +1,1066 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: QbiMake.v 11027 2008-06-01 13:28:59Z letouzey $ i*)
+
+Require Import Bool.
+Require Import ZArith.
+Require Import Znumtheory.
+Require Import BigNumPrelude.
+Require Import Arith.
+Require Export BigN.
+Require Export BigZ.
+Require Import QArith.
+Require Import Qcanon.
+Require Import Qpower.
+Require Import QMake_base.
+
+Module Qbi.
+
+ Import BinInt Zorder.
+ Open Local Scope Q_scope.
+ Open Local Scope Qc_scope.
+
+ (** The notation of a rational number is either an integer x,
+ interpreted as itself or a pair (x,y) of an integer x and a naturel
+ number y interpreted as x/y. The pairs (x,0) and (0,y) are all
+ interpreted as 0. *)
+
+ Definition t := q_type.
+
+ Definition zero: t := Qz BigZ.zero.
+ Definition one: t := Qz BigZ.one.
+ Definition minus_one: t := Qz BigZ.minus_one.
+
+ Definition of_Z x: t := Qz (BigZ.of_Z x).
+
+
+ Definition of_Q q: t :=
+ match q with x # y =>
+ Qq (BigZ.of_Z x) (BigN.of_N (Npos y))
+ end.
+
+ Definition of_Qc q := of_Q (this q).
+
+ Definition to_Q (q: t) :=
+ match q with
+ Qz x => BigZ.to_Z x # 1
+ |Qq x y => if BigN.eq_bool y BigN.zero then 0%Q
+ else BigZ.to_Z x # Z2P (BigN.to_Z y)
+ end.
+
+ Definition to_Qc q := !!(to_Q q).
+
+ Notation "[[ x ]]" := (to_Qc x).
+
+ Notation "[ x ]" := (to_Q x).
+
+ Theorem spec_to_Q: forall q: Q, [of_Q q] = q.
+ intros (x,y); simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ rewrite BigN.spec_of_pos; intros HH; discriminate HH.
+ rewrite BigZ.spec_of_Z; simpl.
+ rewrite (BigN.spec_of_pos); auto.
+ Qed.
+
+ Theorem spec_to_Qc: forall q, [[of_Qc q]] = q.
+ intros (x, Hx); unfold of_Qc, to_Qc; simpl.
+ apply Qc_decomp; simpl.
+ intros; rewrite spec_to_Q; auto.
+ Qed.
+
+ Definition opp (x: t): t :=
+ match x with
+ | Qz zx => Qz (BigZ.opp zx)
+ | Qq nx dx => Qq (BigZ.opp nx) dx
+ end.
+
+ Theorem spec_opp: forall q, ([opp q] = -[q])%Q.
+ intros [z | x y]; simpl.
+ rewrite BigZ.spec_opp; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ rewrite BigZ.spec_opp; auto.
+ Qed.
+
+ Theorem spec_oppc: forall q, [[opp q]] = -[[q]].
+ intros q; unfold Qcopp, to_Qc, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ rewrite spec_opp.
+ rewrite <- Qred_opp.
+ rewrite Qred_involutive; auto.
+ Qed.
+
+
+ Definition compare (x y: t) :=
+ match x, y with
+ | Qz zx, Qz zy => BigZ.compare zx zy
+ | Qz zx, Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then BigZ.compare zx BigZ.zero
+ else
+ match BigZ.cmp_sign zx ny with
+ | Lt => Lt
+ | Gt => Gt
+ | Eq => BigZ.compare (BigZ.mul zx (BigZ.Pos dy)) ny
+ end
+ | Qq nx dx, Qz zy =>
+ if BigN.eq_bool dx BigN.zero then BigZ.compare BigZ.zero zy
+ else
+ match BigZ.cmp_sign nx zy with
+ | Lt => Lt
+ | Gt => Gt
+ | Eq => BigZ.compare nx (BigZ.mul zy (BigZ.Pos dx))
+ end
+ | Qq nx dx, Qq ny dy =>
+ match BigN.eq_bool dx BigN.zero, BigN.eq_bool dy BigN.zero with
+ | true, true => Eq
+ | true, false => BigZ.compare BigZ.zero ny
+ | false, true => BigZ.compare nx BigZ.zero
+ | false, false =>
+ match BigZ.cmp_sign nx ny with
+ | Lt => Lt
+ | Gt => Gt
+ | Eq => BigZ.compare (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx))
+ end
+ end
+ end.
+
+ Theorem spec_compare: forall q1 q2,
+ compare q1 q2 = ([q1] ?= [q2])%Q.
+ intros [z1 | x1 y1] [z2 | x2 y2];
+ unfold Qcompare, compare, to_Q, Qnum, Qden.
+ repeat rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare z1 z2); case BigZ.compare; intros H; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ rewrite Zmult_1_r.
+ generalize (BigN.spec_eq_bool y2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ rewrite Zmult_1_r; generalize (BigZ.spec_compare z1 BigZ.zero);
+ case BigZ.compare; auto.
+ rewrite BigZ.spec_0; intros HH1; rewrite HH1; rewrite Zcompare_refl; auto.
+ set (a := BigZ.to_Z z1); set (b := BigZ.to_Z x2);
+ set (c := BigN.to_Z y2); fold c in HH.
+ assert (F: (0 < c)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos y2)); fold c; auto.
+ intros H1; case HH; rewrite <- H1; auto.
+ rewrite Z2P_correct; auto with zarith.
+ generalize (BigZ.spec_cmp_sign z1 x2); case BigZ.cmp_sign; fold a b c.
+ intros _; generalize (BigZ.spec_compare (z1 * BigZ.Pos y2)%bigZ x2);
+ case BigZ.compare; rewrite BigZ.spec_mul; simpl; fold a b c; auto.
+ intros H1; rewrite H1; rewrite Zcompare_refl; auto.
+ intros (H1, H2); apply sym_equal; change (a * c < b)%Z.
+ apply Zlt_le_trans with (2 := H2).
+ change 0%Z with (0 * c)%Z.
+ apply Zmult_lt_compat_r; auto with zarith.
+ intros (H1, H2); apply sym_equal; change (a * c > b)%Z.
+ apply Zlt_gt.
+ apply Zlt_le_trans with (1 := H2).
+ change 0%Z with (0 * c)%Z.
+ apply Zmult_le_compat_r; auto with zarith.
+ generalize (BigN.spec_eq_bool y1 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ rewrite Zmult_0_l; rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare BigZ.zero z2);
+ case BigZ.compare; auto.
+ rewrite BigZ.spec_0; intros HH1; rewrite <- HH1; rewrite Zcompare_refl; auto.
+ set (a := BigZ.to_Z z2); set (b := BigZ.to_Z x1);
+ set (c := BigN.to_Z y1); fold c in HH.
+ assert (F: (0 < c)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos y1)); fold c; auto.
+ intros H1; case HH; rewrite <- H1; auto.
+ rewrite Zmult_1_r; rewrite Z2P_correct; auto with zarith.
+ generalize (BigZ.spec_cmp_sign x1 z2); case BigZ.cmp_sign; fold a b c.
+ intros _; generalize (BigZ.spec_compare x1 (z2 * BigZ.Pos y1)%bigZ);
+ case BigZ.compare; rewrite BigZ.spec_mul; simpl; fold a b c; auto.
+ intros H1; rewrite H1; rewrite Zcompare_refl; auto.
+ intros (H1, H2); apply sym_equal; change (b < a * c)%Z.
+ apply Zlt_le_trans with (1 := H1).
+ change 0%Z with (0 * c)%Z.
+ apply Zmult_le_compat_r; auto with zarith.
+ intros (H1, H2); apply sym_equal; change (b > a * c)%Z.
+ apply Zlt_gt.
+ apply Zlt_le_trans with (2 := H1).
+ change 0%Z with (0 * c)%Z.
+ apply Zmult_lt_compat_r; auto with zarith.
+ generalize (BigN.spec_eq_bool y1 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ generalize (BigN.spec_eq_bool y2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ rewrite Zcompare_refl; auto.
+ rewrite Zmult_0_l; rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare BigZ.zero x2);
+ case BigZ.compare; auto.
+ rewrite BigZ.spec_0; intros HH2; rewrite <- HH2; rewrite Zcompare_refl; auto.
+ generalize (BigN.spec_eq_bool y2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ rewrite Zmult_0_l; rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare x1 BigZ.zero)%bigZ; case BigZ.compare;
+ auto; rewrite BigZ.spec_0.
+ intros HH2; rewrite <- HH2; rewrite Zcompare_refl; auto.
+ set (a := BigZ.to_Z x1); set (b := BigZ.to_Z x2);
+ set (c1 := BigN.to_Z y1); set (c2 := BigN.to_Z y2).
+ fold c1 in HH; fold c2 in HH1.
+ assert (F1: (0 < c1)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos y1)); fold c1; auto.
+ intros H1; case HH; rewrite <- H1; auto.
+ assert (F2: (0 < c2)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos y2)); fold c2; auto.
+ intros H1; case HH1; rewrite <- H1; auto.
+ repeat rewrite Z2P_correct; auto.
+ generalize (BigZ.spec_cmp_sign x1 x2); case BigZ.cmp_sign.
+ intros _; generalize (BigZ.spec_compare (x1 * BigZ.Pos y2)%bigZ
+ (x2 * BigZ.Pos y1)%bigZ);
+ case BigZ.compare; rewrite BigZ.spec_mul; simpl; fold a b c1 c2; auto.
+ rewrite BigZ.spec_mul; simpl; fold a b c1; intros HH2; rewrite HH2;
+ rewrite Zcompare_refl; auto.
+ rewrite BigZ.spec_mul; simpl; auto.
+ rewrite BigZ.spec_mul; simpl; auto.
+ fold a b; intros (H1, H2); apply sym_equal; change (a * c2 < b * c1)%Z.
+ apply Zlt_le_trans with 0%Z.
+ change 0%Z with (0 * c2)%Z.
+ apply Zmult_lt_compat_r; auto with zarith.
+ apply Zmult_le_0_compat; auto with zarith.
+ fold a b; intros (H1, H2); apply sym_equal; change (a * c2 > b * c1)%Z.
+ apply Zlt_gt; apply Zlt_le_trans with 0%Z.
+ change 0%Z with (0 * c1)%Z.
+ apply Zmult_lt_compat_r; auto with zarith.
+ apply Zmult_le_0_compat; auto with zarith.
+ Qed.
+
+
+ Definition do_norm_n n :=
+ match n with
+ | BigN.N0 _ => false
+ | BigN.N1 _ => false
+ | BigN.N2 _ => false
+ | BigN.N3 _ => false
+ | BigN.N4 _ => false
+ | BigN.N5 _ => false
+ | BigN.N6 _ => false
+ | _ => true
+ end.
+
+ Definition do_norm_z z :=
+ match z with
+ | BigZ.Pos n => do_norm_n n
+ | BigZ.Neg n => do_norm_n n
+ end.
+
+(* Je pense que cette fonction normalise bien ... *)
+ Definition norm n d: t :=
+ if andb (do_norm_z n) (do_norm_n d) then
+ let gcd := BigN.gcd (BigZ.to_N n) d in
+ match BigN.compare BigN.one gcd with
+ | Lt =>
+ let n := BigZ.div n (BigZ.Pos gcd) in
+ let d := BigN.div d gcd in
+ match BigN.compare d BigN.one with
+ | Gt => Qq n d
+ | Eq => Qz n
+ | Lt => zero
+ end
+ | Eq => Qq n d
+ | Gt => zero (* gcd = 0 => both numbers are 0 *)
+ end
+ else Qq n d.
+
+ Theorem spec_norm: forall n q,
+ ([norm n q] == [Qq n q])%Q.
+ intros p q; unfold norm.
+ case do_norm_z; simpl andb.
+ 2: apply Qeq_refl.
+ case do_norm_n.
+ 2: apply Qeq_refl.
+ assert (Hp := BigN.spec_pos (BigZ.to_N p)).
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; auto; rewrite BigN.spec_1; rewrite BigN.spec_gcd; intros H1.
+ apply Qeq_refl.
+ generalize (BigN.spec_pos (q / BigN.gcd (BigZ.to_N p) q)%bigN).
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; auto; rewrite BigN.spec_1; rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; auto with zarith; intros H2 HH.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H3; simpl;
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd;
+ auto with zarith.
+ generalize H2; rewrite H3;
+ rewrite Zdiv_0_l; auto with zarith.
+ generalize H1 H2 H3 (BigN.spec_pos q); clear H1 H2 H3.
+ rewrite spec_to_N.
+ set (a := (BigN.to_Z (BigZ.to_N p))).
+ set (b := (BigN.to_Z q)).
+ intros H1 H2 H3 H4; rewrite Z2P_correct; auto with zarith.
+ rewrite Zgcd_div_swap; auto with zarith.
+ rewrite H2; ring.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H3; simpl.
+ case H3.
+ generalize H1 H2 H3 HH; clear H1 H2 H3 HH.
+ set (a := (BigN.to_Z (BigZ.to_N p))).
+ set (b := (BigN.to_Z q)).
+ intros H1 H2 H3 HH.
+ rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto with zarith.
+ case (Zle_lt_or_eq _ _ HH); auto with zarith.
+ intros HH1; rewrite <- HH1; ring.
+ generalize (Zgcd_is_gcd a b); intros HH1; inversion HH1; auto.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; auto with zarith; intros H3.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H4.
+ case H3; rewrite H4; rewrite Zdiv_0_l; auto with zarith.
+ simpl.
+ assert (FF := BigN.spec_pos q).
+ rewrite Z2P_correct; auto with zarith.
+ rewrite <- BigN.spec_gcd; rewrite <- BigN.spec_div; auto with zarith.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigN.spec_div; rewrite BigN.spec_gcd; auto with zarith.
+ simpl; rewrite BigZ.spec_div; simpl.
+ rewrite BigN.spec_gcd; auto with zarith.
+ generalize H1 H2 H3 H4 HH FF; clear H1 H2 H3 H4 HH FF.
+ set (a := (BigN.to_Z (BigZ.to_N p))).
+ set (b := (BigN.to_Z q)).
+ intros H1 H2 H3 H4 HH FF.
+ rewrite spec_to_N; fold a.
+ rewrite Zgcd_div_swap; auto with zarith.
+ rewrite BigN.spec_gcd; auto with zarith.
+ rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; auto with zarith.
+ rewrite BigN.spec_gcd; auto with zarith.
+ case (Zle_lt_or_eq _ _
+ (BigN.spec_pos (BigN.gcd (BigZ.to_N p) q)));
+ rewrite BigN.spec_gcd; auto with zarith.
+ intros; apply False_ind; auto with zarith.
+ intros HH2; assert (FF1 := Zgcd_inv_0_l _ _ (sym_equal HH2)).
+ assert (FF2 := Zgcd_inv_0_l _ _ (sym_equal HH2)).
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H2; simpl.
+ rewrite spec_to_N.
+ rewrite FF2; ring.
+ Qed.
+
+ Definition add (x y: t): t :=
+ match x with
+ | Qz zx =>
+ match y with
+ | Qz zy => Qz (BigZ.add zx zy)
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else Qq (BigZ.add (BigZ.mul zx (BigZ.Pos dy)) ny) dy
+ end
+ | Qq nx dx =>
+ if BigN.eq_bool dx BigN.zero then y
+ else match y with
+ | Qz zy => Qq (BigZ.add nx (BigZ.mul zy (BigZ.Pos dx))) dx
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else
+ if BigN.eq_bool dx dy then
+ let n := BigZ.add nx ny in
+ Qq n dx
+ else
+ let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx)) in
+ let d := BigN.mul dx dy in
+ Qq n d
+ end
+ end.
+
+
+
+ Theorem spec_add x y:
+ ([add x y] == [x] + [y])%Q.
+ intros [x | nx dx] [y | ny dy]; unfold Qplus; simpl.
+ rewrite BigZ.spec_add; repeat rewrite Zmult_1_r; auto.
+ intros; apply Qeq_refl; auto.
+ assert (F1:= BigN.spec_pos dy).
+ rewrite Zmult_1_r; red; simpl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH; simpl; try ring.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH1; simpl; try ring.
+ case HH; auto.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigZ.spec_add; rewrite BigZ.spec_mul; simpl; auto.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH; simpl; try ring.
+ rewrite Zmult_1_r; apply Qeq_refl.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH1; simpl; try ring.
+ case HH; auto.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigZ.spec_add; rewrite BigZ.spec_mul; simpl; auto.
+ rewrite Zmult_1_r; rewrite Pmult_1_r.
+ apply Qeq_refl.
+ assert (F1:= BigN.spec_pos dx); auto with zarith.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ simpl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ apply Qeq_refl.
+ case HH2; auto.
+ simpl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ case HH2; auto.
+ case HH1; auto.
+ rewrite Zmult_1_r; apply Qeq_refl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ simpl.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ case HH; auto.
+ rewrite Zmult_1_r; rewrite Zplus_0_r; rewrite Pmult_1_r.
+ apply Qeq_refl.
+ simpl.
+ generalize (BigN.spec_eq_bool (dx * dy)%bigN BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_mul;
+ rewrite BigN.spec_0; intros HH2.
+ (case (Zmult_integral _ _ HH2); intros HH3);
+ [case HH| case HH1]; auto.
+ generalize (BigN.spec_eq_bool dx dy);
+ case BigN.eq_bool; intros HH3.
+ rewrite <- HH3.
+ assert (Fx: (0 < BigN.to_Z dx)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ red; simpl.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH4.
+ case HH; auto.
+ simpl; rewrite Zpos_mult_morphism.
+ repeat rewrite Z2P_correct; auto with zarith.
+ rewrite BigZ.spec_add; repeat rewrite BigZ.spec_mul; simpl.
+ ring.
+ assert (Fx: (0 < BigN.to_Z dx)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ assert (Fy: (0 < BigN.to_Z dy)%Z).
+ generalize (BigN.spec_pos dy); auto with zarith.
+ red; simpl; rewrite Zpos_mult_morphism.
+ repeat rewrite Z2P_correct; auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_mul;
+ rewrite BigN.spec_0; intros H3; simpl.
+ absurd (0 < 0)%Z; auto with zarith.
+ rewrite BigZ.spec_add; repeat rewrite BigZ.spec_mul; simpl.
+ repeat rewrite Z2P_correct; auto with zarith.
+ apply Zmult_lt_0_compat; auto.
+ Qed.
