summaryrefslogtreecommitdiff
path: root/theories/Numbers/Natural
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Natural')
-rw-r--r--theories/Numbers/Natural/Abstract/NAdd.v2
-rw-r--r--theories/Numbers/Natural/Abstract/NAddOrder.v2
-rw-r--r--theories/Numbers/Natural/Abstract/NAxioms.v2
-rw-r--r--theories/Numbers/Natural/Abstract/NBase.v2
-rw-r--r--theories/Numbers/Natural/Abstract/NBits.v2
-rw-r--r--theories/Numbers/Natural/Abstract/NDefOps.v3
-rw-r--r--theories/Numbers/Natural/Abstract/NDiv.v2
-rw-r--r--theories/Numbers/Natural/Abstract/NGcd.v2
-rw-r--r--theories/Numbers/Natural/Abstract/NIso.v2
-rw-r--r--theories/Numbers/Natural/Abstract/NLcm.v2
-rw-r--r--theories/Numbers/Natural/Abstract/NLog.v2
-rw-r--r--theories/Numbers/Natural/Abstract/NMaxMin.v2
-rw-r--r--theories/Numbers/Natural/Abstract/NMulOrder.v2
-rw-r--r--theories/Numbers/Natural/Abstract/NOrder.v2
-rw-r--r--theories/Numbers/Natural/Abstract/NParity.v2
-rw-r--r--theories/Numbers/Natural/Abstract/NPow.v2
-rw-r--r--theories/Numbers/Natural/Abstract/NProperties.v23
-rw-r--r--theories/Numbers/Natural/Abstract/NSqrt.v2
-rw-r--r--theories/Numbers/Natural/Abstract/NStrongRec.v7
-rw-r--r--theories/Numbers/Natural/Abstract/NSub.v2
-rw-r--r--theories/Numbers/Natural/BigN/BigN.v20
-rw-r--r--theories/Numbers/Natural/BigN/NMake.v150
-rw-r--r--theories/Numbers/Natural/BigN/NMake_gen.ml24
-rw-r--r--theories/Numbers/Natural/BigN/Nbasic.v5
-rw-r--r--theories/Numbers/Natural/Binary/NBinary.v2
-rw-r--r--theories/Numbers/Natural/Peano/NPeano.v806
-rw-r--r--theories/Numbers/Natural/SpecViaZ/NSig.v2
-rw-r--r--theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v2
28 files changed, 169 insertions, 909 deletions
diff --git a/theories/Numbers/Natural/Abstract/NAdd.v b/theories/Numbers/Natural/Abstract/NAdd.v
index e2dabf0e..638cfc7e 100644
--- a/theories/Numbers/Natural/Abstract/NAdd.v
+++ b/theories/Numbers/Natural/Abstract/NAdd.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Numbers/Natural/Abstract/NAddOrder.v b/theories/Numbers/Natural/Abstract/NAddOrder.v
index 94dc9e79..144bce72 100644
--- a/theories/Numbers/Natural/Abstract/NAddOrder.v
+++ b/theories/Numbers/Natural/Abstract/NAddOrder.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Numbers/Natural/Abstract/NAxioms.v b/theories/Numbers/Natural/Abstract/NAxioms.v
index c783478d..d300f857 100644
--- a/theories/Numbers/Natural/Abstract/NAxioms.v
+++ b/theories/Numbers/Natural/Abstract/NAxioms.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Numbers/Natural/Abstract/NBase.v b/theories/Numbers/Natural/Abstract/NBase.v
index a2bf4109..40453214 100644
--- a/theories/Numbers/Natural/Abstract/NBase.v
+++ b/theories/Numbers/Natural/Abstract/NBase.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Numbers/Natural/Abstract/NBits.v b/theories/Numbers/Natural/Abstract/NBits.v
index d368cc4e..6f8a8fe5 100644
--- a/theories/Numbers/Natural/Abstract/NBits.v
+++ b/theories/Numbers/Natural/Abstract/NBits.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Numbers/Natural/Abstract/NDefOps.v b/theories/Numbers/Natural/Abstract/NDefOps.v
index 882bb850..892b9266 100644
--- a/theories/Numbers/Natural/Abstract/NDefOps.v
+++ b/theories/Numbers/Natural/Abstract/NDefOps.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -133,7 +133,6 @@ Proof.
intros m n; unfold ltb at 1.
f_equiv.
rewrite recursion_succ; f_equiv'.
-reflexivity.
Qed.
(* Above, we rewrite applications of function. Is it possible to rewrite
diff --git a/theories/Numbers/Natural/Abstract/NDiv.v b/theories/Numbers/Natural/Abstract/NDiv.v
index 90a4e9e8..fb68c139 100644
--- a/theories/Numbers/Natural/Abstract/NDiv.v
+++ b/theories/Numbers/Natural/Abstract/NDiv.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Numbers/Natural/Abstract/NGcd.v b/theories/Numbers/Natural/Abstract/NGcd.v
index ff38b364..a1f4ddf8 100644
--- a/theories/Numbers/Natural/Abstract/NGcd.v
+++ b/theories/Numbers/Natural/Abstract/NGcd.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Numbers/Natural/Abstract/NIso.v b/theories/Numbers/Natural/Abstract/NIso.v
index 00f91311..c296315d 100644
--- a/theories/Numbers/Natural/Abstract/NIso.v
+++ b/theories/Numbers/Natural/Abstract/NIso.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Numbers/Natural/Abstract/NLcm.v b/theories/Numbers/Natural/Abstract/NLcm.v
index 6236360b..0fe8e105 100644
--- a/theories/Numbers/Natural/Abstract/NLcm.v
+++ b/theories/Numbers/Natural/Abstract/NLcm.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Numbers/Natural/Abstract/NLog.v b/theories/Numbers/Natural/Abstract/NLog.v
index f3418ef8..605c0aad 100644
--- a/theories/Numbers/Natural/Abstract/NLog.v
+++ b/theories/Numbers/Natural/Abstract/NLog.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Numbers/Natural/Abstract/NMaxMin.v b/theories/Numbers/Natural/Abstract/NMaxMin.v
index 9fa4114b..e0710561 100644
--- a/theories/Numbers/Natural/Abstract/NMaxMin.v
+++ b/theories/Numbers/Natural/Abstract/NMaxMin.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Numbers/Natural/Abstract/NMulOrder.v b/theories/Numbers/Natural/Abstract/NMulOrder.v
index 2aaf20ef..c41275d2 100644
--- a/theories/Numbers/Natural/Abstract/NMulOrder.v
+++ b/theories/Numbers/Natural/Abstract/NMulOrder.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Numbers/Natural/Abstract/NOrder.v b/theories/Numbers/Natural/Abstract/NOrder.v
index a46207ec..90053a73 100644
--- a/theories/Numbers/Natural/Abstract/NOrder.v
+++ b/theories/Numbers/Natural/Abstract/NOrder.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Numbers/Natural/Abstract/NParity.v b/theories/Numbers/Natural/Abstract/NParity.v
index 62d71eae..b3526c9a 100644
--- a/theories/Numbers/Natural/Abstract/NParity.v
+++ b/theories/Numbers/Natural/Abstract/NParity.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Numbers/Natural/Abstract/NPow.v b/theories/Numbers/Natural/Abstract/NPow.v
index c35757af..9cc23004 100644
--- a/theories/Numbers/Natural/Abstract/NPow.v
+++ b/theories/Numbers/Natural/Abstract/NPow.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Numbers/Natural/Abstract/NProperties.v b/theories/Numbers/Natural/Abstract/NProperties.v
index 575ede4f..cb3501d4 100644
--- a/theories/Numbers/Natural/Abstract/NProperties.v
+++ b/theories/Numbers/Natural/Abstract/NProperties.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -9,9 +9,20 @@
Require Export NAxioms.