+
+ Theorem spec_addc x y:
+ [[add x y]] = [[x]] + [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] + [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_add; auto.
+ unfold Qcplus, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition add_norm (x y: t): t :=
+ match x with
+ | Qz zx =>
+ match y with
+ | Qz zy => Qz (BigZ.add zx zy)
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else
+ norm (BigZ.add (BigZ.mul zx (BigZ.Pos dy)) ny) dy
+ end
+ | Qq nx dx =>
+ if BigN.eq_bool dx BigN.zero then y
+ else match y with
+ | Qz zy => norm (BigZ.add nx (BigZ.mul zy (BigZ.Pos dx))) dx
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else
+ if BigN.eq_bool dx dy then
+ let n := BigZ.add nx ny in
+ norm n dx
+ else
+ let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx)) in
+ let d := BigN.mul dx dy in
+ norm n d
+ end
+ end.
+
+ Theorem spec_add_norm x y:
+ ([add_norm x y] == [x] + [y])%Q.
+ intros x y; rewrite <- spec_add; auto.
+ case x; case y; clear x y; unfold add_norm, add.
+ intros; apply Qeq_refl.
+ intros p1 n p2.
+ generalize (BigN.spec_eq_bool n BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ apply Qeq_refl.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end.
+ simpl.
+ generalize (BigN.spec_eq_bool n BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ apply Qeq_refl.
+ apply Qeq_refl.
+ intros p1 p2 n.
+ generalize (BigN.spec_eq_bool n BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ apply Qeq_refl.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end.
+ apply Qeq_refl.
+ intros p1 q1 p2 q2.
+ generalize (BigN.spec_eq_bool q2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ apply Qeq_refl.
+ generalize (BigN.spec_eq_bool q1 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; intros HH3;
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end; apply Qeq_refl.
+ Qed.
+
+ Theorem spec_add_normc x y:
+ [[add_norm x y]] = [[x]] + [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] + [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_add_norm; auto.
+ unfold Qcplus, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition sub x y := add x (opp y).
+
+ Theorem spec_sub x y:
+ ([sub x y] == [x] - [y])%Q.
+ intros x y; unfold sub; rewrite spec_add; auto.
+ rewrite spec_opp; ring.
+ Qed.
+
+ Theorem spec_subc x y: [[sub x y]] = [[x]] - [[y]].
+ intros x y; unfold sub; rewrite spec_addc; auto.
+ rewrite spec_oppc; ring.
+ Qed.
+
+ Definition sub_norm x y := add_norm x (opp y).
+
+ Theorem spec_sub_norm x y:
+ ([sub_norm x y] == [x] - [y])%Q.
+ intros x y; unfold sub_norm; rewrite spec_add_norm; auto.
+ rewrite spec_opp; ring.
+ Qed.
+
+ Theorem spec_sub_normc x y:
+ [[sub_norm x y]] = [[x]] - [[y]].
+ intros x y; unfold sub_norm; rewrite spec_add_normc; auto.
+ rewrite spec_oppc; ring.
+ Qed.
+
+ Definition mul (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.mul zx zy)
+ | Qz zx, Qq ny dy => Qq (BigZ.mul zx ny) dy
+ | Qq nx dx, Qz zy => Qq (BigZ.mul nx zy) dx
+ | Qq nx dx, Qq ny dy => Qq (BigZ.mul nx ny) (BigN.mul dx dy)
+ end.
+
+ Theorem spec_mul x y: ([mul x y] == [x] * [y])%Q.
+ intros [x | nx dx] [y | ny dy]; unfold Qmult; simpl.
+ rewrite BigZ.spec_mul; repeat rewrite Zmult_1_r; auto.
+ intros; apply Qeq_refl; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH1.
+ red; simpl; ring.
+ rewrite BigZ.spec_mul; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH1.
+ red; simpl; ring.
+ rewrite BigZ.spec_mul; rewrite Pmult_1_r.
+ apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; rewrite BigN.spec_mul;
+ intros HH1.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH2.
+ red; simpl; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH3.
+ red; simpl; ring.
+ case (Zmult_integral _ _ HH1); intros HH.
+ case HH2; auto.
+ case HH3; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH2.
+ case HH1; rewrite HH2; ring.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH3.
+ case HH1; rewrite HH3; ring.
+ rewrite BigZ.spec_mul.
+ assert (tmp:
+ (forall a b, 0 < a -> 0 < b -> Z2P (a * b) = (Z2P a * Z2P b)%positive)%Z).
+ intros [|a|a] [|b|b]; simpl; auto; intros; apply False_ind; auto with zarith.
+ rewrite tmp; auto.
+ apply Qeq_refl.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ generalize (BigN.spec_pos dy); auto with zarith.
+ Qed.
+
+ Theorem spec_mulc x y:
+ [[mul x y]] = [[x]] * [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] * [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_mul; auto.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition mul_norm (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.mul zx zy)
+ | Qz zx, Qq ny dy => mul (Qz ny) (norm zx dy)
+ | Qq nx dx, Qz zy => mul (Qz nx) (norm zy dx)
+ | Qq nx dx, Qq ny dy => mul (norm nx dy) (norm ny dx)
+ end.
+
+ Theorem spec_mul_norm x y:
+ ([mul_norm x y] == [x] * [y])%Q.
+ intros x y; rewrite <- spec_mul; auto.
+ unfold mul_norm; case x; case y; clear x y.
+ intros; apply Qeq_refl.
+ intros p1 n p2.
+ repeat rewrite spec_mul.
+ match goal with |- ?Z == _ =>
+ match Z with context id [norm ?X ?Y] =>
+ let y := context id [Qq X Y] in
+ apply Qeq_trans with y; [repeat apply Qmult_comp;
+ repeat apply Qplus_comp; repeat apply Qeq_refl;
+ apply spec_norm | idtac]
+ end
+ end.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH; simpl; ring.
+ intros p1 p2 n.
+ repeat rewrite spec_mul.
+ match goal with |- ?Z == _ =>
+ match Z with context id [norm ?X ?Y] =>
+ let y := context id [Qq X Y] in
+ apply Qeq_trans with y; [repeat apply Qmult_comp;
+ repeat apply Qplus_comp; repeat apply Qeq_refl;
+ apply spec_norm | idtac]
+ end
+ end.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH; simpl; try ring.
+ rewrite Pmult_1_r; auto.
+ intros p1 n1 p2 n2.
+ repeat rewrite spec_mul.
+ repeat match goal with |- ?Z == _ =>
+ match Z with context id [norm ?X ?Y] =>
+ let y := context id [Qq X Y] in
+ apply Qeq_trans with y; [repeat apply Qmult_comp;
+ repeat apply Qplus_comp; repeat apply Qeq_refl;
+ apply spec_norm | idtac]
+ end
+ end.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1;
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; try ring.
+ repeat rewrite Zpos_mult_morphism; ring.
+ Qed.
+
+ Theorem spec_mul_normc x y:
+ [[mul_norm x y]] = [[x]] * [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] * [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_mul_norm; auto.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition inv (x: t): t :=
+ match x with
+ | Qz (BigZ.Pos n) => Qq BigZ.one n
+ | Qz (BigZ.Neg n) => Qq BigZ.minus_one n
+ | Qq (BigZ.Pos n) d => Qq (BigZ.Pos d) n
+ | Qq (BigZ.Neg n) d => Qq (BigZ.Neg d) n
+ end.
+
+
+ Theorem spec_inv x:
+ ([inv x] == /[x])%Q.
+ intros [ [x | x] | [nx | nx] dx]; unfold inv, Qinv; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ rewrite H1; apply Qeq_refl.
+ generalize H1 (BigN.spec_pos x); case (BigN.to_Z x); auto.
+ intros HH; case HH; auto.
+ intros; red; simpl; auto.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ rewrite H1; apply Qeq_refl.
+ generalize H1 (BigN.spec_pos x); case (BigN.to_Z x); simpl;
+ auto.
+ intros HH; case HH; auto.
+ intros; red; simpl; auto.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ apply Qeq_refl.
+ rewrite H1; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ rewrite H2; red; simpl; auto.
+ generalize H1 (BigN.spec_pos nx); case (BigN.to_Z nx); simpl;
+ auto.
+ intros HH; case HH; auto.
+ intros; red; simpl.
+ rewrite Zpos_mult_morphism.
+ rewrite Z2P_correct; auto.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ apply Qeq_refl.
+ rewrite H1; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ rewrite H2; red; simpl; auto.
+ generalize H1 (BigN.spec_pos nx); case (BigN.to_Z nx); simpl;
+ auto.
+ intros HH; case HH; auto.
+ intros; red; simpl.
+ assert (tmp: forall x, Zneg x = Zopp (Zpos x)); auto.
+ rewrite tmp.
+ rewrite Zpos_mult_morphism.
+ rewrite Z2P_correct; auto.
+ ring.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ intros p _ HH; case HH; auto.
+ Qed.
+
+ Theorem spec_invc x:
+ [[inv x]] = /[[x]].
+ intros x; unfold to_Qc.
+ apply trans_equal with (!! (/[x])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_inv; auto.
+ unfold Qcinv, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qinv_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition inv_norm (x: t): t :=
+ match x with
+ | Qz (BigZ.Pos n) =>
+ if BigN.eq_bool n BigN.zero then zero else Qq BigZ.one n
+ | Qz (BigZ.Neg n) =>
+ if BigN.eq_bool n BigN.zero then zero else Qq BigZ.minus_one n
+ | Qq (BigZ.Pos n) d =>
+ if BigN.eq_bool n BigN.zero then zero else Qq (BigZ.Pos d) n
+ | Qq (BigZ.Neg n) d =>
+ if BigN.eq_bool n BigN.zero then zero else Qq (BigZ.Neg d) n
+ end.
+
+ Theorem spec_inv_norm x: ([inv_norm x] == /[x])%Q.
+ intros x; rewrite <- spec_inv; generalize x; clear x.
+ intros [ [x | x] | [nx | nx] dx]; unfold inv_norm, inv;
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; try apply Qeq_refl;
+ red; simpl;
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; auto;
+ case H2; auto.
+ Qed.
+
+ Theorem spec_inv_normc x:
+ [[inv_norm x]] = /[[x]].
+ intros x; unfold to_Qc.
+ apply trans_equal with (!! (/[x])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_inv_norm; auto.
+ unfold Qcinv, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qinv_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+
+ Definition div x y := mul x (inv y).
+
+ Theorem spec_div x y: ([div x y] == [x] / [y])%Q.
+ intros x y; unfold div; rewrite spec_mul; auto.
+ unfold Qdiv; apply Qmult_comp.
+ apply Qeq_refl.
+ apply spec_inv; auto.
+ Qed.
+
+ Theorem spec_divc x y: [[div x y]] = [[x]] / [[y]].
+ intros x y; unfold div; rewrite spec_mulc; auto.
+ unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
+ apply spec_invc; auto.
+ Qed.
+
+ Definition div_norm x y := mul_norm x (inv y).
+
+ Theorem spec_div_norm x y: ([div_norm x y] == [x] / [y])%Q.
+ intros x y; unfold div_norm; rewrite spec_mul_norm; auto.
+ unfold Qdiv; apply Qmult_comp.
+ apply Qeq_refl.
+ apply spec_inv; auto.
+ Qed.
+
+ Theorem spec_div_normc x y: [[div_norm x y]] = [[x]] / [[y]].
+ intros x y; unfold div_norm; rewrite spec_mul_normc; auto.
+ unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
+ apply spec_invc; auto.
+ Qed.
+
+
+ Definition square (x: t): t :=
+ match x with
+ | Qz zx => Qz (BigZ.square zx)
+ | Qq nx dx => Qq (BigZ.square nx) (BigN.square dx)
+ end.
+
+
+ Theorem spec_square x: ([square x] == [x] ^ 2)%Q.
+ intros [ x | nx dx]; unfold square.
+ red; simpl; rewrite BigZ.spec_square; auto with zarith.
+ simpl Qpower.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H.
+ red; simpl.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_square;
+ intros H1.
+ case H1; rewrite H; auto.
+ red; simpl.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_square;
+ intros H1.
+ case H; case (Zmult_integral _ _ H1); auto.
+ simpl.
+ rewrite BigZ.spec_square.
+ rewrite Zpos_mult_morphism.
+ assert (tmp:
+ (forall a b, 0 < a -> 0 < b -> Z2P (a * b) = (Z2P a * Z2P b)%positive)%Z).
+ intros [|a|a] [|b|b]; simpl; auto; intros; apply False_ind; auto with zarith.
+ rewrite tmp; auto.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ Qed.
+
+ Theorem spec_squarec x: [[square x]] = [[x]]^2.
+ intros x; unfold to_Qc.
+ apply trans_equal with (!! ([x]^2)).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_square; auto.
+ simpl Qcpower.
+ replace (!! [x] * 1) with (!![x]); try ring.
+ simpl.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition power_pos (x: t) p: t :=
+ match x with
+ | Qz zx => Qz (BigZ.power_pos zx p)
+ | Qq nx dx => Qq (BigZ.power_pos nx p) (BigN.power_pos dx p)
+ end.
+
+ Theorem spec_power_pos x p: ([power_pos x p] == [x] ^ Zpos p)%Q.
+ Proof.
+ intros [x | nx dx] p; unfold power_pos.
+ unfold power_pos; red; simpl.
+ generalize (Qpower_decomp p (BigZ.to_Z x) 1).
+ unfold Qeq; simpl.
+ rewrite Zpower_pos_1_l; simpl Z2P.
+ rewrite Zmult_1_r.
+ intros H; rewrite H.
+ rewrite BigZ.spec_power_pos; simpl; ring.
+ simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_power_pos; intros H1.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H2.
+ elim p; simpl.
+ intros; red; simpl; auto.
+ intros p1 Hp1; rewrite <- Hp1; red; simpl; auto.
+ apply Qeq_refl.
+ case H2; generalize H1.
+ elim p; simpl.
+ intros p1 Hrec.
+ change (xI p1) with (1 + (xO p1))%positive.
+ rewrite Zpower_pos_is_exp; rewrite Zpower_pos_1_r.
+ intros HH; case (Zmult_integral _ _ HH); auto.
+ rewrite <- Pplus_diag.
+ rewrite Zpower_pos_is_exp.
+ intros HH1; case (Zmult_integral _ _ HH1); auto.
+ intros p1 Hrec.
+ rewrite <- Pplus_diag.
+ rewrite Zpower_pos_is_exp.
+ intros HH1; case (Zmult_integral _ _ HH1); auto.
+ rewrite Zpower_pos_1_r; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H2.
+ case H1; rewrite H2; auto.
+ simpl; rewrite Zpower_pos_0_l; auto.
+ assert (F1: (0 < BigN.to_Z dx)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ assert (F2: (0 < BigN.to_Z dx ^ ' p)%Z).
+ unfold Zpower; apply Zpower_pos_pos; auto.
+ unfold power_pos; red; simpl.
+ generalize (Qpower_decomp p (BigZ.to_Z nx)
+ (Z2P (BigN.to_Z dx))).
+ unfold Qeq; simpl.
+ repeat rewrite Z2P_correct; auto.
+ unfold Qeq; simpl; intros HH.
+ rewrite HH.
+ rewrite BigZ.spec_power_pos; simpl; ring.
+ Qed.
+
+ Theorem spec_power_posc x p:
+ [[power_pos x p]] = [[x]] ^ nat_of_P p.
+ intros x p; unfold to_Qc.
+ apply trans_equal with (!! ([x]^Zpos p)).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_power_pos; auto.
+ pattern p; apply Pind; clear p.
+ simpl; ring.
+ intros p Hrec.
+ rewrite nat_of_P_succ_morphism; simpl Qcpower.
+ rewrite <- Hrec.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _;
+ unfold this.
+ apply Qred_complete.
+ assert (F: [x] ^ ' Psucc p == [x] * [x] ^ ' p).
+ simpl; case x; simpl; clear x Hrec.
+ intros x; simpl; repeat rewrite Qpower_decomp; simpl.
+ red; simpl; repeat rewrite Zpower_pos_1_l; simpl Z2P.
+ rewrite Pplus_one_succ_l.
+ rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r; auto.
+ intros nx dx.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ unfold Qpower_positive.
+ assert (tmp: forall p, pow_pos Qmult 0%Q p = 0%Q).
+ intros p1; elim p1; simpl; auto; clear p1.
+ intros p1 Hp1; rewrite Hp1; auto.
+ intros p1 Hp1; rewrite Hp1; auto.
+ repeat rewrite tmp; intros; red; simpl; auto.
+ intros H1.
+ assert (F1: (0 < BigN.to_Z dx)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ simpl; repeat rewrite Qpower_decomp; simpl.
+ red; simpl; repeat rewrite Zpower_pos_1_l; simpl Z2P.
+ rewrite Pplus_one_succ_l.
+ rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r; auto.
+ repeat rewrite Zpos_mult_morphism.
+ repeat rewrite Z2P_correct; auto.
+ 2: apply Zpower_pos_pos; auto.
+ 2: apply Zpower_pos_pos; auto.
+ rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r; auto.
+ rewrite F.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+
+End Qbi.
diff --git a/theories/Numbers/Rational/BigQ/QifMake.v b/theories/Numbers/Rational/BigQ/QifMake.v
new file mode 100644
index 00000000..1d8ecc94
--- /dev/null
+++ b/theories/Numbers/Rational/BigQ/QifMake.v
@@ -0,0 +1,979 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: QifMake.v 11027 2008-06-01 13:28:59Z letouzey $ i*)
+
+Require Import Bool.
+Require Import ZArith.
+Require Import Znumtheory.
+Require Import BigNumPrelude.
+Require Import Arith.
+Require Export BigN.
+Require Export BigZ.
+Require Import QArith.
+Require Import Qcanon.
+Require Import Qpower.
+Require Import QMake_base.
+
+Module Qif.
+
+ Import BinInt.
+ Open Local Scope Q_scope.
+ Open Local Scope Qc_scope.
+
+ (** The notation of a rational number is either an integer x,
+ interpreted as itself or a pair (x,y) of an integer x and a naturel
+ number y interpreted as x/y. The pairs (x,0) and (0,y) are all
+ interpreted as 0. *)
+
+ Definition t := q_type.
+
+ Definition zero: t := Qz BigZ.zero.
+ Definition one: t := Qz BigZ.one.
+ Definition minus_one: t := Qz BigZ.minus_one.