Require Import NMaxMin NParity NPow NSqrt NLog NDiv NGcd NLcm NBits.
-(** This functor summarizes all known facts about N. *)
+(** The two following functors summarize all known facts about N.
-Module Type NProp (N:NAxiomsSig) :=
- NMaxMinProp N <+ NParityProp N <+ NPowProp N <+ NSqrtProp N
- <+ NLog2Prop N <+ NDivProp N <+ NGcdProp N <+ NLcmProp N
- <+ NBitsProp N.
+ - [NBasicProp] provides properties of basic functions:
+ + - * min max <= <
+
+ - [NExtraProp] provides properties of advanced functions:
+ pow, sqrt, log2, div, gcd, and bitwise functions.
+
+ If necessary, the earlier all-in-one functor [NProp]
+ could be re-obtained via [NBasicProp <+ NExtraProp] *)
+
+Module Type NBasicProp (N:NAxiomsMiniSig) := NMaxMinProp N.
+
+Module Type NExtraProp (N:NAxiomsSig)(P:NBasicProp N) :=
+ NParityProp N P <+ NPowProp N P <+ NSqrtProp N P
+ <+ NLog2Prop N P <+ NDivProp N P <+ NGcdProp N P <+ NLcmProp N P
+ <+ NBitsProp N P.
diff --git a/theories/Numbers/Natural/Abstract/NSqrt.v b/theories/Numbers/Natural/Abstract/NSqrt.v
index bc989a81..8dc66884 100644
--- a/theories/Numbers/Natural/Abstract/NSqrt.v
+++ b/theories/Numbers/Natural/Abstract/NSqrt.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Numbers/Natural/Abstract/NStrongRec.v b/theories/Numbers/Natural/Abstract/NStrongRec.v
index 7ec44dec..896ffc18 100644
--- a/theories/Numbers/Natural/Abstract/NStrongRec.v
+++ b/theories/Numbers/Natural/Abstract/NStrongRec.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -13,7 +13,7 @@ and proves its properties *)
Require Export NSub.
-Ltac f_equiv' := repeat progress (f_equiv; try intros ? ? ?; auto).
+Ltac f_equiv' := repeat (repeat f_equiv; try intros ? ? ?; auto).
Module NStrongRecProp (Import N : NAxiomsRecSig').
Include NSubProp N.
@@ -24,7 +24,7 @@ Variable A : Type.
Variable Aeq : relation A.
Variable Aeq_equiv : Equivalence Aeq.
-(** [strong_rec] allows to define a recursive function [phi] given by
+(** [strong_rec] allows defining a recursive function [phi] given by
an equation [phi(n) = F(phi)(n)] where recursive calls to [phi]
in [F] are made on strictly lower numbers than [n].
@@ -82,7 +82,6 @@ Proof.
intros. unfold strong_rec0.
f_equiv.
rewrite recursion_succ; f_equiv'.
-reflexivity.
Qed.
Lemma strong_rec_0 : forall a,
diff --git a/theories/Numbers/Natural/Abstract/NSub.v b/theories/Numbers/Natural/Abstract/NSub.v
index db61dd9b..18ebe77b 100644
--- a/theories/Numbers/Natural/Abstract/NSub.v
+++ b/theories/Numbers/Natural/Abstract/NSub.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Numbers/Natural/BigN/BigN.v b/theories/Numbers/Natural/BigN/BigN.v
index 89b65617..f7f4347b 100644
--- a/theories/Numbers/Natural/BigN/BigN.v
+++ b/theories/Numbers/Natural/BigN/BigN.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -28,23 +28,13 @@ Require Import CyclicAxioms Cyclic31 Ring31 NSig NSigNAxioms NMake
Delimit Scope bigN_scope with bigN.
-Module BigN <: NType <: OrderedTypeFull <: TotalOrder.
- Include NMake.Make Int31Cyclic [scope abstract_scope to bigN_scope].
- Bind Scope bigN_scope with t t'.
- Include NTypeIsNAxioms
- <+ NProp [no inline]
+Module BigN <: NType <: OrderedTypeFull <: TotalOrder :=
+ NMake.Make Int31Cyclic
+ <+ NTypeIsNAxioms
+ <+ NBasicProp [no inline] <+ NExtraProp [no inline]
<+ HasEqBool2Dec [no inline]
<+ MinMaxLogicalProperties [no inline]
<+ MinMaxDecProperties [no inline].
-End BigN.
-
-(** Nota concerning scopes : for the first Include, we cannot bind
- the scope bigN_scope to a type that doesn't exists yet.
- We hence need to explicitely declare the scope substitution.
- For the next Include, the abstract type t (in scope abstract_scope)
- gets substituted to concrete BigN.t (in scope bigN_scope),
- and the corresponding argument scope are fixed automatically.
-*)
(** Notations about [BigN] *)
diff --git a/theories/Numbers/Natural/BigN/NMake.v b/theories/Numbers/Natural/BigN/NMake.v
index d280a04b..bdcdd5ca 100644
--- a/theories/Numbers/Natural/BigN/NMake.v
+++ b/theories/Numbers/Natural/BigN/NMake.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -146,7 +146,7 @@ Module Make (W0:CyclicType) <: NType.
Theorem spec_add: forall x y, [add x y] = [x] + [y].
Proof.
intros x y. rewrite add_fold. apply spec_same_level; clear x y.
- intros n x y. simpl.
+ intros n x y. cbv beta iota zeta.
generalize (ZnZ.spec_add_c x y); case ZnZ.add_c; intros z H.
rewrite spec_mk_t. assumption.
rewrite spec_mk_t_S. unfold interp_carry in H.
@@ -242,8 +242,8 @@ Module Make (W0:CyclicType) <: NType.
Definition comparen_m n :
forall m, word (dom_t n) (S m) -> dom_t n -> comparison :=
let op := dom_op n in
- let zero := @ZnZ.zero _ op in
- let compare := @ZnZ.compare _ op in
+ let zero := ZnZ.zero (Ops:=op) in
+ let compare := ZnZ.compare (Ops:=op) in
let compare0 := compare zero in
fun m => compare_mn_1 (dom_t n) (dom_t n) zero compare compare0 compare (S m).