+
+ Definition of_Z x: t := Qz (BigZ.of_Z x).
+
+ Definition of_Q q: t :=
+ match q with x # y =>
+ Qq (BigZ.of_Z x) (BigN.of_N (Npos y))
+ end.
+
+ Definition of_Qc q := of_Q (this q).
+
+ Definition to_Q (q: t) :=
+ match q with
+ Qz x => BigZ.to_Z x # 1
+ |Qq x y => if BigN.eq_bool y BigN.zero then 0%Q
+ else BigZ.to_Z x # Z2P (BigN.to_Z y)
+ end.
+
+ Definition to_Qc q := !!(to_Q q).
+
+ Notation "[[ x ]]" := (to_Qc x).
+
+ Notation "[ x ]" := (to_Q x).
+
+ Theorem spec_to_Q: forall q: Q, [of_Q q] = q.
+ intros (x,y); simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ rewrite BigN.spec_of_pos; intros HH; discriminate HH.
+ rewrite BigZ.spec_of_Z; simpl.
+ rewrite (BigN.spec_of_pos); auto.
+ Qed.
+
+ Theorem spec_to_Qc: forall q, [[of_Qc q]] = q.
+ intros (x, Hx); unfold of_Qc, to_Qc; simpl.
+ apply Qc_decomp; simpl.
+ intros; rewrite spec_to_Q; auto.
+ Qed.
+
+ Definition opp (x: t): t :=
+ match x with
+ | Qz zx => Qz (BigZ.opp zx)
+ | Qq nx dx => Qq (BigZ.opp nx) dx
+ end.
+
+ Theorem spec_opp: forall q, ([opp q] = -[q])%Q.
+ intros [z | x y]; simpl.
+ rewrite BigZ.spec_opp; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ rewrite BigZ.spec_opp; auto.
+ Qed.
+
+ Theorem spec_oppc: forall q, [[opp q]] = -[[q]].
+ intros q; unfold Qcopp, to_Qc, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ rewrite spec_opp.
+ rewrite <- Qred_opp.
+ rewrite Qred_involutive; auto.
+ Qed.
+
+ Definition compare (x y: t) :=
+ match x, y with
+ | Qz zx, Qz zy => BigZ.compare zx zy
+ | Qz zx, Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then BigZ.compare zx BigZ.zero
+ else BigZ.compare (BigZ.mul zx (BigZ.Pos dy)) ny
+ | Qq nx dx, Qz zy =>
+ if BigN.eq_bool dx BigN.zero then BigZ.compare BigZ.zero zy
+ else BigZ.compare nx (BigZ.mul zy (BigZ.Pos dx))
+ | Qq nx dx, Qq ny dy =>
+ match BigN.eq_bool dx BigN.zero, BigN.eq_bool dy BigN.zero with
+ | true, true => Eq
+ | true, false => BigZ.compare BigZ.zero ny
+ | false, true => BigZ.compare nx BigZ.zero
+ | false, false => BigZ.compare (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx))
+ end
+ end.
+
+ Theorem spec_compare: forall q1 q2,
+ compare q1 q2 = ([q1] ?= [q2])%Q.
+ intros [z1 | x1 y1] [z2 | x2 y2];
+ unfold Qcompare, compare, to_Q, Qnum, Qden.
+ repeat rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare z1 z2); case BigZ.compare; intros H; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ rewrite Zmult_1_r.
+ generalize (BigN.spec_eq_bool y2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ rewrite Zmult_1_r; generalize (BigZ.spec_compare z1 BigZ.zero);
+ case BigZ.compare; auto.
+ rewrite BigZ.spec_0; intros HH1; rewrite HH1; rewrite Zcompare_refl; auto.
+ rewrite Z2P_correct; auto with zarith.
+ 2: generalize (BigN.spec_pos y2); auto with zarith.
+ generalize (BigZ.spec_compare (z1 * BigZ.Pos y2) x2)%bigZ; case BigZ.compare;
+ rewrite BigZ.spec_mul; simpl; intros H; apply sym_equal; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ generalize (BigN.spec_eq_bool y1 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ rewrite Zmult_0_l; rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare BigZ.zero z2);
+ case BigZ.compare; auto.
+ rewrite BigZ.spec_0; intros HH1; rewrite <- HH1; rewrite Zcompare_refl; auto.
+ rewrite Z2P_correct; auto with zarith.
+ 2: generalize (BigN.spec_pos y1); auto with zarith.
+ rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare x1 (z2 * BigZ.Pos y1))%bigZ; case BigZ.compare;
+ rewrite BigZ.spec_mul; simpl; intros H; apply sym_equal; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ generalize (BigN.spec_eq_bool y1 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ generalize (BigN.spec_eq_bool y2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ rewrite Zcompare_refl; auto.
+ rewrite Zmult_0_l; rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare BigZ.zero x2);
+ case BigZ.compare; auto.
+ rewrite BigZ.spec_0; intros HH2; rewrite <- HH2; rewrite Zcompare_refl; auto.
+ generalize (BigN.spec_eq_bool y2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ rewrite Zmult_0_l; rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare x1 BigZ.zero)%bigZ; case BigZ.compare;
+ auto; rewrite BigZ.spec_0.
+ intros HH2; rewrite <- HH2; rewrite Zcompare_refl; auto.
+ repeat rewrite Z2P_correct.
+ 2: generalize (BigN.spec_pos y1); auto with zarith.
+ 2: generalize (BigN.spec_pos y2); auto with zarith.
+ generalize (BigZ.spec_compare (x1 * BigZ.Pos y2)
+ (x2 * BigZ.Pos y1))%bigZ; case BigZ.compare;
+ repeat rewrite BigZ.spec_mul; simpl; intros H; apply sym_equal; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ Qed.
+
+ Definition do_norm_n n :=
+ match n with
+ | BigN.N0 _ => false
+ | BigN.N1 _ => false
+ | BigN.N2 _ => false
+ | BigN.N3 _ => false
+ | BigN.N4 _ => false
+ | BigN.N5 _ => false
+ | BigN.N6 _ => false
+ | _ => true
+ end.
+
+ Definition do_norm_z z :=
+ match z with
+ | BigZ.Pos n => do_norm_n n
+ | BigZ.Neg n => do_norm_n n
+ end.
+
+(* Je pense que cette fonction normalise bien ... *)
+ Definition norm n d: t :=
+ if andb (do_norm_z n) (do_norm_n d) then
+ let gcd := BigN.gcd (BigZ.to_N n) d in
+ match BigN.compare BigN.one gcd with
+ | Lt =>
+ let n := BigZ.div n (BigZ.Pos gcd) in
+ let d := BigN.div d gcd in
+ match BigN.compare d BigN.one with
+ | Gt => Qq n d
+ | Eq => Qz n
+ | Lt => zero
+ end
+ | Eq => Qq n d
+ | Gt => zero (* gcd = 0 => both numbers are 0 *)
+ end
+ else Qq n d.
+
+ Theorem spec_norm: forall n q,
+ ([norm n q] == [Qq n q])%Q.
+ intros p q; unfold norm.
+ case do_norm_z; simpl andb.
+ 2: apply Qeq_refl.
+ case do_norm_n.
+ 2: apply Qeq_refl.
+ assert (Hp := BigN.spec_pos (BigZ.to_N p)).
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; auto; rewrite BigN.spec_1; rewrite BigN.spec_gcd; intros H1.
+ apply Qeq_refl.
+ generalize (BigN.spec_pos (q / BigN.gcd (BigZ.to_N p) q)%bigN).
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; auto; rewrite BigN.spec_1; rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; auto with zarith; intros H2 HH.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H3; simpl;
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd;
+ auto with zarith.
+ generalize H2; rewrite H3;
+ rewrite Zdiv_0_l; auto with zarith.
+ generalize H1 H2 H3 (BigN.spec_pos q); clear H1 H2 H3.
+ rewrite spec_to_N.
+ set (a := (BigN.to_Z (BigZ.to_N p))).
+ set (b := (BigN.to_Z q)).
+ intros H1 H2 H3 H4; rewrite Z2P_correct; auto with zarith.
+ rewrite Zgcd_div_swap; auto with zarith.
+ rewrite H2; ring.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H3; simpl.
+ case H3.
+ generalize H1 H2 H3 HH; clear H1 H2 H3 HH.
+ set (a := (BigN.to_Z (BigZ.to_N p))).
+ set (b := (BigN.to_Z q)).
+ intros H1 H2 H3 HH.
+ rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto with zarith.
+ case (Zle_lt_or_eq _ _ HH); auto with zarith.
+ intros HH1; rewrite <- HH1; ring.
+ generalize (Zgcd_is_gcd a b); intros HH1; inversion HH1; auto.
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; auto with zarith; intros H3.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H4.
+ case H3; rewrite H4; rewrite Zdiv_0_l; auto with zarith.
+ simpl.
+ assert (FF := BigN.spec_pos q).
+ rewrite Z2P_correct; auto with zarith.
+ rewrite <- BigN.spec_gcd; rewrite <- BigN.spec_div; auto with zarith.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigN.spec_div; rewrite BigN.spec_gcd; auto with zarith.
+ simpl; rewrite BigZ.spec_div; simpl.
+ rewrite BigN.spec_gcd; auto with zarith.
+ generalize H1 H2 H3 H4 HH FF; clear H1 H2 H3 H4 HH FF.
+ set (a := (BigN.to_Z (BigZ.to_N p))).
+ set (b := (BigN.to_Z q)).
+ intros H1 H2 H3 H4 HH FF.
+ rewrite spec_to_N; fold a.
+ rewrite Zgcd_div_swap; auto with zarith.
+ rewrite BigN.spec_gcd; auto with zarith.
+ rewrite BigN.spec_div;
+ rewrite BigN.spec_gcd; auto with zarith.
+ rewrite BigN.spec_gcd; auto with zarith.
+ case (Zle_lt_or_eq _ _
+ (BigN.spec_pos (BigN.gcd (BigZ.to_N p) q)));
+ rewrite BigN.spec_gcd; auto with zarith.
+ intros; apply False_ind; auto with zarith.
+ intros HH2; assert (FF1 := Zgcd_inv_0_l _ _ (sym_equal HH2)).
+ assert (FF2 := Zgcd_inv_0_l _ _ (sym_equal HH2)).
+ red; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H2; simpl.
+ rewrite spec_to_N.
+ rewrite FF2; ring.
+ Qed.
+
+
+ Definition add (x y: t): t :=
+ match x with
+ | Qz zx =>
+ match y with
+ | Qz zy => Qz (BigZ.add zx zy)
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else Qq (BigZ.add (BigZ.mul zx (BigZ.Pos dy)) ny) dy
+ end
+ | Qq nx dx =>
+ if BigN.eq_bool dx BigN.zero then y
+ else match y with
+ | Qz zy => Qq (BigZ.add nx (BigZ.mul zy (BigZ.Pos dx))) dx
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else
+ let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx)) in
+ let d := BigN.mul dx dy in
+ Qq n d
+ end
+ end.
+
+
+ Theorem spec_add x y:
+ ([add x y] == [x] + [y])%Q.
+ intros [x | nx dx] [y | ny dy]; unfold Qplus; simpl.
+ rewrite BigZ.spec_add; repeat rewrite Zmult_1_r; auto.
+ intros; apply Qeq_refl; auto.
+ assert (F1:= BigN.spec_pos dy).
+ rewrite Zmult_1_r; red; simpl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH; simpl; try ring.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH1; simpl; try ring.
+ case HH; auto.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigZ.spec_add; rewrite BigZ.spec_mul; simpl; auto.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH; simpl; try ring.
+ rewrite Zmult_1_r; apply Qeq_refl.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool;
+ rewrite BigN.spec_0; intros HH1; simpl; try ring.
+ case HH; auto.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigZ.spec_add; rewrite BigZ.spec_mul; simpl; auto.
+ rewrite Zmult_1_r; rewrite Pmult_1_r.
+ apply Qeq_refl.
+ assert (F1:= BigN.spec_pos dx); auto with zarith.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ simpl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ apply Qeq_refl.
+ case HH2; auto.
+ simpl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ case HH2; auto.
+ case HH1; auto.
+ rewrite Zmult_1_r; apply Qeq_refl.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ simpl.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ case HH; auto.
+ rewrite Zmult_1_r; rewrite Zplus_0_r; rewrite Pmult_1_r.
+ apply Qeq_refl.
+ simpl.
+ generalize (BigN.spec_eq_bool (dx * dy)%bigN BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_mul;
+ rewrite BigN.spec_0; intros HH2.
+ (case (Zmult_integral _ _ HH2); intros HH3);
+ [case HH| case HH1]; auto.
+ rewrite BigZ.spec_add; repeat rewrite BigZ.spec_mul; simpl.
+ assert (Fx: (0 < BigN.to_Z dx)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ assert (Fy: (0 < BigN.to_Z dy)%Z).
+ generalize (BigN.spec_pos dy); auto with zarith.
+ red; simpl; rewrite Zpos_mult_morphism.
+ repeat rewrite Z2P_correct; auto with zarith.
+ apply Zmult_lt_0_compat; auto.
+ Qed.
+
+ Theorem spec_addc x y:
+ [[add x y]] = [[x]] + [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] + [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_add; auto.
+ unfold Qcplus, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition add_norm (x y: t): t :=
+ match x with
+ | Qz zx =>
+ match y with
+ | Qz zy => Qz (BigZ.add zx zy)
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else norm (BigZ.add (BigZ.mul zx (BigZ.Pos dy)) ny) dy
+ end
+ | Qq nx dx =>
+ if BigN.eq_bool dx BigN.zero then y
+ else match y with
+ | Qz zy => norm (BigZ.add nx (BigZ.mul zy (BigZ.Pos dx))) dx
+ | Qq ny dy =>
+ if BigN.eq_bool dy BigN.zero then x
+ else
+ let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx)) in
+ let d := BigN.mul dx dy in
+ norm n d
+ end
+ end.
+
+ Theorem spec_add_norm x y:
+ ([add_norm x y] == [x] + [y])%Q.
+ intros x y; rewrite <- spec_add; auto.
+ case x; case y; clear x y; unfold add_norm, add.
+ intros; apply Qeq_refl.
+ intros p1 n p2.
+ generalize (BigN.spec_eq_bool n BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ apply Qeq_refl.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end.
+ simpl.
+ generalize (BigN.spec_eq_bool n BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ apply Qeq_refl.
+ apply Qeq_refl.
+ intros p1 p2 n.
+ generalize (BigN.spec_eq_bool n BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH.
+ apply Qeq_refl.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end.
+ apply Qeq_refl.
+ intros p1 q1 p2 q2.
+ generalize (BigN.spec_eq_bool q2 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH1.
+ apply Qeq_refl.
+ generalize (BigN.spec_eq_bool q1 BigN.zero);
+ case BigN.eq_bool; rewrite BigN.spec_0; intros HH2.
+ apply Qeq_refl.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end.
+ apply Qeq_refl.
+ Qed.
+
+ Theorem spec_add_normc x y:
+ [[add_norm x y]] = [[x]] + [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] + [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_add_norm; auto.
+ unfold Qcplus, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition sub x y := add x (opp y).
+
+
+ Theorem spec_sub x y:
+ ([sub x y] == [x] - [y])%Q.
+ intros x y; unfold sub; rewrite spec_add; auto.
+ rewrite spec_opp; ring.
+ Qed.
+
+ Theorem spec_subc x y: [[sub x y]] = [[x]] - [[y]].
+ intros x y; unfold sub; rewrite spec_addc; auto.
+ rewrite spec_oppc; ring.
+ Qed.
+
+ Definition sub_norm x y := add_norm x (opp y).
+
+ Theorem spec_sub_norm x y:
+ ([sub_norm x y] == [x] - [y])%Q.
+ intros x y; unfold sub_norm; rewrite spec_add_norm; auto.
+ rewrite spec_opp; ring.
+ Qed.
+
+ Theorem spec_sub_normc x y:
+ [[sub_norm x y]] = [[x]] - [[y]].
+ intros x y; unfold sub_norm; rewrite spec_add_normc; auto.
+ rewrite spec_oppc; ring.
+ Qed.
+
+ Definition mul (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.mul zx zy)
+ | Qz zx, Qq ny dy => Qq (BigZ.mul zx ny) dy
+ | Qq nx dx, Qz zy => Qq (BigZ.mul nx zy) dx
+ | Qq nx dx, Qq ny dy => Qq (BigZ.mul nx ny) (BigN.mul dx dy)
+ end.
+
+
+ Theorem spec_mul x y: ([mul x y] == [x] * [y])%Q.
+ intros [x | nx dx] [y | ny dy]; unfold Qmult; simpl.
+ rewrite BigZ.spec_mul; repeat rewrite Zmult_1_r; auto.
+ intros; apply Qeq_refl; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH1.
+ red; simpl; ring.
+ rewrite BigZ.spec_mul; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH1.
+ red; simpl; ring.
+ rewrite BigZ.spec_mul; rewrite Pmult_1_r.
+ apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; rewrite BigN.spec_mul;
+ intros HH1.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH2.
+ red; simpl; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH3.
+ red; simpl; ring.
+ case (Zmult_integral _ _ HH1); intros HH.
+ case HH2; auto.
+ case HH3; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH2.
+ case HH1; rewrite HH2; ring.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros HH3.
+ case HH1; rewrite HH3; ring.
+ rewrite BigZ.spec_mul.
+ assert (tmp:
+ (forall a b, 0 < a -> 0 < b -> Z2P (a * b) = (Z2P a * Z2P b)%positive)%Z).
+ intros [|a|a] [|b|b]; simpl; auto; intros; apply False_ind; auto with zarith.
+ rewrite tmp; auto.
+ apply Qeq_refl.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ generalize (BigN.spec_pos dy); auto with zarith.
+ Qed.
+
+ Theorem spec_mulc x y:
+ [[mul x y]] = [[x]] * [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] * [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_mul; auto.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+
+ Definition mul_norm (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.mul zx zy)
+ | Qz zx, Qq ny dy => norm (BigZ.mul zx ny) dy
+ | Qq nx dx, Qz zy => norm (BigZ.mul nx zy) dx
+ | Qq nx dx, Qq ny dy => norm (BigZ.mul nx ny) (BigN.mul dx dy)
+ end.
+
+ Theorem spec_mul_norm x y:
+ ([mul_norm x y] == [x] * [y])%Q.