@@ -273,7 +273,7 @@ Module Make (W0:CyclicType) <: NType.
Local Notation compare_folded :=
(iter_sym _
- (fun n => @ZnZ.compare _ (dom_op n))
+ (fun n => ZnZ.compare (Ops:=dom_op n))
comparen_m
comparenm
CompOpp).
@@ -358,13 +358,13 @@ Module Make (W0:CyclicType) <: NType.
Definition wn_mul n : forall m, word (dom_t n) (S m) -> dom_t n -> t :=
let op := dom_op n in
- let zero := @ZnZ.zero _ op in
- let succ := @ZnZ.succ _ op in
- let add_c := @ZnZ.add_c _ op in
- let mul_c := @ZnZ.mul_c _ op in
+ let zero := ZnZ.zero in
+ let succ := ZnZ.succ (Ops:=op) in
+ let add_c := ZnZ.add_c (Ops:=op) in
+ let mul_c := ZnZ.mul_c (Ops:=op) in
let ww := @ZnZ.WW _ op in
let ow := @ZnZ.OW _ op in
- let eq0 := @ZnZ.eq0 _ op in
+ let eq0 := ZnZ.eq0 in
let mul_add := @DoubleMul.w_mul_add _ zero succ add_c mul_c in
let mul_add_n1 := @DoubleMul.double_mul_add_n1 _ zero ww ow mul_add in
fun m x y =>
@@ -464,18 +464,18 @@ Module Make (W0:CyclicType) <: NType.
Definition wn_divn1 n :=
let op := dom_op n in
let zd := ZnZ.zdigits op in
- let zero := @ZnZ.zero _ op in
- let ww := @ZnZ.WW _ op in
- let head0 := @ZnZ.head0 _ op in
- let add_mul_div := @ZnZ.add_mul_div _ op in
- let div21 := @ZnZ.div21 _ op in
- let compare := @ZnZ.compare _ op in
- let sub := @ZnZ.sub _ op in
+ let zero := ZnZ.zero in
+ let ww := ZnZ.WW in
+ let head0 := ZnZ.head0 in
+ let add_mul_div := ZnZ.add_mul_div in
+ let div21 := ZnZ.div21 in
+ let compare := ZnZ.compare in
+ let sub := ZnZ.sub in
let ddivn1 :=
DoubleDivn1.double_divn1 zd zero ww head0 add_mul_div div21 compare sub in
fun m x y => let (u,v) := ddivn1 (S m) x y in (mk_t_w' n m u, mk_t n v).
- Let div_gtnm n m wx wy :=
+ Definition div_gtnm n m wx wy :=
let mn := Max.max n m in
let d := diff n m in
let op := make_op mn in
@@ -522,7 +522,7 @@ Module Make (W0:CyclicType) <: NType.
case (ZnZ.spec_to_Z y); auto.
Qed.
- Let spec_divn1 n :=
+ Definition spec_divn1 n :=
DoubleDivn1.spec_double_divn1
(ZnZ.zdigits (dom_op n)) (ZnZ.zero:dom_t n)
ZnZ.WW ZnZ.head0
@@ -633,17 +633,17 @@ Module Make (W0:CyclicType) <: NType.
Definition wn_modn1 n :=
let op := dom_op n in
let zd := ZnZ.zdigits op in
- let zero := @ZnZ.zero _ op in
- let head0 := @ZnZ.head0 _ op in
- let add_mul_div := @ZnZ.add_mul_div _ op in
- let div21 := @ZnZ.div21 _ op in
- let compare := @ZnZ.compare _ op in
- let sub := @ZnZ.sub _ op in
+ let zero := ZnZ.zero in
+ let head0 := ZnZ.head0 in
+ let add_mul_div := ZnZ.add_mul_div in
+ let div21 := ZnZ.div21 in
+ let compare := ZnZ.compare in
+ let sub := ZnZ.sub in
let dmodn1 :=
DoubleDivn1.double_modn1 zd zero head0 add_mul_div div21 compare sub in
fun m x y => reduce n (dmodn1 (S m) x y).
- Let mod_gtnm n m wx wy :=
+ Definition mod_gtnm n m wx wy :=
let mn := Max.max n m in
let d := diff n m in
let op := make_op mn in
@@ -671,7 +671,7 @@ Module Make (W0:CyclicType) <: NType.
reflexivity.
Qed.
- Let spec_modn1 n :=
+ Definition spec_modn1 n :=
DoubleDivn1.spec_double_modn1
(ZnZ.zdigits (dom_op n)) (ZnZ.zero:dom_t n)
ZnZ.WW ZnZ.head0
@@ -1617,40 +1617,90 @@ Module Make (W0:CyclicType) <: NType.
rewrite spec_shiftr, spec_1. apply Z.div2_spec.
Qed.
- (** TODO : provide efficient versions instead of just converting
- from/to N (see with Laurent) *)
+ Local Notation lorn := (fun n =>
+ let op := dom_op n in
+ let lor := ZnZ.lor in
+ fun x y => reduce n (lor x y)).
+
+ Definition lor : t -> t -> t := Eval red_t in same_level lorn.
- Definition lor x y := of_N (N.lor (to_N x) (to_N y)).
- Definition land x y := of_N (N.land (to_N x) (to_N y)).
- Definition ldiff x y := of_N (N.ldiff (to_N x) (to_N y)).
- Definition lxor x y := of_N (N.lxor (to_N x) (to_N y)).
+ Lemma lor_fold : lor = same_level lorn.
+ Proof. red_t; reflexivity. Qed.
- Lemma spec_land: forall x y, [land x y] = Z.land [x] [y].
+ Theorem spec_lor x y : [lor x y] = Z.lor [x] [y].
Proof.
- intros x y. unfold land. rewrite spec_of_N. unfold to_N.
- generalize (spec_pos x), (spec_pos y).
- destruct [x], [y]; trivial; (now destruct 1) || (now destruct 2).
+ rewrite lor_fold. apply spec_same_level; clear x y.
+ intros n x y. simpl. rewrite spec_reduce. apply ZnZ.spec_lor.
Qed.
- Lemma spec_lor: forall x y, [lor x y] = Z.lor [x] [y].
+ Local Notation landn := (fun n =>
+ let op := dom_op n in
+ let land := ZnZ.land in
+ fun x y => reduce n (land x y)).
+
+ Definition land : t -> t -> t := Eval red_t in same_level landn.
+
+ Lemma land_fold : land = same_level landn.
+ Proof. red_t; reflexivity. Qed.
+
+ Theorem spec_land x y : [land x y] = Z.land [x] [y].
Proof.
- intros x y. unfold lor. rewrite spec_of_N. unfold to_N.
- generalize (spec_pos x), (spec_pos y).
- destruct [x], [y]; trivial; (now destruct 1) || (now destruct 2).
+ rewrite land_fold. apply spec_same_level; clear x y.
+ intros n x y. simpl. rewrite spec_reduce. apply ZnZ.spec_land.
Qed.
- Lemma spec_ldiff: forall x y, [ldiff x y] = Z.ldiff [x] [y].
+ Local Notation lxorn := (fun n =>
+ let op := dom_op n in
+ let lxor := ZnZ.lxor in
+ fun x y => reduce n (lxor x y)).
+
+ Definition lxor : t -> t -> t := Eval red_t in same_level lxorn.
+
+ Lemma lxor_fold : lxor = same_level lxorn.
+ Proof. red_t; reflexivity. Qed.
+
+ Theorem spec_lxor x y : [lxor x y] = Z.lxor [x] [y].
Proof.
- intros x y. unfold ldiff. rewrite spec_of_N. unfold to_N.
- generalize (spec_pos x), (spec_pos y).
- destruct [x], [y]; trivial; (now destruct 1) || (now destruct 2).
+ rewrite lxor_fold. apply spec_same_level; clear x y.
+ intros n x y. simpl. rewrite spec_reduce. apply ZnZ.spec_lxor.
Qed.
- Lemma spec_lxor: forall x y, [lxor x y] = Z.lxor [x] [y].
- Proof.
- intros x y. unfold lxor. rewrite spec_of_N. unfold to_N.
- generalize (spec_pos x), (spec_pos y).
- destruct [x], [y]; trivial; (now destruct 1) || (now destruct 2).
+ Local Notation ldiffn := (fun n =>
+ let op := dom_op n in
+ let lxor := ZnZ.lxor in
+ let land := ZnZ.land in
+ let m1 := ZnZ.minus_one in
+ fun x y => reduce n (land x (lxor y m1))).
+
+ Definition ldiff : t -> t -> t := Eval red_t in same_level ldiffn.
+
+ Lemma ldiff_fold : ldiff = same_level ldiffn.
+ Proof. red_t; reflexivity. Qed.
+
+ Lemma ldiff_alt x y p :
+ 0 <= x < 2^p -> 0 <= y < 2^p ->
+ Z.ldiff x y = Z.land x (Z.lxor y (2^p - 1)).
+ Proof.
+ intros (Hx,Hx') (Hy,Hy').
+ destruct p as [|p|p].
+ - simpl in *; replace x with 0; replace y with 0; auto with zarith.
+ - rewrite <- Z.shiftl_1_l. change (_ - 1) with (Z.ones (Z.pos p)).
+ rewrite <- Z.ldiff_ones_l_low; trivial.
+ rewrite !Z.ldiff_land, Z.land_assoc. f_equal.
+ rewrite Z.land_ones; try easy.
+ symmetry. apply Z.mod_small; now split.
+ Z.le_elim Hy.
+ + now apply Z.log2_lt_pow2.
+ + now subst.
+ - simpl in *; omega.
+ Qed.
+
+ Theorem spec_ldiff x y : [ldiff x y] = Z.ldiff [x] [y].
+ Proof.
+ rewrite ldiff_fold. apply spec_same_level; clear x y.
+ intros n x y. simpl. rewrite spec_reduce.
+ rewrite ZnZ.spec_land, ZnZ.spec_lxor, ZnZ.spec_m1.
+ symmetry. apply ldiff_alt; apply ZnZ.spec_to_Z.
Qed.
End Make.
diff --git a/theories/Numbers/Natural/BigN/NMake_gen.ml b/theories/Numbers/Natural/BigN/NMake_gen.ml
index 9e4e88c5..6de77e0a 100644
--- a/theories/Numbers/Natural/BigN/NMake_gen.ml
+++ b/theories/Numbers/Natural/BigN/NMake_gen.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -138,8 +138,6 @@ pr
pr "";
pr " Definition t := t'.";
pr "";
- pr " Bind Scope abstract_scope with t t'.";
- pr "";
pr " (** * A generic toolbox for building and deconstructing [t] *)";
pr "";
@@ -234,7 +232,7 @@ pr
| S n1 => mk_zn2z_ops (nmake_op ww ww_op n1)
end.
- Let eval n m := ZnZ.to_Z (Ops:=nmake_op _ (dom_op n) m).
+ Definition eval n m := ZnZ.to_Z (Ops:=nmake_op _ (dom_op n) m).
Theorem nmake_op_S: forall ww (w_op: ZnZ.Ops ww) x,
nmake_op _ w_op (S x) = mk_zn2z_ops (nmake_op _ w_op x).
@@ -326,8 +324,13 @@ pr "
Lemma spec_zeron : forall n, ZnZ.to_Z (zeron n) = 0%%Z.
Proof.
- do_size (destruct n; [exact ZnZ.spec_0|]).
- destruct n; auto. simpl. rewrite make_op_S. exact ZnZ.spec_0.
+ do_size (destruct n;
+ [match goal with
+ |- @eq Z (_ (zeron ?n)) _ =>
+ apply (ZnZ.spec_0 (Specs:=dom_spec n))
+ end|]).
+ destruct n; auto. simpl. rewrite make_op_S. fold word.
+ apply (ZnZ.spec_0 (Specs:=wn_spec (SizePlus 0))).
Qed.
(** * Digits *)
@@ -533,7 +536,7 @@ pr "
for i = 0 to size-1 do
let pattern = (iter_str (size+1-i) "(S ") ^ "_" ^ (iter_str (size+1-i) ")") in
pr
-" Let mk_t_%iw m := Eval cbv beta zeta iota delta [ mk_t plus ] in
+" Definition mk_t_%iw m := Eval cbv beta zeta iota delta [ mk_t plus ] in
match m return word w%i (S m) -> t with
| %s as p => mk_t_w %i (S p)
| p => mk_t (%i+p)
@@ -542,7 +545,7 @@ pr
done;
pr
-" Let mk_t_w' n : forall m, word (dom_t n) (S m) -> t :=
+" Definition mk_t_w' n : forall m, word (dom_t n) (S m) -> t :=
match n return (forall m, word (dom_t n) (S m) -> t) with";
for i = 0 to size-1 do pr " | %i => mk_t_%iw" i i done;
pr
@@ -958,6 +961,11 @@ pr " end.";
pr "";
pr " Ltac unfold_red := unfold reduce, %s." (iter_name 1 size "reduce_" ",");
+pr "";
+for i = 0 to size do
+pr " Declare Equivalent Keys reduce reduce_%i." i;
+done;
+pr " Declare Equivalent Keys reduce_n reduce_%i." (size + 1);
pr "
Ltac solve_red :=
diff --git a/theories/Numbers/Natural/BigN/Nbasic.v b/theories/Numbers/Natural/BigN/Nbasic.v
index e545508d..8fe9ea92 100644
--- a/theories/Numbers/Natural/BigN/Nbasic.v
+++ b/theories/Numbers/Natural/BigN/Nbasic.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -320,6 +320,7 @@ Section CompareRec.
Let double_to_Z_pos: forall n x, 0 <= double_to_Z n x < double_wB n :=
(spec_double_to_Z wm_base wm_to_Z wm_to_Z_pos).