+ intros x y; rewrite <- spec_mul; auto.
+ unfold mul_norm, mul; case x; case y; clear x y.
+ intros; apply Qeq_refl.
+ intros p1 n p2.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end; apply Qeq_refl.
+ intros p1 p2 n.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end; apply Qeq_refl.
+ intros p1 n1 p2 n2.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end; apply Qeq_refl.
+ Qed.
+
+ Theorem spec_mul_normc x y:
+ [[mul_norm x y]] = [[x]] * [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] * [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_mul_norm; auto.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+
+
+ Definition inv (x: t): t :=
+ match x with
+ | Qz (BigZ.Pos n) => Qq BigZ.one n
+ | Qz (BigZ.Neg n) => Qq BigZ.minus_one n
+ | Qq (BigZ.Pos n) d => Qq (BigZ.Pos d) n
+ | Qq (BigZ.Neg n) d => Qq (BigZ.Neg d) n
+ end.
+
+ Theorem spec_inv x:
+ ([inv x] == /[x])%Q.
+ intros [ [x | x] | [nx | nx] dx]; unfold inv, Qinv; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ rewrite H1; apply Qeq_refl.
+ generalize H1 (BigN.spec_pos x); case (BigN.to_Z x); auto.
+ intros HH; case HH; auto.
+ intros; red; simpl; auto.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ rewrite H1; apply Qeq_refl.
+ generalize H1 (BigN.spec_pos x); case (BigN.to_Z x); simpl;
+ auto.
+ intros HH; case HH; auto.
+ intros; red; simpl; auto.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ apply Qeq_refl.
+ rewrite H1; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ rewrite H2; red; simpl; auto.
+ generalize H1 (BigN.spec_pos nx); case (BigN.to_Z nx); simpl;
+ auto.
+ intros HH; case HH; auto.
+ intros; red; simpl.
+ rewrite Zpos_mult_morphism.
+ rewrite Z2P_correct; auto.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ apply Qeq_refl.
+ rewrite H1; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H2; simpl; auto.
+ rewrite H2; red; simpl; auto.
+ generalize H1 (BigN.spec_pos nx); case (BigN.to_Z nx); simpl;
+ auto.
+ intros HH; case HH; auto.
+ intros; red; simpl.
+ assert (tmp: forall x, Zneg x = Zopp (Zpos x)); auto.
+ rewrite tmp.
+ rewrite Zpos_mult_morphism.
+ rewrite Z2P_correct; auto.
+ ring.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ intros p _ HH; case HH; auto.
+ Qed.
+
+ Theorem spec_invc x:
+ [[inv x]] = /[[x]].
+ intros x; unfold to_Qc.
+ apply trans_equal with (!! (/[x])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_inv; auto.
+ unfold Qcinv, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qinv_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+
+Definition inv_norm (x: t): t :=
+ match x with
+ | Qz (BigZ.Pos n) =>
+ match BigN.compare n BigN.one with
+ Gt => Qq BigZ.one n
+ | _ => x
+ end
+ | Qz (BigZ.Neg n) =>
+ match BigN.compare n BigN.one with
+ Gt => Qq BigZ.minus_one n
+ | _ => x
+ end
+ | Qq (BigZ.Pos n) d =>
+ match BigN.compare n BigN.one with
+ Gt => Qq (BigZ.Pos d) n
+ | Eq => Qz (BigZ.Pos d)
+ | Lt => Qz (BigZ.zero)
+ end
+ | Qq (BigZ.Neg n) d =>
+ match BigN.compare n BigN.one with
+ Gt => Qq (BigZ.Neg d) n
+ | Eq => Qz (BigZ.Neg d)
+ | Lt => Qz (BigZ.zero)
+ end
+ end.
+
+ Theorem spec_inv_norm x: ([inv_norm x] == /[x])%Q.
+ intros [ [x | x] | [nx | nx] dx]; unfold inv_norm, Qinv.
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; rewrite BigN.spec_1; intros H.
+ simpl; rewrite H; apply Qeq_refl.
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); simpl.
+ generalize H; case BigN.to_Z.
+ intros _ HH; discriminate HH.
+ intros p; case p; auto.
+ intros p1 HH; discriminate HH.
+ intros p1 HH; discriminate HH.
+ intros HH; discriminate HH.
+ intros p _ HH; discriminate HH.
+ intros HH; rewrite <- HH.
+ apply Qeq_refl.
+ generalize H; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1.
+ rewrite H1; intros HH; discriminate.
+ generalize H; case BigN.to_Z.
+ intros HH; discriminate HH.
+ intros; red; simpl; auto.
+ intros p HH; discriminate HH.
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; rewrite BigN.spec_1; intros H.
+ simpl; rewrite H; apply Qeq_refl.
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); simpl.
+ generalize H; case BigN.to_Z.
+ intros _ HH; discriminate HH.
+ intros p; case p; auto.
+ intros p1 HH; discriminate HH.
+ intros p1 HH; discriminate HH.
+ intros HH; discriminate HH.
+ intros p _ HH; discriminate HH.
+ intros HH; rewrite <- HH.
+ apply Qeq_refl.
+ generalize H; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1.
+ rewrite H1; intros HH; discriminate.
+ generalize H; case BigN.to_Z.
+ intros HH; discriminate HH.
+ intros; red; simpl; auto.
+ intros p HH; discriminate HH.
+ simpl Qnum.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; simpl.
+ case BigN.compare; red; simpl; auto.
+ rewrite H1; auto.
+ case BigN.eq_bool; auto.
+ simpl; rewrite H1; auto.
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; rewrite BigN.spec_1; intros H2.
+ rewrite H2.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H3.
+ case H1; auto.
+ red; simpl.
+ rewrite Zmult_1_r; rewrite Pmult_1_r; rewrite Z2P_correct; auto.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H3.
+ case H1; auto.
+ generalize H2 (BigN.spec_pos nx); case (BigN.to_Z nx).
+ intros; apply Qeq_refl.
+ intros p; case p; clear p.
+ intros p HH; discriminate HH.
+ intros p HH; discriminate HH.
+ intros HH; discriminate HH.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H3.
+ case H1; auto.
+ simpl; generalize H2; case (BigN.to_Z nx).
+ intros HH; discriminate HH.
+ intros p Hp.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H4.
+ rewrite H4 in H2; discriminate H2.
+ red; simpl.
+ rewrite Zpos_mult_morphism.
+ rewrite Z2P_correct; auto.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ intros p HH; discriminate HH.
+ simpl Qnum.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1; simpl.
+ case BigN.compare; red; simpl; auto.
+ rewrite H1; auto.
+ case BigN.eq_bool; auto.
+ simpl; rewrite H1; auto.
+ match goal with |- context[BigN.compare ?X ?Y] =>
+ generalize (BigN.spec_compare X Y); case BigN.compare
+ end; rewrite BigN.spec_1; intros H2.
+ rewrite H2.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H3.
+ case H1; auto.
+ red; simpl.
+ assert (tmp: forall x, Zneg x = Zopp (Zpos x)); auto.
+ rewrite tmp.
+ rewrite Zmult_1_r; rewrite Pmult_1_r; rewrite Z2P_correct; auto.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H3.
+ case H1; auto.
+ generalize H2 (BigN.spec_pos nx); case (BigN.to_Z nx).
+ intros; apply Qeq_refl.
+ intros p; case p; clear p.
+ intros p HH; discriminate HH.
+ intros p HH; discriminate HH.
+ intros HH; discriminate HH.
+ intros p _ HH; case HH; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H3.
+ case H1; auto.
+ simpl; generalize H2; case (BigN.to_Z nx).
+ intros HH; discriminate HH.
+ intros p Hp.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H4.
+ rewrite H4 in H2; discriminate H2.
+ red; simpl.
+ assert (tmp: forall x, Zneg x = Zopp (Zpos x)); auto.
+ rewrite tmp.
+ rewrite Zpos_mult_morphism.
+ rewrite Z2P_correct; auto.
+ ring.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ intros p HH; discriminate HH.
+ Qed.
+
+ Theorem spec_inv_normc x:
+ [[inv_norm x]] = /[[x]].
+ intros x; unfold to_Qc.
+ apply trans_equal with (!! (/[x])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_inv_norm; auto.
+ unfold Qcinv, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qinv_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+
+ Definition div x y := mul x (inv y).
+
+ Theorem spec_div x y: ([div x y] == [x] / [y])%Q.
+ intros x y; unfold div; rewrite spec_mul; auto.
+ unfold Qdiv; apply Qmult_comp.
+ apply Qeq_refl.
+ apply spec_inv; auto.
+ Qed.
+
+ Theorem spec_divc x y: [[div x y]] = [[x]] / [[y]].
+ intros x y; unfold div; rewrite spec_mulc; auto.
+ unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
+ apply spec_invc; auto.
+ Qed.
+
+ Definition div_norm x y := mul_norm x (inv y).
+
+ Theorem spec_div_norm x y: ([div_norm x y] == [x] / [y])%Q.
+ intros x y; unfold div_norm; rewrite spec_mul_norm; auto.
+ unfold Qdiv; apply Qmult_comp.
+ apply Qeq_refl.
+ apply spec_inv; auto.
+ Qed.
+
+ Theorem spec_div_normc x y: [[div_norm x y]] = [[x]] / [[y]].
+ intros x y; unfold div_norm; rewrite spec_mul_normc; auto.
+ unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
+ apply spec_invc; auto.
+ Qed.
+
+
+ Definition square (x: t): t :=
+ match x with
+ | Qz zx => Qz (BigZ.square zx)
+ | Qq nx dx => Qq (BigZ.square nx) (BigN.square dx)
+ end.
+
+ Theorem spec_square x: ([square x] == [x] ^ 2)%Q.
+ intros [ x | nx dx]; unfold square.
+ red; simpl; rewrite BigZ.spec_square; auto with zarith.
+ simpl Qpower.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; intros H.
+ red; simpl.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_square;
+ intros H1.
+ case H1; rewrite H; auto.
+ red; simpl.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_square;
+ intros H1.
+ case H; case (Zmult_integral _ _ H1); auto.
+ simpl.
+ rewrite BigZ.spec_square.
+ rewrite Zpos_mult_morphism.
+ assert (tmp:
+ (forall a b, 0 < a -> 0 < b -> Z2P (a * b) = (Z2P a * Z2P b)%positive)%Z).
+ intros [|a|a] [|b|b]; simpl; auto; intros; apply False_ind; auto with zarith.
+ rewrite tmp; auto.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ Qed.
+
+ Theorem spec_squarec x: [[square x]] = [[x]]^2.
+ intros x; unfold to_Qc.
+ apply trans_equal with (!! ([x]^2)).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_square; auto.
+ simpl Qcpower.
+ replace (!! [x] * 1) with (!![x]); try ring.
+ simpl.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+
+End Qif.
diff --git a/theories/Numbers/Rational/BigQ/QpMake.v b/theories/Numbers/Rational/BigQ/QpMake.v
new file mode 100644
index 00000000..ac3ca47a
--- /dev/null
+++ b/theories/Numbers/Rational/BigQ/QpMake.v
@@ -0,0 +1,901 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: QpMake.v 11027 2008-06-01 13:28:59Z letouzey $ i*)
+
+Require Import Bool.
+Require Import ZArith.
+Require Import Znumtheory.
+Require Import BigNumPrelude.
+Require Import Arith.
+Require Export BigN.
+Require Export BigZ.
+Require Import QArith.
+Require Import Qcanon.
+Require Import Qpower.
+Require Import QMake_base.
+
+Notation Nspec_lt := BigNAxiomsMod.NZOrdAxiomsMod.spec_lt.
+Notation Nspec_le := BigNAxiomsMod.NZOrdAxiomsMod.spec_le.
+
+Module Qp.
+
+ (** The notation of a rational number is either an integer x,
+ interpreted as itself or a pair (x,y) of an integer x and a naturel
+ number y interpreted as x/(y+1). *)
+
+ Definition t := q_type.
+
+ Definition zero: t := Qz BigZ.zero.
+ Definition one: t := Qz BigZ.one.
+ Definition minus_one: t := Qz BigZ.minus_one.
+
+ Definition of_Z x: t := Qz (BigZ.of_Z x).
+
+ Definition d_to_Z d := BigZ.Pos (BigN.succ d).
+
+ Definition of_Q q: t :=
+ match q with x # y =>
+ Qq (BigZ.of_Z x) (BigN.pred (BigN.of_N (Npos y)))
+ end.
+
+ Definition of_Qc q := of_Q (this q).
+
+ Definition to_Q (q: t) :=
+ match q with
+ Qz x => BigZ.to_Z x # 1
+ |Qq x y => BigZ.to_Z x # Z2P (BigN.to_Z (BigN.succ y))
+ end.
+
+ Definition to_Qc q := !!(to_Q q).
+
+ Notation "[[ x ]]" := (to_Qc x).
+
+ Notation "[ x ]" := (to_Q x).
+
+ Theorem spec_to_Q: forall q: Q, [of_Q q] = q.
+ intros (x,y); simpl.
+ rewrite BigZ.spec_of_Z; auto.
+ rewrite BigN.spec_succ; simpl. simpl.
+ rewrite BigN.spec_pred; rewrite (BigN.spec_of_pos).
+ replace (Zpos y - 1 + 1)%Z with (Zpos y); auto; ring.
+ red; auto.
+ Qed.
+
+ Theorem spec_to_Qc: forall q, [[of_Qc q]] = q.
+ intros (x, Hx); unfold of_Qc, to_Qc; simpl.
+ apply Qc_decomp; simpl.
+ intros; rewrite spec_to_Q; auto.
+ Qed.
+
+ Definition opp (x: t): t :=
+ match x with
+ | Qz zx => Qz (BigZ.opp zx)
+ | Qq nx dx => Qq (BigZ.opp nx) dx
+ end.
+
+
+ Theorem spec_opp: forall q, ([opp q] = -[q])%Q.
+ intros [z | x y]; simpl.
+ rewrite BigZ.spec_opp; auto.
+ rewrite BigZ.spec_opp; auto.
+ Qed.
+
+
+ Theorem spec_oppc: forall q, [[opp q]] = -[[q]].
+ intros q; unfold Qcopp, to_Qc, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ rewrite spec_opp.
+ rewrite <- Qred_opp.
+ rewrite Qred_involutive; auto.
+ Qed.
+
+ Definition compare (x y: t) :=
+ match x, y with
+ | Qz zx, Qz zy => BigZ.compare zx zy
+ | Qz zx, Qq ny dy => BigZ.compare (BigZ.mul zx (d_to_Z dy)) ny
+ | Qq nx dy, Qz zy => BigZ.compare nx (BigZ.mul zy (d_to_Z dy))
+ | Qq nx dx, Qq ny dy =>
+ BigZ.compare (BigZ.mul nx (d_to_Z dy)) (BigZ.mul ny (d_to_Z dx))
+ end.
+
+ Theorem spec_compare: forall q1 q2,
+ compare q1 q2 = ([q1] ?= [q2])%Q.
+ intros [z1 | x1 y1] [z2 | x2 y2]; unfold Qcompare; simpl.
+ repeat rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare z1 z2); case BigZ.compare; intros H; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ rewrite Zmult_1_r.
+ rewrite BigN.spec_succ.
+ rewrite Z2P_correct; auto with zarith.
+ 2: generalize (BigN.spec_pos y2); auto with zarith.
+ generalize (BigZ.spec_compare (z1 * d_to_Z y2) x2)%bigZ; case BigZ.compare;
+ intros H; rewrite <- H.
+ rewrite BigZ.spec_mul; unfold d_to_Z; simpl.
+ rewrite BigN.spec_succ.
+ rewrite Zcompare_refl; auto.
+ rewrite BigZ.spec_mul; unfold d_to_Z; simpl.
+ rewrite BigN.spec_succ; auto.
+ rewrite BigZ.spec_mul; unfold d_to_Z; simpl.
+ rewrite BigN.spec_succ; auto.
+ rewrite Zmult_1_r.
+ rewrite BigN.spec_succ.
+ rewrite Z2P_correct; auto with zarith.
+ 2: generalize (BigN.spec_pos y1); auto with zarith.
+ generalize (BigZ.spec_compare x1 (z2 * d_to_Z y1))%bigZ; case BigZ.compare;
+ rewrite BigZ.spec_mul; unfold d_to_Z; simpl;
+ rewrite BigN.spec_succ; intros H; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ repeat rewrite BigN.spec_succ; auto.
+ repeat rewrite Z2P_correct; auto with zarith.
+ 2: generalize (BigN.spec_pos y1); auto with zarith.
+ 2: generalize (BigN.spec_pos y2); auto with zarith.
+ generalize (BigZ.spec_compare (x1 * d_to_Z y2)
+ (x2 * d_to_Z y1))%bigZ; case BigZ.compare;
+ repeat rewrite BigZ.spec_mul; unfold d_to_Z; simpl;
+ repeat rewrite BigN.spec_succ; intros H; auto.
+ rewrite H; auto.
+ rewrite Zcompare_refl; auto.
+ Qed.
+
+
+ Theorem spec_comparec: forall q1 q2,
+ compare q1 q2 = ([[q1]] ?= [[q2]]).
+ unfold Qccompare, to_Qc.
+ intros q1 q2; rewrite spec_compare; simpl.
+ apply Qcompare_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+(* Inv d > 0, Pour la forme normal unique on veut d > 1 *)
+ Definition norm n d: t :=
+ if BigZ.eq_bool n BigZ.zero then zero
+ else
+ let gcd := BigN.gcd (BigZ.to_N n) d in
+ if BigN.eq_bool gcd BigN.one then Qq n (BigN.pred d)
+ else
+ let n := BigZ.div n (BigZ.Pos gcd) in
+ let d := BigN.div d gcd in
+ if BigN.eq_bool d BigN.one then Qz n
+ else Qq n (BigN.pred d).
+
+ Theorem spec_norm: forall n q,
+ ((0 < BigN.to_Z q)%Z -> [norm n q] == [Qq n (BigN.pred q)])%Q.
+ intros p q; unfold norm; intros Hq.
+ assert (Hp := BigN.spec_pos (BigZ.to_N p)).
+ match goal with |- context[BigZ.eq_bool ?X ?Y] =>
+ generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
+ end; auto; rewrite BigZ.spec_0; intros H1.
+ red; simpl; rewrite H1; ring.
+ case (Zle_lt_or_eq _ _ Hp); clear Hp; intros Hp.