+ Declare Equivalent Keys compare0_mn compare0_m.
Lemma spec_compare0_mn: forall n x,
compare0_mn n x = (0 ?= double_to_Z n x).
@@ -371,7 +372,7 @@ Section CompareRec.
intros n (H0, H); split; auto.
apply Z.lt_le_trans with (1:= H).
unfold double_wB, DoubleBase.double_wB; simpl.
- rewrite Pshiftl_nat_S, base_xO.
+ rewrite base_xO.
set (u := base (Pos.shiftl_nat wm_base n)).
assert (0 < u).
unfold u, base; auto with zarith.
diff --git a/theories/Numbers/Natural/Binary/NBinary.v b/theories/Numbers/Natural/Binary/NBinary.v
index f95167ad..d54bedd1 100644
--- a/theories/Numbers/Natural/Binary/NBinary.v
+++ b/theories/Numbers/Natural/Binary/NBinary.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Numbers/Natural/Peano/NPeano.v b/theories/Numbers/Natural/Peano/NPeano.v
index f438df40..96eb7b35 100644
--- a/theories/Numbers/Natural/Peano/NPeano.v
+++ b/theories/Numbers/Natural/Peano/NPeano.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,806 +8,8 @@
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
-Require Import
- Bool Peano Peano_dec Compare_dec Plus Mult Minus Le Lt EqNat Div2 Wf_nat
- NAxioms NProperties.
+Require Import PeanoNat NAxioms.
-(** Functions not already defined *)
+(** * [PeanoNat.Nat] already implements [NAxiomSig] *)
-Fixpoint leb n m :=
- match n, m with
- | O, _ => true
- | _, O => false
- | S n', S m' => leb n' m'
- end.
-
-Definition ltb n m := leb (S n) m.
-
-Infix "<=?" := leb (at level 70) : nat_scope.
-Infix "<?" := ltb (at level 70) : nat_scope.
-
-Lemma leb_le n m : (n <=? m) = true <-> n <= m.
-Proof.
- revert m.
- induction n. split; auto with arith.
- destruct m; simpl. now split.
- rewrite IHn. split; auto with arith.
-Qed.
-
-Lemma ltb_lt n m : (n <? m) = true <-> n < m.
-Proof.
- unfold ltb, lt. apply leb_le.
-Qed.
-
-Fixpoint pow n m :=
- match m with
- | O => 1
- | S m => n * (pow n m)
- end.
-
-Infix "^" := pow : nat_scope.
-
-Lemma pow_0_r : forall a, a^0 = 1.
-Proof. reflexivity. Qed.
-
-Lemma pow_succ_r : forall a b, 0<=b -> a^(S b) = a * a^b.
-Proof. reflexivity. Qed.
-
-Definition square n := n * n.
-
-Lemma square_spec n : square n = n * n.
-Proof. reflexivity. Qed.
-
-Definition Even n := exists m, n = 2*m.
-Definition Odd n := exists m, n = 2*m+1.
-
-Fixpoint even n :=
- match n with
- | O => true
- | 1 => false
- | S (S n') => even n'
- end.
-
-Definition odd n := negb (even n).
-
-Lemma even_spec : forall n, even n = true <-> Even n.
-Proof.
- fix 1.
- destruct n as [|[|n]]; simpl; try rewrite even_spec; split.
- now exists 0.
- trivial.
- discriminate.
- intros (m,H). destruct m. discriminate.
- simpl in H. rewrite <- plus_n_Sm in H. discriminate.
- intros (m,H). exists (S m). rewrite H. simpl. now rewrite plus_n_Sm.
- intros (m,H). destruct m. discriminate. exists m.
- simpl in H. rewrite <- plus_n_Sm in H. inversion H. reflexivity.
-Qed.
-
-Lemma odd_spec : forall n, odd n = true <-> Odd n.
-Proof.
- unfold odd.
- fix 1.
- destruct n as [|[|n]]; simpl; try rewrite odd_spec; split.
- discriminate.
- intros (m,H). rewrite <- plus_n_Sm in H; discriminate.
- now exists 0.
- trivial.
- intros (m,H). exists (S m). rewrite H. simpl. now rewrite <- (plus_n_Sm m).
- intros (m,H). destruct m. discriminate. exists m.
- simpl in H. rewrite <- plus_n_Sm in H. inversion H. simpl.
- now rewrite <- !plus_n_Sm, <- !plus_n_O.
-Qed.
-
-Lemma Even_equiv : forall n, Even n <-> Even.even n.
-Proof.
- split. intros (p,->). apply Even.even_mult_l. do 3 constructor.
- intros H. destruct (even_2n n H) as (p,->).
- exists p. unfold double. simpl. now rewrite <- plus_n_O.
-Qed.
-
-Lemma Odd_equiv : forall n, Odd n <-> Even.odd n.
-Proof.
- split. intros (p,->). rewrite <- plus_n_Sm, <- plus_n_O.
- apply Even.odd_S. apply Even.even_mult_l. do 3 constructor.
- intros H. destruct (odd_S2n n H) as (p,->).
- exists p. unfold double. simpl. now rewrite <- plus_n_Sm, <- !plus_n_O.
-Qed.
-
-(* A linear, tail-recursive, division for nat.
-
- In [divmod], [y] is the predecessor of the actual divisor,
- and [u] is [y] minus the real remainder
-*)
-
-Fixpoint divmod x y q u :=
- match x with
- | 0 => (q,u)
- | S x' => match u with
- | 0 => divmod x' y (S q) y
- | S u' => divmod x' y q u'
- end
- end.
-
-Definition div x y :=
- match y with
- | 0 => y
- | S y' => fst (divmod x y' 0 y')
- end.
-
-Definition modulo x y :=
- match y with
- | 0 => y
- | S y' => y' - snd (divmod x y' 0 y')
- end.
-
-Infix "/" := div : nat_scope.
-Infix "mod" := modulo (at level 40, no associativity) : nat_scope.
-
-Lemma divmod_spec : forall x y q u, u <= y ->
- let (q',u') := divmod x y q u in
- x + (S y)*q + (y-u) = (S y)*q' + (y-u') /\ u' <= y.
-Proof.
- induction x. simpl. intuition.
- intros y q u H. destruct u; simpl divmod.
- generalize (IHx y (S q) y (le_n y)). destruct divmod as (q',u').
- intros (EQ,LE); split; trivial.
- rewrite <- EQ, <- minus_n_O, minus_diag, <- plus_n_O.
- now rewrite !plus_Sn_m, plus_n_Sm, <- plus_assoc, mult_n_Sm.
- generalize (IHx y q u (le_Sn_le _ _ H)). destruct divmod as (q',u').
- intros (EQ,LE); split; trivial.
- rewrite <- EQ.
- rewrite !plus_Sn_m, plus_n_Sm. f_equal. now apply minus_Sn_m.
-Qed.