+ case (Zle_lt_or_eq _ _
+ (Zgcd_is_pos (BigN.to_Z (BigZ.to_N p)) (BigN.to_Z q))); intros H4.
+ 2: generalize Hq; rewrite (Zgcd_inv_0_r _ _ (sym_equal H4)); auto with zarith.
+ 2: red; simpl; auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_1; intros H2.
+ apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_1.
+ red; simpl.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ rewrite Zmult_1_r.
+ rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
+ rewrite Z2P_correct; auto with zarith.
+ rewrite spec_to_N; intros; rewrite Zgcd_div_swap; auto.
+ rewrite H; ring.
+ intros H3.
+ red; simpl.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
+ assert (F: (0 < BigN.to_Z (q / BigN.gcd (BigZ.to_N p) q)%bigN)%Z).
+ rewrite BigN.spec_div; auto with zarith.
+ rewrite BigN.spec_gcd.
+ apply Zgcd_div_pos; auto.
+ rewrite BigN.spec_gcd; auto.
+ rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
+ rewrite Z2P_correct; auto.
+ rewrite Z2P_correct; auto.
+ rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ rewrite spec_to_N; apply Zgcd_div_swap; auto.
+ case H1; rewrite spec_to_N; rewrite <- Hp; ring.
+ Qed.
+
+ Theorem spec_normc: forall n q,
+ (0 < BigN.to_Z q)%Z -> [[norm n q]] = [[Qq n (BigN.pred q)]].
+ intros n q H; unfold to_Qc, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_norm; auto.
+ Qed.
+
+ Definition add (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.add zx zy)
+ | Qz zx, Qq ny dy => Qq (BigZ.add (BigZ.mul zx (d_to_Z dy)) ny) dy
+ | Qq nx dx, Qz zy => Qq (BigZ.add nx (BigZ.mul zy (d_to_Z dx))) dx
+ | Qq nx dx, Qq ny dy =>
+ let dx' := BigN.succ dx in
+ let dy' := BigN.succ dy in
+ let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy')) (BigZ.mul ny (BigZ.Pos dx')) in
+ let d := BigN.pred (BigN.mul dx' dy') in
+ Qq n d
+ end.
+
+ Theorem spec_d_to_Z: forall dy,
+ (BigZ.to_Z (d_to_Z dy) = BigN.to_Z dy + 1)%Z.
+ intros dy; unfold d_to_Z; simpl.
+ rewrite BigN.spec_succ; auto.
+ Qed.
+
+ Theorem spec_succ_pos: forall p,
+ (0 < BigN.to_Z (BigN.succ p))%Z.
+ intros p; rewrite BigN.spec_succ;
+ generalize (BigN.spec_pos p); auto with zarith.
+ Qed.
+
+ Theorem spec_add x y: ([add x y] == [x] + [y])%Q.
+ intros [x | nx dx] [y | ny dy]; unfold Qplus; simpl.
+ rewrite BigZ.spec_add; repeat rewrite Zmult_1_r; auto.
+ apply Qeq_refl; auto.
+ assert (F1:= BigN.spec_pos dy).
+ rewrite Zmult_1_r.
+ simpl; rewrite Z2P_correct; rewrite BigN.spec_succ; auto with zarith.
+ rewrite BigZ.spec_add; rewrite BigZ.spec_mul.
+ rewrite spec_d_to_Z; apply Qeq_refl.
+ assert (F1:= BigN.spec_pos dx).
+ rewrite Zmult_1_r; rewrite Pmult_1_r.
+ simpl; rewrite Z2P_correct; rewrite BigN.spec_succ; auto with zarith.
+ rewrite BigZ.spec_add; rewrite BigZ.spec_mul.
+ rewrite spec_d_to_Z; apply Qeq_refl.
+ repeat rewrite BigN.spec_succ.
+ assert (Fx: (0 < BigN.to_Z dx + 1)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ assert (Fy: (0 < BigN.to_Z dy + 1)%Z).
+ generalize (BigN.spec_pos dy); auto with zarith.
+ repeat rewrite BigN.spec_pred.
+ rewrite BigZ.spec_add; repeat rewrite BigN.spec_mul;
+ repeat rewrite BigN.spec_succ.
+ assert (tmp: forall x, (x-1+1 = x)%Z); [intros; ring | rewrite tmp; clear tmp].
+ repeat rewrite Z2P_correct; auto.
+ repeat rewrite BigZ.spec_mul; simpl.
+ repeat rewrite BigN.spec_succ.
+ assert (tmp:
+ (forall a b, 0 < a -> 0 < b -> Z2P (a * b) = (Z2P a * Z2P b)%positive)%Z).
+ intros [|a|a] [|b|b]; simpl; auto; intros; apply False_ind; auto with zarith.
+ rewrite tmp; auto; apply Qeq_refl.
+ rewrite BigN.spec_mul; repeat rewrite BigN.spec_succ; auto with zarith.
+ apply Zmult_lt_0_compat; auto.
+ Qed.
+
+ Theorem spec_addc x y: [[add x y]] = [[x]] + [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] + [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_add.
+ unfold Qcplus, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition add_norm (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.add zx zy)
+ | Qz zx, Qq ny dy =>
+ let d := BigN.succ dy in
+ norm (BigZ.add (BigZ.mul zx (BigZ.Pos d)) ny) d
+ | Qq nx dx, Qz zy =>
+ let d := BigN.succ dx in
+ norm (BigZ.add (BigZ.mul zy (BigZ.Pos d)) nx) d
+ | Qq nx dx, Qq ny dy =>
+ let dx' := BigN.succ dx in
+ let dy' := BigN.succ dy in
+ let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy')) (BigZ.mul ny (BigZ.Pos dx')) in
+ let d := BigN.mul dx' dy' in
+ norm n d
+ end.
+
+ Theorem spec_add_norm x y: ([add_norm x y] == [x] + [y])%Q.
+ intros x y; rewrite <- spec_add.
+ unfold add_norm, add; case x; case y.
+ intros; apply Qeq_refl.
+ intros p1 n p2.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X (BigN.pred Y)]);
+ [apply spec_norm | idtac]
+ end.
+ rewrite BigN.spec_succ; generalize (BigN.spec_pos n); auto with zarith.
+ simpl.
+ repeat rewrite BigZ.spec_add.
+ repeat rewrite BigZ.spec_mul; simpl.
+ rewrite BigN.succ_pred; try apply Qeq_refl; apply lt_0_succ.
+ intros p1 n p2.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X (BigN.pred Y)]);
+ [apply spec_norm | idtac]
+ end.
+ rewrite BigN.spec_succ; generalize (BigN.spec_pos p2); auto with zarith.
+ simpl.
+ repeat rewrite BigZ.spec_add.
+ repeat rewrite BigZ.spec_mul; simpl.
+ rewrite BinInt.Zplus_comm.
+ rewrite BigN.succ_pred; try apply Qeq_refl; apply lt_0_succ.
+ intros p1 q1 p2 q2.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X (BigN.pred Y)]);
+ [apply spec_norm | idtac]
+ end; try apply Qeq_refl.
+ rewrite BigN.spec_mul.
+ apply Zmult_lt_0_compat; apply spec_succ_pos.
+ Qed.
+
+ Theorem spec_add_normc x y: [[add_norm x y]] = [[x]] + [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] + [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_add_norm.
+ unfold Qcplus, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition sub (x y: t): t := add x (opp y).
+
+ Theorem spec_sub x y: ([sub x y] == [x] - [y])%Q.
+ intros x y; unfold sub; rewrite spec_add.
+ rewrite spec_opp; ring.
+ Qed.
+
+ Theorem spec_subc x y: [[sub x y]] = [[x]] - [[y]].
+ intros x y; unfold sub; rewrite spec_addc.
+ rewrite spec_oppc; ring.
+ Qed.
+
+ Definition sub_norm x y := add_norm x (opp y).
+
+ Theorem spec_sub_norm x y: ([sub_norm x y] == [x] - [y])%Q.
+ intros x y; unfold sub_norm; rewrite spec_add_norm.
+ rewrite spec_opp; ring.
+ Qed.
+
+ Theorem spec_sub_normc x y: [[sub_norm x y]] = [[x]] - [[y]].
+ intros x y; unfold sub_norm; rewrite spec_add_normc.
+ rewrite spec_oppc; ring.
+ Qed.
+
+
+ Definition mul (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.mul zx zy)
+ | Qz zx, Qq ny dy => Qq (BigZ.mul zx ny) dy
+ | Qq nx dx, Qz zy => Qq (BigZ.mul nx zy) dx
+ | Qq nx dx, Qq ny dy =>
+ Qq (BigZ.mul nx ny) (BigN.pred (BigN.mul (BigN.succ dx) (BigN.succ dy)))
+ end.
+
+ Theorem spec_mul x y: ([mul x y] == [x] * [y])%Q.
+ intros [x | nx dx] [y | ny dy]; unfold Qmult; simpl.
+ rewrite BigZ.spec_mul; repeat rewrite Zmult_1_r; auto.
+ apply Qeq_refl; auto.
+ rewrite BigZ.spec_mul; apply Qeq_refl.
+ rewrite BigZ.spec_mul; rewrite Pmult_1_r; auto.
+ apply Qeq_refl; auto.
+ assert (F1:= spec_succ_pos dx).
+ assert (F2:= spec_succ_pos dy).
+ rewrite BigN.succ_pred.
+ rewrite BigN.spec_mul; rewrite BigZ.spec_mul.
+ assert (tmp:
+ (forall a b, 0 < a -> 0 < b -> Z2P (a * b) = (Z2P a * Z2P b)%positive)%Z).
+ intros [|a|a] [|b|b]; simpl; auto; intros; apply False_ind; auto with zarith.
+ rewrite tmp; auto; apply Qeq_refl.
+ rewrite Nspec_lt, BigN.spec_0, BigN.spec_mul; auto.
+ apply Zmult_lt_0_compat; apply spec_succ_pos.
+ Qed.
+
+ Theorem spec_mulc x y: [[mul x y]] = [[x]] * [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] * [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_mul.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition mul_norm (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.mul zx zy)
+ | Qz zx, Qq ny dy =>
+ if BigZ.eq_bool zx BigZ.zero then zero
+ else
+ let d := BigN.succ dy in
+ let gcd := BigN.gcd (BigZ.to_N zx) d in
+ if BigN.eq_bool gcd BigN.one then Qq (BigZ.mul zx ny) dy
+ else
+ let zx := BigZ.div zx (BigZ.Pos gcd) in
+ let d := BigN.div d gcd in
+ if BigN.eq_bool d BigN.one then Qz (BigZ.mul zx ny)
+ else Qq (BigZ.mul zx ny) (BigN.pred d)
+ | Qq nx dx, Qz zy =>
+ if BigZ.eq_bool zy BigZ.zero then zero
+ else
+ let d := BigN.succ dx in
+ let gcd := BigN.gcd (BigZ.to_N zy) d in
+ if BigN.eq_bool gcd BigN.one then Qq (BigZ.mul zy nx) dx
+ else
+ let zy := BigZ.div zy (BigZ.Pos gcd) in
+ let d := BigN.div d gcd in
+ if BigN.eq_bool d BigN.one then Qz (BigZ.mul zy nx)
+ else Qq (BigZ.mul zy nx) (BigN.pred d)
+ | Qq nx dx, Qq ny dy =>
+ norm (BigZ.mul nx ny) (BigN.mul (BigN.succ dx) (BigN.succ dy))
+ end.
+
+ Theorem spec_mul_norm x y: ([mul_norm x y] == [x] * [y])%Q.
+ intros x y; rewrite <- spec_mul.
+ unfold mul_norm, mul; case x; case y.
+ intros; apply Qeq_refl.
+ intros p1 n p2.
+ match goal with |- context[BigZ.eq_bool ?X ?Y] =>
+ generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
+ end; unfold zero, to_Q; repeat rewrite BigZ.spec_0; intros H.
+ rewrite BigZ.spec_mul; rewrite H; red; auto.
+ assert (F: (0 < BigN.to_Z (BigZ.to_N p2))%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos (BigZ.to_N p2))); auto.
+ intros H1; case H; rewrite spec_to_N; rewrite <- H1; ring.
+ assert (F1: (0 < BigN.to_Z (BigN.succ n))%Z).
+ rewrite BigN.spec_succ; generalize (BigN.spec_pos n); auto with zarith.
+ assert (F2: (0 < Zgcd (BigN.to_Z (BigZ.to_N p2)) (BigN.to_Z (BigN.succ n)))%Z).
+ case (Zle_lt_or_eq _ _ (Zgcd_is_pos (BigN.to_Z (BigZ.to_N p2))
+ (BigN.to_Z (BigN.succ n)))); intros H3; auto.
+ generalize F; rewrite (Zgcd_inv_0_l _ _ (sym_equal H3)); auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1; intros H1.
+ intros; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1.
+ rewrite BigN.spec_div; rewrite BigN.spec_gcd;
+ auto with zarith.
+ intros H2.
+ red; simpl.
+ repeat rewrite BigZ.spec_mul.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite spec_to_N.
+ rewrite Zmult_1_r; repeat rewrite <- Zmult_assoc.
+ rewrite (Zmult_comm (BigZ.to_Z p1)).
+ repeat rewrite Zmult_assoc.
+ rewrite Zgcd_div_swap; auto with zarith.
+ rewrite H2; ring.
+ intros H2.
+ red; simpl.
+ repeat rewrite BigZ.spec_mul.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite (spec_to_N p2).
+ case (Zle_lt_or_eq _ _
+ (BigN.spec_pos (BigN.succ n /
+ BigN.gcd (BigZ.to_N p2)
+ (BigN.succ n)))%bigN); intros F3.
+ rewrite BigN.succ_pred; auto with zarith.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ repeat rewrite <- Zmult_assoc.
+ rewrite (Zmult_comm (BigZ.to_Z p1)).
+ repeat rewrite Zmult_assoc.
+ rewrite Zgcd_div_swap; auto; try ring.
+ rewrite Nspec_lt, BigN.spec_0; auto.
+ apply False_ind; generalize F1.
+ rewrite (Zdivide_Zdiv_eq
+ (Zgcd (BigN.to_Z (BigZ.to_N p2)) (BigN.to_Z (BigN.succ n)))
+ (BigN.to_Z (BigN.succ n))); auto.
+ generalize F3; rewrite BigN.spec_div; rewrite BigN.spec_gcd;
+ auto with zarith.
+ intros HH; rewrite <- HH; auto with zarith.
+ assert (FF:= Zgcd_is_gcd (BigN.to_Z (BigZ.to_N p2))
+ (BigN.to_Z (BigN.succ n))); inversion FF; auto.
+ intros p1 p2 n.
+ match goal with |- context[BigZ.eq_bool ?X ?Y] =>
+ generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
+ end; unfold zero, to_Q; repeat rewrite BigZ.spec_0; intros H.
+ rewrite BigZ.spec_mul; rewrite H; red; simpl; ring.
+ assert (F: (0 < BigN.to_Z (BigZ.to_N p1))%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos (BigZ.to_N p1))); auto.
+ intros H1; case H; rewrite spec_to_N; rewrite <- H1; ring.
+ assert (F1: (0 < BigN.to_Z (BigN.succ n))%Z).
+ rewrite BigN.spec_succ; generalize (BigN.spec_pos n); auto with zarith.
+ assert (F2: (0 < Zgcd (BigN.to_Z (BigZ.to_N p1)) (BigN.to_Z (BigN.succ n)))%Z).
+ case (Zle_lt_or_eq _ _ (Zgcd_is_pos (BigN.to_Z (BigZ.to_N p1))
+ (BigN.to_Z (BigN.succ n)))); intros H3; auto.
+ generalize F; rewrite (Zgcd_inv_0_l _ _ (sym_equal H3)); auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1; intros H1.
+ intros; repeat rewrite BigZ.spec_mul; rewrite Zmult_comm; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1.
+ rewrite BigN.spec_div; rewrite BigN.spec_gcd;
+ auto with zarith.
+ intros H2.
+ red; simpl.
+ repeat rewrite BigZ.spec_mul.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite spec_to_N.
+ rewrite Zmult_1_r; repeat rewrite <- Zmult_assoc.
+ rewrite (Zmult_comm (BigZ.to_Z p2)).
+ repeat rewrite Zmult_assoc.
+ rewrite Zgcd_div_swap; auto with zarith.
+ rewrite H2; ring.
+ intros H2.
+ red; simpl.
+ repeat rewrite BigZ.spec_mul.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite (spec_to_N p1).
+ case (Zle_lt_or_eq _ _
+ (BigN.spec_pos (BigN.succ n /
+ BigN.gcd (BigZ.to_N p1)
+ (BigN.succ n)))%bigN); intros F3.
+ rewrite BigN.succ_pred; auto with zarith.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ repeat rewrite <- Zmult_assoc.
+ rewrite (Zmult_comm (BigZ.to_Z p2)).
+ repeat rewrite Zmult_assoc.
+ rewrite Zgcd_div_swap; auto; try ring.
+ rewrite Nspec_lt, BigN.spec_0; auto.
+ apply False_ind; generalize F1.
+ rewrite (Zdivide_Zdiv_eq
+ (Zgcd (BigN.to_Z (BigZ.to_N p1)) (BigN.to_Z (BigN.succ n)))
+ (BigN.to_Z (BigN.succ n))); auto.
+ generalize F3; rewrite BigN.spec_div; rewrite BigN.spec_gcd;
+ auto with zarith.
+ intros HH; rewrite <- HH; auto with zarith.
+ assert (FF:= Zgcd_is_gcd (BigN.to_Z (BigZ.to_N p1))
+ (BigN.to_Z (BigN.succ n))); inversion FF; auto.
+ intros p1 n1 p2 n2.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X (BigN.pred Y)]);
+ [apply spec_norm | idtac]
+ end; try apply Qeq_refl.
+ rewrite BigN.spec_mul.
+ apply Zmult_lt_0_compat; rewrite BigN.spec_succ;
+ generalize (BigN.spec_pos n1) (BigN.spec_pos n2); auto with zarith.
+ Qed.
+
+ Theorem spec_mul_normc x y: [[mul_norm x y]] = [[x]] * [[y]].
+ intros x y; unfold to_Qc.
+ apply trans_equal with (!! ([x] * [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_mul_norm.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition inv (x: t): t :=
+ match x with
+ | Qz (BigZ.Pos n) =>
+ if BigN.eq_bool n BigN.zero then zero else Qq BigZ.one (BigN.pred n)
+ | Qz (BigZ.Neg n) =>
+ if BigN.eq_bool n BigN.zero then zero else Qq BigZ.minus_one (BigN.pred n)
+ | Qq (BigZ.Pos n) d =>
+ if BigN.eq_bool n BigN.zero then zero else Qq (BigZ.Pos (BigN.succ d)) (BigN.pred n)
+ | Qq (BigZ.Neg n) d =>
+ if BigN.eq_bool n BigN.zero then zero else Qq (BigZ.Neg (BigN.succ d)) (BigN.pred n)
+ end.
+
+ Theorem spec_inv x: ([inv x] == /[x])%Q.
+ intros [ [x | x] | [nx | nx] dx]; unfold inv.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H.
+ unfold zero, to_Q; rewrite BigZ.spec_0.
+ unfold BigZ.to_Z; rewrite H; apply Qeq_refl.
+ assert (F: (0 < BigN.to_Z x)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); auto with zarith.
+ unfold to_Q; rewrite BigZ.spec_1.
+ rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
+ red; unfold Qinv; simpl.
+ generalize F; case BigN.to_Z; auto with zarith.
+ intros p Hp; discriminate Hp.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H.
+ unfold zero, to_Q; rewrite BigZ.spec_0.
+ unfold BigZ.to_Z; rewrite H; apply Qeq_refl.
+ assert (F: (0 < BigN.to_Z x)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); auto with zarith.
+ red; unfold Qinv; simpl.
+ rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
+ generalize F; case BigN.to_Z; simpl; auto with zarith.
+ intros p Hp; discriminate Hp.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H.
+ unfold zero, to_Q; rewrite BigZ.spec_0.
+ unfold BigZ.to_Z; rewrite H; apply Qeq_refl.
+ assert (F: (0 < BigN.to_Z nx)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos nx)); auto with zarith.
+ red; unfold Qinv; simpl.
+ rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
+ rewrite BigN.spec_succ; rewrite Z2P_correct; auto with zarith.
+ generalize F; case BigN.to_Z; auto with zarith.
+ intros p Hp; discriminate Hp.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H.
+ unfold zero, to_Q; rewrite BigZ.spec_0.
+ unfold BigZ.to_Z; rewrite H; apply Qeq_refl.
+ assert (F: (0 < BigN.to_Z nx)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos nx)); auto with zarith.
+ red; unfold Qinv; simpl.
+ rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
+ rewrite BigN.spec_succ; rewrite Z2P_correct; auto with zarith.
+ generalize F; case BigN.to_Z; auto with zarith.
+ simpl; intros.
+ match goal with |- (?X = Zneg ?Y)%Z =>
+ replace (Zneg Y) with (-(Zpos Y))%Z;
+ try rewrite Z2P_correct; auto with zarith
+ end.
+ rewrite Zpos_mult_morphism;
+ rewrite Z2P_correct; auto with zarith; try ring.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ intros p Hp; discriminate Hp.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ Qed.
+
+ Theorem spec_invc x: [[inv x]] = /[[x]].
+ intros x; unfold to_Qc.
+ apply trans_equal with (!! (/[x])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_inv.
+ unfold Qcinv, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qinv_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+Definition inv_norm x :=
+ match x with
+ | Qz (BigZ.Pos n) =>
+ if BigN.eq_bool n BigN.zero then zero else
+ if BigN.eq_bool n BigN.one then x else Qq BigZ.one (BigN.pred n)
+ | Qz (BigZ.Neg n) =>
+ if BigN.eq_bool n BigN.zero then zero else
+ if BigN.eq_bool n BigN.one then x else Qq BigZ.minus_one (BigN.pred n)
+ | Qq (BigZ.Pos n) d => let d := BigN.succ d in
+ if BigN.eq_bool n BigN.zero then zero else
+ if BigN.eq_bool n BigN.one then Qz (BigZ.Pos d)
+ else Qq (BigZ.Pos d) (BigN.pred n)
+ | Qq (BigZ.Neg n) d => let d := BigN.succ d in
+ if BigN.eq_bool n BigN.zero then zero else
+ if BigN.eq_bool n BigN.one then Qz (BigZ.Neg d)
+ else Qq (BigZ.Neg d) (BigN.pred n)
+ end.
+
+ Theorem spec_inv_norm x: ([inv_norm x] == /[x])%Q.
+ intros x; rewrite <- spec_inv.
+ (case x; clear x); [intros [x | x] | intros nx dx];
+ unfold inv_norm, inv.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H.
+ apply Qeq_refl.
+ assert (F: (0 < BigN.to_Z x)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1; intros H1.
+ red; simpl.
+ rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
+ rewrite Z2P_correct; try rewrite H1; auto with zarith.
+ apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H.
+ apply Qeq_refl.
+ assert (F: (0 < BigN.to_Z x)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1; intros H1.
+ red; simpl.
+ rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
+ rewrite Z2P_correct; try rewrite H1; auto with zarith.
+ apply Qeq_refl.
+ case nx; clear nx; intros nx.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H.
+ apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1; intros H1.
+ red; simpl.
+ rewrite BigN.succ_pred; try rewrite H1; auto with zarith.
+ rewrite Nspec_lt, BigN.spec_0, H1; auto with zarith.
+ apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H.
+ apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1; intros H1.
+ red; simpl.
+ rewrite BigN.succ_pred; try rewrite H1; auto with zarith.
+ rewrite Nspec_lt, BigN.spec_0, H1; auto with zarith.
+ apply Qeq_refl.
+ Qed.
+
+
+ Definition div x y := mul x (inv y).
+
+ Theorem spec_div x y: ([div x y] == [x] / [y])%Q.
+ intros x y; unfold div; rewrite spec_mul; auto.
+ unfold Qdiv; apply Qmult_comp.
+ apply Qeq_refl.
+ apply spec_inv; auto.
+ Qed.
+
+ Theorem spec_divc x y: [[div x y]] = [[x]] / [[y]].
+ intros x y; unfold div; rewrite spec_mulc; auto.
+ unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
+ apply spec_invc; auto.
+ Qed.
+
+ Definition div_norm x y := mul_norm x (inv y).
+
+ Theorem spec_div_norm x y: ([div_norm x y] == [x] / [y])%Q.
+ intros x y; unfold div_norm; rewrite spec_mul_norm; auto.
+ unfold Qdiv; apply Qmult_comp.
+ apply Qeq_refl.
+ apply spec_inv; auto.
+ Qed.
+
+ Theorem spec_div_normc x y: [[div_norm x y]] = [[x]] / [[y]].
+ intros x y; unfold div_norm; rewrite spec_mul_normc; auto.
+ unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
+ apply spec_invc; auto.
+ Qed.
+
+
+ Definition square (x: t): t :=
+ match x with
+ | Qz zx => Qz (BigZ.square zx)
+ | Qq nx dx => Qq (BigZ.square nx) (BigN.pred (BigN.square (BigN.succ dx)))
+ end.
+
+ Theorem spec_square x: ([square x] == [x] ^ 2)%Q.
+ intros [ x | nx dx]; unfold square.
+ red; simpl; rewrite BigZ.spec_square; auto with zarith.
+ red; simpl; rewrite BigZ.spec_square; auto with zarith.
+ assert (F: (0 < BigN.to_Z (BigN.succ dx))%Z).
+ rewrite BigN.spec_succ;
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos dx)); auto with zarith.
+ assert (F1 : (0 < BigN.to_Z (BigN.square (BigN.succ dx)))%Z).
+ rewrite BigN.spec_square; apply Zmult_lt_0_compat;
+ auto with zarith.
+ rewrite BigN.succ_pred by (rewrite Nspec_lt, BigN.spec_0; auto).
+ rewrite Zpos_mult_morphism.
+ repeat rewrite Z2P_correct; auto with zarith.
+ repeat rewrite BigN.spec_succ; auto with zarith.
+ rewrite BigN.spec_square; auto with zarith.
+ repeat rewrite BigN.spec_succ; auto with zarith.
+ Qed.
+
+ Theorem spec_squarec x: [[square x]] = [[x]]^2.
+ intros x; unfold to_Qc.
+ apply trans_equal with (!! ([x]^2)).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_square.
+ simpl Qcpower.
+ replace (!! [x] * 1) with (!![x]); try ring.
+ simpl.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition power_pos (x: t) p: t :=
+ match x with
+ | Qz zx => Qz (BigZ.power_pos zx p)
+ | Qq nx dx => Qq (BigZ.power_pos nx p) (BigN.pred (BigN.power_pos (BigN.succ dx) p))
+ end.
+
+
+ Theorem spec_power_pos x p: ([power_pos x p] == [x] ^ Zpos p)%Q.
+ Proof.
+ intros [x | nx dx] p; unfold power_pos.
+ unfold power_pos; red; simpl.
+ generalize (Qpower_decomp p (BigZ.to_Z x) 1).
+ unfold Qeq; simpl.
+ rewrite Zpower_pos_1_l; simpl Z2P.
+ rewrite Zmult_1_r.
+ intros H; rewrite H.
+ rewrite BigZ.spec_power_pos; simpl; ring.
+ assert (F1: (0 < BigN.to_Z (BigN.succ dx))%Z).
+ rewrite BigN.spec_succ;
+ generalize (BigN.spec_pos dx); auto with zarith.
+ assert (F2: (0 < BigN.to_Z (BigN.succ dx) ^ ' p)%Z).
+ unfold Zpower; apply Zpower_pos_pos; auto.
+ unfold power_pos; red; simpl.
+ rewrite BigN.succ_pred, BigN.spec_power_pos.
+ rewrite Z2P_correct; auto.
+ generalize (Qpower_decomp p (BigZ.to_Z nx)
+ (Z2P (BigN.to_Z (BigN.succ dx)))).
+ unfold Qeq; simpl.
+ repeat rewrite Z2P_correct; auto.
+ unfold Qeq; simpl; intros HH.
+ rewrite HH.
+ rewrite BigZ.spec_power_pos; simpl; ring.
+ rewrite Nspec_lt, BigN.spec_0, BigN.spec_power_pos; auto.
+ Qed.
+
+ Theorem spec_power_posc x p: [[power_pos x p]] = [[x]] ^ nat_of_P p.
+ intros x p; unfold to_Qc.
+ apply trans_equal with (!! ([x]^Zpos p)).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_power_pos.
+ pattern p; apply Pind; clear p.
+ simpl; ring.
+ intros p Hrec.
+ rewrite nat_of_P_succ_morphism; simpl Qcpower.
+ rewrite <- Hrec.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _;
+ unfold this.
+ apply Qred_complete.
+ assert (F: [x] ^ ' Psucc p == [x] * [x] ^ ' p).
+ simpl; case x; simpl; clear x Hrec.
+ intros x; simpl; repeat rewrite Qpower_decomp; simpl.
+ red; simpl; repeat rewrite Zpower_pos_1_l; simpl Z2P.
+ rewrite Pplus_one_succ_l.
+ rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r; auto.
+ intros nx dx; simpl; repeat rewrite Qpower_decomp; simpl.
+ red; simpl; repeat rewrite Zpower_pos_1_l; simpl Z2P.
+ rewrite Pplus_one_succ_l.
+ rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r; auto.
+ assert (F1: (0 < BigN.to_Z (BigN.succ dx))%Z).
+ rewrite BigN.spec_succ; generalize (BigN.spec_pos dx);
+ auto with zarith.
+ repeat rewrite Zpos_mult_morphism.
+ repeat rewrite Z2P_correct; auto.
+ 2: apply Zpower_pos_pos; auto.
+ 2: apply Zpower_pos_pos; auto.
+ rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r; auto.
+ rewrite F.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+
+End Qp.
diff --git a/theories/Numbers/Rational/BigQ/QvMake.v b/theories/Numbers/Rational/BigQ/QvMake.v
new file mode 100644
index 00000000..4523e241
--- /dev/null
+++ b/theories/Numbers/Rational/BigQ/QvMake.v
@@ -0,0 +1,1151 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: QvMake.v 11027 2008-06-01 13:28:59Z letouzey $ i*)
+
+Require Import Bool.
+Require Import ZArith.
+Require Import Znumtheory.
+Require Import BigNumPrelude.
+Require Import Arith.
+Require Export BigN.
+Require Export BigZ.
+Require Import QArith.
+Require Import Qcanon.
+Require Import Qpower.
+Require Import QMake_base.
+
+Module Qv.
+
+ Import BinInt Zorder.
+ Open Local Scope Q_scope.
+ Open Local Scope Qc_scope.
+
+ (** The notation of a rational number is either an integer x,
+ interpreted as itself or a pair (x,y) of an integer x and a naturel
+ number y interpreted as x/y. All functions maintain the invariant
+ that y is never zero. *)
+
+ Definition t := q_type.
+
+ Definition zero: t := Qz BigZ.zero.
+ Definition one: t := Qz BigZ.one.
+ Definition minus_one: t := Qz BigZ.minus_one.
+
+ Definition of_Z x: t := Qz (BigZ.of_Z x).
+
+ Definition wf x :=
+ match x with
+ | Qz _ => True
+ | Qq n d => if BigN.eq_bool d BigN.zero then False else True
+ end.
+
+ Definition of_Q q: t :=
+ match q with x # y =>
+ Qq (BigZ.of_Z x) (BigN.of_N (Npos y))
+ end.
+
+ Definition of_Qc q := of_Q (this q).
+
+ Definition to_Q (q: t) :=
+ match q with
+ Qz x => BigZ.to_Z x # 1
+ |Qq x y => BigZ.to_Z x # Z2P (BigN.to_Z y)
+ end.
+
+ Definition to_Qc q := !!(to_Q q).
+
+ Notation "[[ x ]]" := (to_Qc x).
+
+ Notation "[ x ]" := (to_Q x).
+
+ Theorem spec_to_Q: forall q: Q, [of_Q q] = q.
+ intros (x,y); simpl.
+ rewrite BigZ.spec_of_Z; simpl.
+ rewrite (BigN.spec_of_pos); auto.
+ Qed.
+
+ Theorem spec_to_Qc: forall q, [[of_Qc q]] = q.
+ intros (x, Hx); unfold of_Qc, to_Qc; simpl.
+ apply Qc_decomp; simpl.
+ intros; rewrite spec_to_Q; auto.
+ Qed.
+
+ Definition opp (x: t): t :=
+ match x with
+ | Qz zx => Qz (BigZ.opp zx)
+ | Qq nx dx => Qq (BigZ.opp nx) dx
+ end.
+
+ Theorem wf_opp: forall x, wf x -> wf (opp x).
+ intros [zx | nx dx]; unfold opp, wf; auto.
+ Qed.
+
+ Theorem spec_opp: forall q, ([opp q] = -[q])%Q.
+ intros [z | x y]; simpl.
+ rewrite BigZ.spec_opp; auto.
+ rewrite BigZ.spec_opp; auto.
+ Qed.
+
+ Theorem spec_oppc: forall q, [[opp q]] = -[[q]].
+ intros q; unfold Qcopp, to_Qc, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ rewrite spec_opp.
+ rewrite <- Qred_opp.
+ rewrite Qred_involutive; auto.
+ Qed.
+
+ (* Les fonctions doivent assurer que si leur arguments sont valides alors
+ le resultat est correct et valide (si c'est un Q)
+ *)
+
+ Definition compare (x y: t) :=
+ match x, y with
+ | Qz zx, Qz zy => BigZ.compare zx zy
+ | Qz zx, Qq ny dy => BigZ.compare (BigZ.mul zx (BigZ.Pos dy)) ny
+ | Qq nx dx, Qz zy => BigZ.compare nx (BigZ.mul zy (BigZ.Pos dx))
+ | Qq nx dx, Qq ny dy => BigZ.compare (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx))
+ end.
+
+ Theorem spec_compare: forall q1 q2, wf q1 -> wf q2 ->
+ compare q1 q2 = ([q1] ?= [q2])%Q.
+ intros [z1 | x1 y1] [z2 | x2 y2];
+ unfold Qcompare, compare, to_Q, Qnum, Qden, wf.
+ repeat rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare z1 z2); case BigZ.compare; intros H; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ rewrite Zmult_1_r.
+ generalize (BigN.spec_eq_bool y2 BigN.zero);
+ case BigN.eq_bool.
+ intros _ _ HH; case HH.
+ rewrite BigN.spec_0; intros HH _ _.
+ rewrite Z2P_correct; auto with zarith.
+ 2: generalize (BigN.spec_pos y2); auto with zarith.
+ generalize (BigZ.spec_compare (z1 * BigZ.Pos y2) x2)%bigZ; case BigZ.compare;
+ rewrite BigZ.spec_mul; simpl; intros H; apply sym_equal; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ generalize (BigN.spec_eq_bool y1 BigN.zero);
+ case BigN.eq_bool.
+ intros _ HH; case HH.
+ rewrite BigN.spec_0; intros HH _ _.
+ rewrite Z2P_correct; auto with zarith.
+ 2: generalize (BigN.spec_pos y1); auto with zarith.
+ rewrite Zmult_1_r.
+ generalize (BigZ.spec_compare x1 (z2 * BigZ.Pos y1))%bigZ; case BigZ.compare;
+ rewrite BigZ.spec_mul; simpl; intros H; apply sym_equal; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ generalize (BigN.spec_eq_bool y1 BigN.zero);
+ case BigN.eq_bool.
+ intros _ HH; case HH.
+ rewrite BigN.spec_0; intros HH1.
+ generalize (BigN.spec_eq_bool y2 BigN.zero);
+ case BigN.eq_bool.
+ intros _ _ HH; case HH.
+ rewrite BigN.spec_0; intros HH2 _ _.
+ repeat rewrite Z2P_correct.
+ 2: generalize (BigN.spec_pos y1); auto with zarith.
+ 2: generalize (BigN.spec_pos y2); auto with zarith.
+ generalize (BigZ.spec_compare (x1 * BigZ.Pos y2)
+ (x2 * BigZ.Pos y1))%bigZ; case BigZ.compare;
+ repeat rewrite BigZ.spec_mul; simpl; intros H; apply sym_equal; auto.
+ rewrite H; rewrite Zcompare_refl; auto.
+ Qed.
+
+ Theorem spec_comparec: forall q1 q2, wf q1 -> wf q2 ->
+ compare q1 q2 = ([[q1]] ?= [[q2]]).
+ unfold Qccompare, to_Qc.