-
-Lemma div_mod : forall x y, y<>0 -> x = y*(x/y) + x mod y.
-Proof.
- intros x y Hy.
- destruct y; [ now elim Hy | clear Hy ].
- unfold div, modulo.
- generalize (divmod_spec x y 0 y (le_n y)).
- destruct divmod as (q,u).
- intros (U,V).
- simpl in *.
- now rewrite <- mult_n_O, minus_diag, <- !plus_n_O in U.
-Qed.
-
-Lemma mod_bound_pos : forall x y, 0<=x -> 0<y -> 0 <= x mod y < y.
-Proof.
- intros x y Hx Hy. split. auto with arith.
- destruct y; [ now elim Hy | clear Hy ].
- unfold modulo.
- apply le_n_S, le_minus.
-Qed.
-
-(** Square root *)
-
-(** The following square root function is linear (and tail-recursive).
- With Peano representation, we can't do better. For faster algorithm,
- see Psqrt/Zsqrt/Nsqrt...
-
- We search the square root of n = k + p^2 + (q - r)
- with q = 2p and 0<=r<=q. We start with p=q=r=0, hence
- looking for the square root of n = k. Then we progressively
- decrease k and r. When k = S k' and r=0, it means we can use (S p)
- as new sqrt candidate, since (S k')+p^2+2p = k'+(S p)^2.
- When k reaches 0, we have found the biggest p^2 square contained
- in n, hence the square root of n is p.
-*)
-
-Fixpoint sqrt_iter k p q r :=
- match k with
- | O => p
- | S k' => match r with
- | O => sqrt_iter k' (S p) (S (S q)) (S (S q))
- | S r' => sqrt_iter k' p q r'
- end
- end.
-
-Definition sqrt n := sqrt_iter n 0 0 0.
-
-Lemma sqrt_iter_spec : forall k p q r,
- q = p+p -> r<=q ->
- let s := sqrt_iter k p q r in
- s*s <= k + p*p + (q - r) < (S s)*(S s).
-Proof.
- induction k.
- (* k = 0 *)
- simpl; intros p q r Hq Hr.
- split.
- apply le_plus_l.
- apply le_lt_n_Sm.
- rewrite <- mult_n_Sm.
- rewrite plus_assoc, (plus_comm p), <- plus_assoc.
- apply plus_le_compat; trivial.
- rewrite <- Hq. apply le_minus.
- (* k = S k' *)
- destruct r.
- (* r = 0 *)
- intros Hq _.
- replace (S k + p*p + (q-0)) with (k + (S p)*(S p) + (S (S q) - S (S q))).
- apply IHk.
- simpl. rewrite <- plus_n_Sm. congruence.
- auto with arith.
- rewrite minus_diag, <- minus_n_O, <- plus_n_O. simpl.
- rewrite <- plus_n_Sm; f_equal. rewrite <- plus_assoc; f_equal.
- rewrite <- mult_n_Sm, (plus_comm p), <- plus_assoc. congruence.
- (* r = S r' *)
- intros Hq Hr.
- replace (S k + p*p + (q-S r)) with (k + p*p + (q - r)).
- apply IHk; auto with arith.
- simpl. rewrite plus_n_Sm. f_equal. rewrite minus_Sn_m; auto.
-Qed.
-
-Lemma sqrt_spec : forall n,
- (sqrt n)*(sqrt n) <= n < S (sqrt n) * S (sqrt n).
-Proof.
- intros.
- set (s:=sqrt n).
- replace n with (n + 0*0 + (0-0)).
- apply sqrt_iter_spec; auto.
- simpl. now rewrite <- 2 plus_n_O.
-Qed.
-
-(** A linear tail-recursive base-2 logarithm
-
- In [log2_iter], we maintain the logarithm [p] of the counter [q],
- while [r] is the distance between [q] and the next power of 2,
- more precisely [q + S r = 2^(S p)] and [r<2^p]. At each
- recursive call, [q] goes up while [r] goes down. When [r]
- is 0, we know that [q] has almost reached a power of 2,
- and we increase [p] at the next call, while resetting [r]
- to [q].
-
- Graphically (numbers are [q], stars are [r]) :
-
-<<
- 10
- 9
- 8
- 7 *
- 6 *
- 5 ...
- 4
- 3 *
- 2 *
- 1 * *
-0 * * *
->>
-
- We stop when [k], the global downward counter reaches 0.
- At that moment, [q] is the number we're considering (since
- [k+q] is invariant), and [p] its logarithm.
-*)
-
-Fixpoint log2_iter k p q r :=
- match k with
- | O => p
- | S k' => match r with
- | O => log2_iter k' (S p) (S q) q
- | S r' => log2_iter k' p (S q) r'
- end
- end.
-
-Definition log2 n := log2_iter (pred n) 0 1 0.
-
-Lemma log2_iter_spec : forall k p q r,
- 2^(S p) = q + S r -> r < 2^p ->
- let s := log2_iter k p q r in
- 2^s <= k + q < 2^(S s).
-Proof.
- induction k.
- (* k = 0 *)
- intros p q r EQ LT. simpl log2_iter. cbv zeta.
- split.
- rewrite plus_O_n.
- apply plus_le_reg_l with (2^p).
- simpl pow in EQ. rewrite <- plus_n_O in EQ. rewrite EQ.
- rewrite plus_comm. apply plus_le_compat_r. now apply lt_le_S.
- rewrite EQ, plus_comm. apply plus_lt_compat_l. apply lt_0_Sn.
- (* k = S k' *)
- intros p q r EQ LT. destruct r.
- (* r = 0 *)
- rewrite <- plus_n_Sm, <- plus_n_O in EQ.
- rewrite plus_Sn_m, plus_n_Sm. apply IHk.
- rewrite <- EQ. remember (S p) as p'; simpl. now rewrite <- plus_n_O.
- unfold lt. now rewrite EQ.
- (* r = S r' *)
- rewrite plus_Sn_m, plus_n_Sm. apply IHk.
- now rewrite plus_Sn_m, plus_n_Sm.
- unfold lt.
- now apply lt_le_weak.
-Qed.
-
-Lemma log2_spec : forall n, 0<n ->
- 2^(log2 n) <= n < 2^(S (log2 n)).
-Proof.
- intros.
- set (s:=log2 n).
- replace n with (pred n + 1).
- apply log2_iter_spec; auto.
- rewrite <- plus_n_Sm, <- plus_n_O.
- symmetry. now apply S_pred with 0.
-Qed.
-
-Lemma log2_nonpos : forall n, n<=0 -> log2 n = 0.
-Proof.
- inversion 1; now subst.
-Qed.
-
-(** * Gcd *)
-
-(** We use Euclid algorithm, which is normally not structural,
- but Coq is now clever enough to accept this (behind modulo
- there is a subtraction, which now preserves being a subterm)
-*)
-
-Fixpoint gcd a b :=
- match a with
- | O => b
- | S a' => gcd (b mod (S a')) (S a')
- end.
-
-Definition divide x y := exists z, y=z*x.