+ intros q1 q2 Hq1 Hq2; rewrite spec_compare; simpl; auto.
+ apply Qcompare_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition norm n d: t :=
+ if BigZ.eq_bool n BigZ.zero then zero
+ else
+ let gcd := BigN.gcd (BigZ.to_N n) d in
+ if BigN.eq_bool gcd BigN.one then Qq n d
+ else
+ let n := BigZ.div n (BigZ.Pos gcd) in
+ let d := BigN.div d gcd in
+ if BigN.eq_bool d BigN.one then Qz n
+ else Qq n d.
+
+ Theorem wf_norm: forall n q,
+ (BigN.to_Z q <> 0)%Z -> wf (norm n q).
+ intros p q; unfold norm, wf; intros Hq.
+ assert (Hp := BigN.spec_pos (BigZ.to_N p)).
+ match goal with |- context[BigZ.eq_bool ?X ?Y] =>
+ generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
+ end; auto; rewrite BigZ.spec_0; intros H1.
+ simpl; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_1.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_1.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ set (a := BigN.to_Z (BigZ.to_N p)).
+ set (b := (BigN.to_Z q)).
+ assert (F: (0 < Zgcd a b)%Z).
+ case (Zle_lt_or_eq _ _ (Zgcd_is_pos a b)); auto.
+ intros HH1; case Hq; apply (Zgcd_inv_0_r _ _ (sym_equal HH1)).
+ rewrite BigN.spec_div; rewrite BigN.spec_gcd; auto; fold a; fold b.
+ intros H; case Hq; fold b.
+ rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
+ rewrite H; auto with zarith.
+ assert (F1:= Zgcd_is_gcd a b); inversion F1; auto.
+ Qed.
+
+ Theorem spec_norm: forall n q,
+ ((0 < BigN.to_Z q)%Z -> [norm n q] == [Qq n q])%Q.
+ intros p q; unfold norm; intros Hq.
+ assert (Hp := BigN.spec_pos (BigZ.to_N p)).
+ match goal with |- context[BigZ.eq_bool ?X ?Y] =>
+ generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
+ end; auto; rewrite BigZ.spec_0; intros H1.
+ red; simpl; rewrite H1; ring.
+ case (Zle_lt_or_eq _ _ Hp); clear Hp; intros Hp.
+ case (Zle_lt_or_eq _ _
+ (Zgcd_is_pos (BigN.to_Z (BigZ.to_N p)) (BigN.to_Z q))); intros H4.
+ 2: generalize Hq; rewrite (Zgcd_inv_0_r _ _ (sym_equal H4)); auto with zarith.
+ 2: red; simpl; auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_1; intros H2.
+ apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_1.
+ red; simpl.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ rewrite Zmult_1_r.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite spec_to_N; intros; rewrite Zgcd_div_swap; auto.
+ rewrite H; ring.
+ intros H3.
+ red; simpl.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ assert (F: (0 < BigN.to_Z (q / BigN.gcd (BigZ.to_N p) q)%bigN)%Z).
+ rewrite BigN.spec_div; auto with zarith.
+ rewrite BigN.spec_gcd.
+ apply Zgcd_div_pos; auto.
+ rewrite BigN.spec_gcd; auto.
+ rewrite Z2P_correct; auto.
+ rewrite Z2P_correct; auto.
+ rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
+ rewrite spec_to_N; apply Zgcd_div_swap; auto.
+ case H1; rewrite spec_to_N; rewrite <- Hp; ring.
+ Qed.
+
+ Theorem spec_normc: forall n q,
+ (0 < BigN.to_Z q)%Z -> [[norm n q]] = [[Qq n q]].
+ intros n q H; unfold to_Qc, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_norm; auto.
+ Qed.
+
+ Definition add (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.add zx zy)
+ | Qz zx, Qq ny dy => Qq (BigZ.add (BigZ.mul zx (BigZ.Pos dy)) ny) dy
+ | Qq nx dx, Qz zy => Qq (BigZ.add nx (BigZ.mul zy (BigZ.Pos dx))) dx
+ | Qq nx dx, Qq ny dy =>
+ let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx)) in
+ let d := BigN.mul dx dy in
+ Qq n d
+ end.
+
+ Theorem wf_add: forall x y, wf x -> wf y -> wf (add x y).
+ intros [zx | nx dx] [zy | ny dy]; unfold add, wf; auto.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_mul.
+ intros H1 H2 H3.
+ case (Zmult_integral _ _ H1); auto with zarith.
+ Qed.
+
+ Theorem spec_add x y: wf x -> wf y ->
+ ([add x y] == [x] + [y])%Q.
+ intros [x | nx dx] [y | ny dy]; unfold Qplus; simpl.
+ rewrite BigZ.spec_add; repeat rewrite Zmult_1_r; auto.
+ intros; apply Qeq_refl; auto.
+ assert (F1:= BigN.spec_pos dy).
+ rewrite Zmult_1_r.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool.
+ intros _ _ HH; case HH.
+ rewrite BigN.spec_0; intros HH _ _.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigZ.spec_add; rewrite BigZ.spec_mul.
+ simpl; apply Qeq_refl.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool.
+ intros _ HH; case HH.
+ rewrite BigN.spec_0; intros HH _ _.
+ assert (F1:= BigN.spec_pos dx).
+ rewrite Zmult_1_r; rewrite Pmult_1_r.
+ simpl; rewrite Z2P_correct; auto with zarith.
+ rewrite BigZ.spec_add; rewrite BigZ.spec_mul; simpl.
+ apply Qeq_refl.
+ generalize (BigN.spec_eq_bool dx BigN.zero);
+ case BigN.eq_bool.
+ intros _ HH; case HH.
+ rewrite BigN.spec_0; intros HH1.
+ generalize (BigN.spec_eq_bool dy BigN.zero);
+ case BigN.eq_bool.
+ intros _ _ HH; case HH.
+ rewrite BigN.spec_0; intros HH2 _ _.
+ assert (Fx: (0 < BigN.to_Z dx)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ assert (Fy: (0 < BigN.to_Z dy)%Z).
+ generalize (BigN.spec_pos dy); auto with zarith.
+ rewrite BigZ.spec_add; repeat rewrite BigN.spec_mul.
+ red; simpl.
+ rewrite Zpos_mult_morphism.
+ repeat rewrite Z2P_correct; auto.
+ repeat rewrite BigZ.spec_mul; simpl; auto.
+ apply Zmult_lt_0_compat; auto.
+ Qed.
+
+ Theorem spec_addc x y: wf x -> wf y ->
+ [[add x y]] = [[x]] + [[y]].
+ intros x y H1 H2; unfold to_Qc.
+ apply trans_equal with (!! ([x] + [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_add; auto.
+ unfold Qcplus, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition add_norm (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.add zx zy)
+ | Qz zx, Qq ny dy =>
+ norm (BigZ.add (BigZ.mul zx (BigZ.Pos dy)) ny) dy
+ | Qq nx dx, Qz zy =>
+ norm (BigZ.add (BigZ.mul zy (BigZ.Pos dx)) nx) dx
+ | Qq nx dx, Qq ny dy =>
+ let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx)) in
+ let d := BigN.mul dx dy in
+ norm n d
+ end.
+
+ Theorem wf_add_norm: forall x y, wf x -> wf y -> wf (add_norm x y).
+ intros [zx | nx dx] [zy | ny dy]; unfold add_norm; auto.
+ intros HH1 HH2; apply wf_norm.
+ generalize HH2; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ intros HH1 HH2; apply wf_norm.
+ generalize HH1; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ intros HH1 HH2; apply wf_norm.
+ rewrite BigN.spec_mul; intros HH3.
+ case (Zmult_integral _ _ HH3).
+ generalize HH1; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ generalize HH2; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ Qed.
+
+ Theorem spec_add_norm x y: wf x -> wf y ->
+ ([add_norm x y] == [x] + [y])%Q.
+ intros x y H1 H2; rewrite <- spec_add; auto.
+ generalize H1 H2; unfold add_norm, add, wf; case x; case y; clear H1 H2.
+ intros; apply Qeq_refl.
+ intros p1 n p2 _.
+ generalize (BigN.spec_eq_bool n BigN.zero);
+ case BigN.eq_bool.
+ intros _ HH; case HH.
+ rewrite BigN.spec_0; intros HH _.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end.
+ generalize (BigN.spec_pos n); auto with zarith.
+ simpl.
+ repeat rewrite BigZ.spec_add.
+ repeat rewrite BigZ.spec_mul; simpl.
+ apply Qeq_refl.
+ intros p1 n p2.
+ generalize (BigN.spec_eq_bool p2 BigN.zero);
+ case BigN.eq_bool.
+ intros _ HH; case HH.
+ rewrite BigN.spec_0; intros HH _ _.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end.
+ generalize (BigN.spec_pos p2); auto with zarith.
+ simpl.
+ repeat rewrite BigZ.spec_add.
+ repeat rewrite BigZ.spec_mul; simpl.
+ rewrite Zplus_comm.
+ apply Qeq_refl.
+ intros p1 q1 p2 q2.
+ generalize (BigN.spec_eq_bool q2 BigN.zero);
+ case BigN.eq_bool.
+ intros _ HH; case HH.
+ rewrite BigN.spec_0; intros HH1 _.
+ generalize (BigN.spec_eq_bool q1 BigN.zero);
+ case BigN.eq_bool.
+ intros _ HH; case HH.
+ rewrite BigN.spec_0; intros HH2 _.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end; try apply Qeq_refl.
+ rewrite BigN.spec_mul.
+ apply Zmult_lt_0_compat.
+ generalize (BigN.spec_pos q2); auto with zarith.
+ generalize (BigN.spec_pos q1); auto with zarith.
+ Qed.
+
+ Theorem spec_add_normc x y: wf x -> wf y ->
+ [[add_norm x y]] = [[x]] + [[y]].
+ intros x y Hx Hy; unfold to_Qc.
+ apply trans_equal with (!! ([x] + [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_add_norm; auto.
+ unfold Qcplus, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition sub x y := add x (opp y).
+
+ Theorem wf_sub x y: wf x -> wf y -> wf (sub x y).
+ intros x y Hx Hy; unfold sub; apply wf_add; auto.
+ apply wf_opp; auto.
+ Qed.
+
+ Theorem spec_sub x y: wf x -> wf y ->
+ ([sub x y] == [x] - [y])%Q.
+ intros x y Hx Hy; unfold sub; rewrite spec_add; auto.
+ rewrite spec_opp; ring.
+ apply wf_opp; auto.
+ Qed.
+
+ Theorem spec_subc x y: wf x -> wf y ->
+ [[sub x y]] = [[x]] - [[y]].
+ intros x y Hx Hy; unfold sub; rewrite spec_addc; auto.
+ rewrite spec_oppc; ring.
+ apply wf_opp; auto.
+ Qed.
+
+ Definition sub_norm x y := add_norm x (opp y).
+
+ Theorem wf_sub_norm x y: wf x -> wf y -> wf (sub_norm x y).
+ intros x y Hx Hy; unfold sub_norm; apply wf_add_norm; auto.
+ apply wf_opp; auto.
+ Qed.
+
+ Theorem spec_sub_norm x y: wf x -> wf y ->
+ ([sub_norm x y] == [x] - [y])%Q.
+ intros x y Hx Hy; unfold sub_norm; rewrite spec_add_norm; auto.
+ rewrite spec_opp; ring.
+ apply wf_opp; auto.
+ Qed.
+
+ Theorem spec_sub_normc x y: wf x -> wf y ->
+ [[sub_norm x y]] = [[x]] - [[y]].
+ intros x y Hx Hy; unfold sub_norm; rewrite spec_add_normc; auto.
+ rewrite spec_oppc; ring.
+ apply wf_opp; auto.
+ Qed.
+
+ Definition mul (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.mul zx zy)
+ | Qz zx, Qq ny dy => Qq (BigZ.mul zx ny) dy
+ | Qq nx dx, Qz zy => Qq (BigZ.mul nx zy) dx
+ | Qq nx dx, Qq ny dy =>
+ Qq (BigZ.mul nx ny) (BigN.mul dx dy)
+ end.
+
+ Theorem wf_mul: forall x y, wf x -> wf y -> wf (mul x y).
+ intros [zx | nx dx] [zy | ny dy]; unfold mul, wf; auto.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_mul.
+ intros H1 H2 H3.
+ case (Zmult_integral _ _ H1); auto with zarith.
+ Qed.
+
+ Theorem spec_mul x y: wf x -> wf y -> ([mul x y] == [x] * [y])%Q.
+ intros [x | nx dx] [y | ny dy]; unfold Qmult; simpl.
+ rewrite BigZ.spec_mul; repeat rewrite Zmult_1_r; auto.
+ intros; apply Qeq_refl; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ intros _ _ HH; case HH.
+ rewrite BigN.spec_0; intros HH1 _ _.
+ rewrite BigZ.spec_mul; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ intros _ HH; case HH.
+ rewrite BigN.spec_0; intros HH1 _ _.
+ rewrite BigZ.spec_mul; rewrite Pmult_1_r.
+ apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ intros _ HH; case HH.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ intros _ _ _ HH; case HH.
+ rewrite BigN.spec_0; intros H1 H2 _ _.
+ rewrite BigZ.spec_mul; rewrite BigN.spec_mul.
+ assert (tmp:
+ (forall a b, 0 < a -> 0 < b -> Z2P (a * b) = (Z2P a * Z2P b)%positive)%Z).
+ intros [|a|a] [|b|b]; simpl; auto; intros; apply False_ind; auto with zarith.
+ rewrite tmp; auto.
+ apply Qeq_refl.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ generalize (BigN.spec_pos dy); auto with zarith.
+ Qed.
+
+ Theorem spec_mulc x y: wf x -> wf y ->
+ [[mul x y]] = [[x]] * [[y]].
+ intros x y Hx Hy; unfold to_Qc.
+ apply trans_equal with (!! ([x] * [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_mul; auto.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition mul_norm (x y: t): t :=
+ match x, y with
+ | Qz zx, Qz zy => Qz (BigZ.mul zx zy)
+ | Qz zx, Qq ny dy =>
+ if BigZ.eq_bool zx BigZ.zero then zero
+ else
+ let gcd := BigN.gcd (BigZ.to_N zx) dy in
+ if BigN.eq_bool gcd BigN.one then Qq (BigZ.mul zx ny) dy
+ else
+ let zx := BigZ.div zx (BigZ.Pos gcd) in
+ let d := BigN.div dy gcd in
+ if BigN.eq_bool d BigN.one then Qz (BigZ.mul zx ny)
+ else Qq (BigZ.mul zx ny) d
+ | Qq nx dx, Qz zy =>
+ if BigZ.eq_bool zy BigZ.zero then zero
+ else
+ let gcd := BigN.gcd (BigZ.to_N zy) dx in
+ if BigN.eq_bool gcd BigN.one then Qq (BigZ.mul zy nx) dx
+ else
+ let zy := BigZ.div zy (BigZ.Pos gcd) in
+ let d := BigN.div dx gcd in
+ if BigN.eq_bool d BigN.one then Qz (BigZ.mul zy nx)
+ else Qq (BigZ.mul zy nx) d
+ | Qq nx dx, Qq ny dy => norm (BigZ.mul nx ny) (BigN.mul dx dy)
+ end.
+
+ Theorem wf_mul_norm: forall x y, wf x -> wf y -> wf (mul_norm x y).
+ intros [zx | nx dx] [zy | ny dy]; unfold mul_norm; auto.
+ intros HH1 HH2.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto;
+ match goal with |- context[BigZ.eq_bool ?X ?Y] =>
+ generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
+ end; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ rewrite BigN.spec_1; rewrite BigZ.spec_0.
+ intros H1 H2; unfold wf.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ rewrite BigN.spec_0.
+ set (a := BigN.to_Z (BigZ.to_N zx)).
+ set (b := (BigN.to_Z dy)).
+ assert (F: (0 < Zgcd a b)%Z).
+ case (Zle_lt_or_eq _ _ (Zgcd_is_pos a b)); auto.
+ intros HH3; case H2; rewrite spec_to_N; fold a.
+ rewrite (Zgcd_inv_0_l _ _ (sym_equal HH3)); try ring.
+ rewrite BigN.spec_div; rewrite BigN.spec_gcd; fold a; fold b; auto.
+ intros H.
+ generalize HH2; simpl wf.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ rewrite BigN.spec_0; intros HH; case HH; fold b.
+ rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
+ rewrite H; auto with zarith.
+ assert (F1:= Zgcd_is_gcd a b); inversion F1; auto.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ rewrite BigN.spec_1; rewrite BigN.spec_gcd.
+ intros HH1 H1 H2.
+ match goal with |- context[BigZ.eq_bool ?X ?Y] =>
+ generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
+ end; auto.
+ rewrite BigN.spec_1; rewrite BigN.spec_gcd.
+ intros HH1 H1 H2.
+ match goal with |- context[BigZ.eq_bool ?X ?Y] =>
+ generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
+ end; auto.
+ rewrite BigZ.spec_0.
+ intros HH2.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ set (a := BigN.to_Z (BigZ.to_N zy)).
+ set (b := (BigN.to_Z dx)).
+ assert (F: (0 < Zgcd a b)%Z).
+ case (Zle_lt_or_eq _ _ (Zgcd_is_pos a b)); auto.
+ intros HH3; case HH2; rewrite spec_to_N; fold a.
+ rewrite (Zgcd_inv_0_l _ _ (sym_equal HH3)); try ring.
+ rewrite BigN.spec_div; rewrite BigN.spec_gcd; fold a; fold b; auto.
+ intros H; unfold wf.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ rewrite BigN.spec_0.
+ rewrite BigN.spec_div; rewrite BigN.spec_gcd; fold a; fold b; auto.
+ intros HH; generalize H1; simpl wf.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ rewrite BigN.spec_0.
+ intros HH3; case HH3; fold b.
+ rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
+ rewrite HH; auto with zarith.
+ assert (F1:= Zgcd_is_gcd a b); inversion F1; auto.
+ intros HH1 HH2; apply wf_norm.
+ rewrite BigN.spec_mul; intros HH3.
+ case (Zmult_integral _ _ HH3).
+ generalize HH1; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ generalize HH2; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ Qed.
+
+ Theorem spec_mul_norm x y: wf x -> wf y ->
+ ([mul_norm x y] == [x] * [y])%Q.