-Notation "( x | y )" := (divide x y) (at level 0) : nat_scope.
-
-Lemma gcd_divide : forall a b, (gcd a b | a) /\ (gcd a b | b).
-Proof.
- fix 1.
- intros [|a] b; simpl.
- split.
- now exists 0.
- exists 1. simpl. now rewrite <- plus_n_O.
- fold (b mod (S a)).
- destruct (gcd_divide (b mod (S a)) (S a)) as (H,H').
- set (a':=S a) in *.
- split; auto.
- rewrite (div_mod b a') at 2 by discriminate.
- destruct H as (u,Hu), H' as (v,Hv).
- rewrite mult_comm.
- exists ((b/a')*v + u).
- rewrite mult_plus_distr_r.
- now rewrite <- mult_assoc, <- Hv, <- Hu.
-Qed.
-
-Lemma gcd_divide_l : forall a b, (gcd a b | a).
-Proof.
- intros. apply gcd_divide.
-Qed.
-
-Lemma gcd_divide_r : forall a b, (gcd a b | b).
-Proof.
- intros. apply gcd_divide.
-Qed.
-
-Lemma gcd_greatest : forall a b c, (c|a) -> (c|b) -> (c|gcd a b).
-Proof.
- fix 1.
- intros [|a] b; simpl; auto.
- fold (b mod (S a)).
- intros c H H'. apply gcd_greatest; auto.
- set (a':=S a) in *.
- rewrite (div_mod b a') in H' by discriminate.
- destruct H as (u,Hu), H' as (v,Hv).
- exists (v - (b/a')*u).
- rewrite mult_comm in Hv.
- now rewrite mult_minus_distr_r, <- Hv, <-mult_assoc, <-Hu, minus_plus.
-Qed.
-
-(** * Bitwise operations *)
-
-(** We provide here some bitwise operations for unary numbers.
- Some might be really naive, they are just there for fullfiling
- the same interface as other for natural representations. As
- soon as binary representations such as NArith are available,
- it is clearly better to convert to/from them and use their ops.
-*)
-
-Fixpoint testbit a n :=
- match n with
- | O => odd a
- | S n => testbit (div2 a) n
- end.
-
-Definition shiftl a n := iter_nat n _ double a.
-Definition shiftr a n := iter_nat n _ div2 a.
-
-Fixpoint bitwise (op:bool->bool->bool) n a b :=
- match n with
- | O => O
- | S n' =>
- (if op (odd a) (odd b) then 1 else 0) +
- 2*(bitwise op n' (div2 a) (div2 b))
- end.
-
-Definition land a b := bitwise andb a a b.
-Definition lor a b := bitwise orb (max a b) a b.
-Definition ldiff a b := bitwise (fun b b' => b && negb b') a a b.
-Definition lxor a b := bitwise xorb (max a b) a b.
-
-Lemma double_twice : forall n, double n = 2*n.
-Proof.
- simpl; intros. now rewrite <- plus_n_O.
-Qed.
-
-Lemma testbit_0_l : forall n, testbit 0 n = false.
-Proof.
- now induction n.
-Qed.
-
-Lemma testbit_odd_0 a : testbit (2*a+1) 0 = true.
-Proof.
- unfold testbit. rewrite odd_spec. now exists a.
-Qed.
-
-Lemma testbit_even_0 a : testbit (2*a) 0 = false.
-Proof.
- unfold testbit, odd. rewrite (proj2 (even_spec _)); trivial.
- now exists a.
-Qed.
-
-Lemma testbit_odd_succ a n : testbit (2*a+1) (S n) = testbit a n.
-Proof.
- unfold testbit; fold testbit.
- rewrite <- plus_n_Sm, <- plus_n_O. f_equal.
- apply div2_double_plus_one.
-Qed.
-
-Lemma testbit_even_succ a n : testbit (2*a) (S n) = testbit a n.
-Proof.
- unfold testbit; fold testbit. f_equal. apply div2_double.
-Qed.
-
-Lemma shiftr_spec : forall a n m,
- testbit (shiftr a n) m = testbit a (m+n).
-Proof.
- induction n; intros m. trivial.
- now rewrite <- plus_n_O.
- now rewrite <- plus_n_Sm, <- plus_Sn_m, <- IHn.
-Qed.
-
-Lemma shiftl_spec_high : forall a n m, n<=m ->
- testbit (shiftl a n) m = testbit a (m-n).
-Proof.
- induction n; intros m H. trivial.
- now rewrite <- minus_n_O.
- destruct m. inversion H.
- simpl. apply le_S_n in H.
- change (shiftl a (S n)) with (double (shiftl a n)).
- rewrite double_twice, div2_double. now apply IHn.
-Qed.
-
-Lemma shiftl_spec_low : forall a n m, m<n ->
- testbit (shiftl a n) m = false.
-Proof.
- induction n; intros m H. inversion H.
- change (shiftl a (S n)) with (double (shiftl a n)).
- destruct m; simpl.
- unfold odd. apply negb_false_iff.
- apply even_spec. exists (shiftl a n). apply double_twice.
- rewrite double_twice, div2_double. apply IHn.
- now apply lt_S_n.
-Qed.
-
-Lemma div2_bitwise : forall op n a b,
- div2 (bitwise op (S n) a b) = bitwise op n (div2 a) (div2 b).
-Proof.
- intros. unfold bitwise; fold bitwise.
- destruct (op (odd a) (odd b)).
- now rewrite div2_double_plus_one.
- now rewrite plus_O_n, div2_double.
-Qed.
-
-Lemma odd_bitwise : forall op n a b,
- odd (bitwise op (S n) a b) = op (odd a) (odd b).
-Proof.
- intros. unfold bitwise; fold bitwise.
- destruct (op (odd a) (odd b)).
- apply odd_spec. rewrite plus_comm. eexists; eauto.
- unfold odd. apply negb_false_iff. apply even_spec.
- rewrite plus_O_n; eexists; eauto.
-Qed.
-
-Lemma div2_decr : forall a n, a <= S n -> div2 a <= n.
-Proof.
- destruct a; intros. apply le_0_n.
- apply le_trans with a.
- apply lt_n_Sm_le, lt_div2, lt_0_Sn. now apply le_S_n.
-Qed.
-
-Lemma testbit_bitwise_1 : forall op, (forall b, op false b = false) ->
- forall n m a b, a<=n ->
- testbit (bitwise op n a b) m = op (testbit a m) (testbit b m).
-Proof.
- intros op Hop.
- induction n; intros m a b Ha.
- simpl. inversion Ha; subst. now rewrite testbit_0_l.
- destruct m.
- apply odd_bitwise.
- unfold testbit; fold testbit. rewrite div2_bitwise.
- apply IHn; now apply div2_decr.
-Qed.
-
-Lemma testbit_bitwise_2 : forall op, op false false = false ->
- forall n m a b, a<=n -> b<=n ->
- testbit (bitwise op n a b) m = op (testbit a m) (testbit b m).