+ intros x y Hx Hy; rewrite <- spec_mul; auto.
+ unfold mul_norm, mul; generalize Hx Hy; case x; case y; clear Hx Hy.
+ intros; apply Qeq_refl.
+ intros p1 n p2 Hx Hy.
+ match goal with |- context[BigZ.eq_bool ?X ?Y] =>
+ generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
+ end; unfold zero, to_Q; repeat rewrite BigZ.spec_0; intros H.
+ rewrite BigZ.spec_mul; rewrite H; red; auto.
+ assert (F: (0 < BigN.to_Z (BigZ.to_N p2))%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos (BigZ.to_N p2))); auto.
+ intros H1; case H; rewrite spec_to_N; rewrite <- H1; ring.
+ assert (F1: (0 < BigN.to_Z n)%Z).
+ generalize Hy; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto.
+ intros _ HH; case HH.
+ rewrite BigN.spec_0; generalize (BigN.spec_pos n); auto with zarith.
+ set (a := BigN.to_Z (BigZ.to_N p2)).
+ set (b := BigN.to_Z n).
+ assert (F2: (0 < Zgcd a b )%Z).
+ case (Zle_lt_or_eq _ _ (Zgcd_is_pos a b)); intros H3; auto.
+ generalize F; fold a; rewrite (Zgcd_inv_0_l _ _ (sym_equal H3)); auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1; try rewrite BigN.spec_gcd;
+ fold a b; intros H1.
+ intros; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1.
+ rewrite BigN.spec_div; rewrite BigN.spec_gcd;
+ auto with zarith; fold a b; intros H2.
+ red; simpl.
+ repeat rewrite BigZ.spec_mul.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd;
+ fold a b; auto with zarith.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite spec_to_N; fold a; fold b.
+ rewrite Zmult_1_r; repeat rewrite <- Zmult_assoc.
+ rewrite (Zmult_comm (BigZ.to_Z p1)).
+ repeat rewrite Zmult_assoc.
+ rewrite Zgcd_div_swap; auto with zarith.
+ rewrite H2; ring.
+ repeat rewrite BigZ.spec_mul.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd;
+ fold a b; auto with zarith.
+ rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd;
+ fold a b; auto with zarith.
+ intros H2; red; simpl.
+ repeat rewrite BigZ.spec_mul.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite (spec_to_N p2); fold a b.
+ rewrite Z2P_correct; auto with zarith.
+ repeat rewrite <- Zmult_assoc.
+ rewrite (Zmult_comm (BigZ.to_Z p1)).
+ repeat rewrite Zmult_assoc.
+ rewrite Zgcd_div_swap; auto; try ring.
+ case (Zle_lt_or_eq _ _
+ (BigN.spec_pos (n /
+ BigN.gcd (BigZ.to_N p2)
+ n))%bigN);
+ rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd;
+ fold a b; auto with zarith.
+ intros H3.
+ apply False_ind; generalize F1.
+ generalize Hy; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; auto with zarith.
+ intros HH; case HH; fold b.
+ rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
+ rewrite <- H3; ring.
+ assert (FF:= Zgcd_is_gcd a b); inversion FF; auto.
+ intros p1 p2 n Hx Hy.
+ match goal with |- context[BigZ.eq_bool ?X ?Y] =>
+ generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
+ end; unfold zero, to_Q; repeat rewrite BigZ.spec_0; intros H.
+ rewrite BigZ.spec_mul; rewrite H; red; simpl; ring.
+ set (a := BigN.to_Z (BigZ.to_N p1)).
+ set (b := BigN.to_Z n).
+ assert (F: (0 < a)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos (BigZ.to_N p1))); auto.
+ intros H1; case H; rewrite spec_to_N; rewrite <- H1; ring.
+ assert (F1: (0 < b)%Z).
+ generalize Hx; unfold wf.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; auto with zarith.
+ generalize (BigN.spec_pos n); fold b; auto with zarith.
+ assert (F2: (0 < Zgcd a b)%Z).
+ case (Zle_lt_or_eq _ _ (Zgcd_is_pos a b)); intros H3; auto.
+ generalize F; rewrite (Zgcd_inv_0_l _ _ (sym_equal H3)); auto with zarith.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1; rewrite BigN.spec_gcd; fold a b; intros H1.
+ intros; repeat rewrite BigZ.spec_mul; rewrite Zmult_comm; apply Qeq_refl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_1.
+ rewrite BigN.spec_div; rewrite BigN.spec_gcd;
+ auto with zarith.
+ fold a b; intros H2.
+ red; simpl.
+ repeat rewrite BigZ.spec_mul.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd;
+ fold a b; auto with zarith.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite spec_to_N; fold a b.
+ rewrite Zmult_1_r; repeat rewrite <- Zmult_assoc.
+ rewrite (Zmult_comm (BigZ.to_Z p2)).
+ repeat rewrite Zmult_assoc.
+ rewrite Zgcd_div_swap; auto with zarith.
+ rewrite H2; ring.
+ intros H2.
+ red; simpl.
+ repeat rewrite BigZ.spec_mul.
+ rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd;
+ fold a b; auto with zarith.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite (spec_to_N p1); fold a b.
+ case (Zle_lt_or_eq _ _
+ (BigN.spec_pos (n / BigN.gcd (BigZ.to_N p1) n))%bigN); intros F3.
+ rewrite Z2P_correct; auto with zarith.
+ rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd;
+ fold a b; auto with zarith.
+ repeat rewrite <- Zmult_assoc.
+ rewrite (Zmult_comm (BigZ.to_Z p2)).
+ repeat rewrite Zmult_assoc.
+ rewrite Zgcd_div_swap; auto; try ring.
+ apply False_ind; generalize F1.
+ rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
+ generalize F3; rewrite BigN.spec_div; rewrite BigN.spec_gcd; fold a b;
+ auto with zarith.
+ intros HH; rewrite <- HH; auto with zarith.
+ assert (FF:= Zgcd_is_gcd a b); inversion FF; auto.
+ intros p1 n1 p2 n2 Hn1 Hn2.
+ match goal with |- [norm ?X ?Y] == _ =>
+ apply Qeq_trans with ([Qq X Y]);
+ [apply spec_norm | idtac]
+ end; try apply Qeq_refl.
+ rewrite BigN.spec_mul.
+ apply Zmult_lt_0_compat.
+ generalize Hn1; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; auto with zarith.
+ generalize (BigN.spec_pos n1) (BigN.spec_pos n2); auto with zarith.
+ generalize Hn2; simpl.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; auto with zarith.
+ generalize (BigN.spec_pos n1) (BigN.spec_pos n2); auto with zarith.
+ Qed.
+
+ Theorem spec_mul_normc x y: wf x -> wf y ->
+ [[mul_norm x y]] = [[x]] * [[y]].
+ intros x y Hx Hy; unfold to_Qc.
+ apply trans_equal with (!! ([x] * [y])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_mul_norm; auto.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+ Definition inv (x: t): t :=
+ match x with
+ | Qz (BigZ.Pos n) =>
+ if BigN.eq_bool n BigN.zero then zero else Qq BigZ.one n
+ | Qz (BigZ.Neg n) =>
+ if BigN.eq_bool n BigN.zero then zero else Qq BigZ.minus_one n
+ | Qq (BigZ.Pos n) d =>
+ if BigN.eq_bool n BigN.zero then zero else Qq (BigZ.Pos d) n
+ | Qq (BigZ.Neg n) d =>
+ if BigN.eq_bool n BigN.zero then zero else Qq (BigZ.Neg d) n
+ end.
+
+
+ Theorem wf_inv: forall x, wf x -> wf (inv x).
+ intros [ zx | nx dx]; unfold inv, wf; auto.
+ case zx; clear zx.
+ intros nx.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_mul.
+ intros nx.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0; rewrite BigN.spec_mul.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ intros _ HH; case HH.
+ intros H1 _.
+ case nx; clear nx.
+ intros nx.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; simpl; auto.
+ intros nx.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; simpl; auto.
+ Qed.
+
+ Theorem spec_inv x: wf x ->
+ ([inv x] == /[x])%Q.
+ intros [ [x | x] _ | [nx | nx] dx]; unfold inv.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H.
+ unfold zero, to_Q; rewrite BigZ.spec_0.
+ unfold BigZ.to_Z; rewrite H; apply Qeq_refl.
+ assert (F: (0 < BigN.to_Z x)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); auto with zarith.
+ unfold to_Q; rewrite BigZ.spec_1.
+ red; unfold Qinv; simpl.
+ generalize F; case BigN.to_Z; auto with zarith.
+ intros p Hp; discriminate Hp.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H.
+ unfold zero, to_Q; rewrite BigZ.spec_0.
+ unfold BigZ.to_Z; rewrite H; apply Qeq_refl.
+ assert (F: (0 < BigN.to_Z x)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); auto with zarith.
+ red; unfold Qinv; simpl.
+ generalize F; case BigN.to_Z; simpl; auto with zarith.
+ intros p Hp; discriminate Hp.
+ simpl wf.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1.
+ intros HH; case HH.
+ intros _.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H.
+ unfold zero, to_Q; rewrite BigZ.spec_0.
+ unfold BigZ.to_Z; rewrite H; apply Qeq_refl.
+ assert (F: (0 < BigN.to_Z nx)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos nx)); auto with zarith.
+ red; unfold Qinv; simpl.
+ rewrite Z2P_correct; auto with zarith.
+ generalize F; case BigN.to_Z; auto with zarith.
+ intros p Hp; discriminate Hp.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ simpl wf.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H1.
+ intros HH; case HH.
+ intros _.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; rewrite BigN.spec_0; intros H.
+ unfold zero, to_Q; rewrite BigZ.spec_0.
+ unfold BigZ.to_Z; rewrite H; apply Qeq_refl.
+ assert (F: (0 < BigN.to_Z nx)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos nx)); auto with zarith.
+ red; unfold Qinv; simpl.
+ rewrite Z2P_correct; auto with zarith.
+ generalize F; case BigN.to_Z; auto with zarith.
+ simpl; intros.
+ match goal with |- (?X = Zneg ?Y)%Z =>
+ replace (Zneg Y) with (Zopp (Zpos Y));
+ try rewrite Z2P_correct; auto with zarith
+ end.
+ rewrite Zpos_mult_morphism;
+ rewrite Z2P_correct; auto with zarith; try ring.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ intros p Hp; discriminate Hp.
+ generalize (BigN.spec_pos dx); auto with zarith.
+ Qed.
+
+ Theorem spec_invc x: wf x ->
+ [[inv x]] = /[[x]].
+ intros x Hx; unfold to_Qc.
+ apply trans_equal with (!! (/[x])).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_inv; auto.
+ unfold Qcinv, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qinv_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+
+ Definition div x y := mul x (inv y).
+
+ Theorem wf_div x y: wf x -> wf y -> wf (div x y).
+ intros x y Hx Hy; unfold div; apply wf_mul; auto.
+ apply wf_inv; auto.
+ Qed.
+
+ Theorem spec_div x y: wf x -> wf y ->
+ ([div x y] == [x] / [y])%Q.
+ intros x y Hx Hy; unfold div; rewrite spec_mul; auto.
+ unfold Qdiv; apply Qmult_comp.
+ apply Qeq_refl.
+ apply spec_inv; auto.
+ apply wf_inv; auto.
+ Qed.
+
+ Theorem spec_divc x y: wf x -> wf y ->
+ [[div x y]] = [[x]] / [[y]].
+ intros x y Hx Hy; unfold div; rewrite spec_mulc; auto.
+ unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
+ apply spec_invc; auto.
+ apply wf_inv; auto.
+ Qed.
+
+ Definition div_norm x y := mul_norm x (inv y).
+
+ Theorem wf_div_norm x y: wf x -> wf y -> wf (div_norm x y).
+ intros x y Hx Hy; unfold div_norm; apply wf_mul_norm; auto.
+ apply wf_inv; auto.
+ Qed.
+
+ Theorem spec_div_norm x y: wf x -> wf y ->
+ ([div_norm x y] == [x] / [y])%Q.
+ intros x y Hx Hy; unfold div_norm; rewrite spec_mul_norm; auto.
+ unfold Qdiv; apply Qmult_comp.
+ apply Qeq_refl.
+ apply spec_inv; auto.
+ apply wf_inv; auto.
+ Qed.
+
+ Theorem spec_div_normc x y: wf x -> wf y ->
+ [[div_norm x y]] = [[x]] / [[y]].
+ intros x y Hx Hy; unfold div_norm; rewrite spec_mul_normc; auto.
+ unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
+ apply spec_invc; auto.
+ apply wf_inv; auto.
+ Qed.
+
+ Definition square (x: t): t :=
+ match x with
+ | Qz zx => Qz (BigZ.square zx)
+ | Qq nx dx => Qq (BigZ.square nx) (BigN.square dx)
+ end.
+
+ Theorem wf_square: forall x, wf x -> wf (square x).
+ intros [ zx | nx dx]; unfold square, wf; auto.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ rewrite BigN.spec_square; intros H1 H2; case H2.
+ case (Zmult_integral _ _ H1); auto.
+ Qed.
+
+ Theorem spec_square x: wf x -> ([square x] == [x] ^ 2)%Q.
+ intros [ x | nx dx]; unfold square.
+ intros _.
+ red; simpl; rewrite BigZ.spec_square; auto with zarith.
+ unfold wf.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ intros _ HH; case HH.
+ intros H1 _.
+ red; simpl; rewrite BigZ.spec_square; auto with zarith.
+ assert (F: (0 < BigN.to_Z dx)%Z).
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos dx)); auto with zarith.
+ assert (F1 : (0 < BigN.to_Z (BigN.square dx))%Z).
+ rewrite BigN.spec_square; apply Zmult_lt_0_compat;
+ auto with zarith.
+ rewrite Zpos_mult_morphism.
+ repeat rewrite Z2P_correct; auto with zarith.
+ rewrite BigN.spec_square; auto with zarith.
+ Qed.
+
+ Theorem spec_squarec x: wf x -> [[square x]] = [[x]]^2.
+ intros x Hx; unfold to_Qc.
+ apply trans_equal with (!! ([x]^2)).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_square; auto.
+ simpl Qcpower.
+ replace (!! [x] * 1) with (!![x]); try ring.
+ simpl.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+
+ Definition power_pos (x: t) p: t :=
+ match x with
+ | Qz zx => Qz (BigZ.power_pos zx p)
+ | Qq nx dx => Qq (BigZ.power_pos nx p) (BigN.power_pos dx p)
+ end.
+
+ Theorem wf_power_pos: forall x p, wf x -> wf (power_pos x p).
+ intros [ zx | nx dx] p; unfold power_pos, wf; auto.
+ repeat match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ rewrite BigN.spec_power_pos; simpl.
+ intros H1 H2 _.
+ case (Zle_lt_or_eq _ _ (BigN.spec_pos dx)); auto with zarith.
+ intros H3; generalize (Zpower_pos_pos _ p H3); auto with zarith.
+ Qed.
+
+ Theorem spec_power_pos x p: wf x -> ([power_pos x p] == [x] ^ Zpos p)%Q.
+ Proof.
+ intros [x | nx dx] p; unfold power_pos.
+ intros _; unfold power_pos; red; simpl.
+ generalize (Qpower_decomp p (BigZ.to_Z x) 1).
+ unfold Qeq; simpl.
+ rewrite Zpower_pos_1_l; simpl Z2P.
+ rewrite Zmult_1_r.
+ intros H; rewrite H.
+ rewrite BigZ.spec_power_pos; simpl; ring.
+ unfold wf.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ intros _ HH; case HH.
+ intros H1 _.
+ assert (F1: (0 < BigN.to_Z dx)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ assert (F2: (0 < BigN.to_Z dx ^ ' p)%Z).
+ unfold Zpower; apply Zpower_pos_pos; auto.
+ unfold power_pos; red; simpl.
+ rewrite Z2P_correct; rewrite BigN.spec_power_pos; auto.
+ generalize (Qpower_decomp p (BigZ.to_Z nx)
+ (Z2P (BigN.to_Z dx))).
+ unfold Qeq; simpl.
+ repeat rewrite Z2P_correct; auto.
+ unfold Qeq; simpl; intros HH.
+ rewrite HH.
+ rewrite BigZ.spec_power_pos; simpl; ring.
+ Qed.
+
+ Theorem spec_power_posc x p: wf x ->
+ [[power_pos x p]] = [[x]] ^ nat_of_P p.
+ intros x p Hx; unfold to_Qc.
+ apply trans_equal with (!! ([x]^Zpos p)).
+ unfold Q2Qc.
+ apply Qc_decomp; intros _ _; unfold this.
+ apply Qred_complete; apply spec_power_pos; auto.
+ pattern p; apply Pind; clear p.
+ simpl; ring.
+ intros p Hrec.
+ rewrite nat_of_P_succ_morphism; simpl Qcpower.
+ rewrite <- Hrec.
+ unfold Qcmult, Q2Qc.
+ apply Qc_decomp; intros _ _;
+ unfold this.
+ apply Qred_complete.
+ assert (F: [x] ^ ' Psucc p == [x] * [x] ^ ' p).
+ simpl; generalize Hx; case x; simpl; clear x Hx Hrec.
+ intros x _; simpl; repeat rewrite Qpower_decomp; simpl.
+ red; simpl; repeat rewrite Zpower_pos_1_l; simpl Z2P.
+ rewrite Pplus_one_succ_l.
+ rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r; auto.
+ intros nx dx.
+ match goal with |- context[BigN.eq_bool ?X ?Y] =>
+ generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
+ end; auto; rewrite BigN.spec_0.
+ intros _ HH; case HH.
+ intros H1 _.
+ assert (F1: (0 < BigN.to_Z dx)%Z).
+ generalize (BigN.spec_pos dx); auto with zarith.
+ simpl; repeat rewrite Qpower_decomp; simpl.
+ red; simpl; repeat rewrite Zpower_pos_1_l; simpl Z2P.
+ rewrite Pplus_one_succ_l.
+ rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r; auto.
+ repeat rewrite Zpos_mult_morphism.
+ repeat rewrite Z2P_correct; auto.
+ 2: apply Zpower_pos_pos; auto.
+ 2: apply Zpower_pos_pos; auto.
+ rewrite Zpower_pos_is_exp.
+ rewrite Zpower_pos_1_r; auto.
+ rewrite F.
+ apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
+ Qed.
+
+End Qv.
+