-Proof.
- intros op Hop.
- induction n; intros m a b Ha Hb.
- simpl. inversion Ha; inversion Hb; subst. now rewrite testbit_0_l.
- destruct m.
- apply odd_bitwise.
- unfold testbit; fold testbit. rewrite div2_bitwise.
- apply IHn; now apply div2_decr.
-Qed.
-
-Lemma land_spec : forall a b n,
- testbit (land a b) n = testbit a n && testbit b n.
-Proof.
- intros. unfold land. apply testbit_bitwise_1; trivial.
-Qed.
-
-Lemma ldiff_spec : forall a b n,
- testbit (ldiff a b) n = testbit a n && negb (testbit b n).
-Proof.
- intros. unfold ldiff. apply testbit_bitwise_1; trivial.
-Qed.
-
-Lemma lor_spec : forall a b n,
- testbit (lor a b) n = testbit a n || testbit b n.
-Proof.
- intros. unfold lor. apply testbit_bitwise_2. trivial.
- destruct (le_ge_dec a b). now rewrite max_r. now rewrite max_l.
- destruct (le_ge_dec a b). now rewrite max_r. now rewrite max_l.
-Qed.
-
-Lemma lxor_spec : forall a b n,
- testbit (lxor a b) n = xorb (testbit a n) (testbit b n).
-Proof.
- intros. unfold lxor. apply testbit_bitwise_2. trivial.
- destruct (le_ge_dec a b). now rewrite max_r. now rewrite max_l.
- destruct (le_ge_dec a b). now rewrite max_r. now rewrite max_l.
-Qed.
-
-(** * Implementation of [NAxiomsSig] by [nat] *)
-
-Module Nat
- <: NAxiomsSig <: UsualDecidableTypeFull <: OrderedTypeFull <: TotalOrder.
-
-(** Bi-directional induction. *)
-
-Theorem bi_induction :
- forall A : nat -> Prop, Proper (eq==>iff) A ->
- A 0 -> (forall n : nat, A n <-> A (S n)) -> forall n : nat, A n.
-Proof.
-intros A A_wd A0 AS. apply nat_ind. assumption. intros; now apply -> AS.
-Qed.
-
-(** Basic operations. *)
-
-Definition eq_equiv : Equivalence (@eq nat) := eq_equivalence.
-Local Obligation Tactic := simpl_relation.
-Program Instance succ_wd : Proper (eq==>eq) S.
-Program Instance pred_wd : Proper (eq==>eq) pred.
-Program Instance add_wd : Proper (eq==>eq==>eq) plus.
-Program Instance sub_wd : Proper (eq==>eq==>eq) minus.
-Program Instance mul_wd : Proper (eq==>eq==>eq) mult.
-
-Theorem pred_succ : forall n : nat, pred (S n) = n.
-Proof.
-reflexivity.
-Qed.
-
-Theorem one_succ : 1 = S 0.
-Proof.
-reflexivity.
-Qed.
-
-Theorem two_succ : 2 = S 1.
-Proof.
-reflexivity.
-Qed.
-
-Theorem add_0_l : forall n : nat, 0 + n = n.
-Proof.
-reflexivity.
-Qed.
-
-Theorem add_succ_l : forall n m : nat, (S n) + m = S (n + m).
-Proof.
-reflexivity.
-Qed.
-
-Theorem sub_0_r : forall n : nat, n - 0 = n.
-Proof.
-intro n; now destruct n.
-Qed.
-
-Theorem sub_succ_r : forall n m : nat, n - (S m) = pred (n - m).
-Proof.
-induction n; destruct m; simpl; auto. apply sub_0_r.
-Qed.
-
-Theorem mul_0_l : forall n : nat, 0 * n = 0.
-Proof.
-reflexivity.
-Qed.
-
-Theorem mul_succ_l : forall n m : nat, S n * m = n * m + m.
-Proof.
-assert (add_S_r : forall n m, n+S m = S(n+m)) by (induction n; auto).
-assert (add_comm : forall n m, n+m = m+n).
- induction n; simpl; auto. intros; rewrite add_S_r; auto.
-intros n m; now rewrite add_comm.
-Qed.
-
-(** Order on natural numbers *)
-
-Program Instance lt_wd : Proper (eq==>eq==>iff) lt.
-
-Theorem lt_succ_r : forall n m : nat, n < S m <-> n <= m.
-Proof.
-unfold lt; split. apply le_S_n. induction 1; auto.
-Qed.
-
-
-Theorem lt_eq_cases : forall n m : nat, n <= m <-> n < m \/ n = m.
-Proof.
-split.
-inversion 1; auto. rewrite lt_succ_r; auto.
-destruct 1; [|subst; auto]. rewrite <- lt_succ_r; auto.
-Qed.
-
-Theorem lt_irrefl : forall n : nat, ~ (n < n).
-Proof.
-induction n. intro H; inversion H. rewrite lt_succ_r; auto.
-Qed.
-
-(** Facts specific to natural numbers, not integers. *)
-
-Theorem pred_0 : pred 0 = 0.
-Proof.
-reflexivity.
-Qed.
-
-(** Recursion fonction *)
-
-Definition recursion {A} : A -> (nat -> A -> A) -> nat -> A :=
- nat_rect (fun _ => A).
-
-Instance recursion_wd {A} (Aeq : relation A) :
- Proper (Aeq ==> (eq==>Aeq==>Aeq) ==> eq ==> Aeq) recursion.
-Proof.
-intros a a' Ha f f' Hf n n' Hn. subst n'.
-induction n; simpl; auto. apply Hf; auto.
-Qed.
-
-Theorem recursion_0 :
- forall {A} (a : A) (f : nat -> A -> A), recursion a f 0 = a.
-Proof.
-reflexivity.
-Qed.
-
-Theorem recursion_succ :
- forall {A} (Aeq : relation A) (a : A) (f : nat -> A -> A),
- Aeq a a -> Proper (eq==>Aeq==>Aeq) f ->
- forall n : nat, Aeq (recursion a f (S n)) (f n (recursion a f n)).
-Proof.
-unfold Proper, respectful in *; induction n; simpl; auto.
-Qed.
-
-(** The instantiation of operations.
- Placing them at the very end avoids having indirections in above lemmas. *)
-
-Definition t := nat.
-Definition eq := @eq nat.
-Definition eqb := beq_nat.
-Definition compare := nat_compare.
-Definition zero := 0.
-Definition one := 1.
-Definition two := 2.
-Definition succ := S.
-Definition pred := pred.
-Definition add := plus.
-Definition sub := minus.
-Definition mul := mult.
-Definition lt := lt.
-Definition le := le.
-Definition ltb := ltb.
-Definition leb := leb.
-
-Definition min := min.
-Definition max := max.
-Definition max_l := max_l.
-Definition max_r := max_r.
-Definition min_l := min_l.
-Definition min_r := min_r.
-
-Definition eqb_eq := beq_nat_true_iff.
-Definition compare_spec := nat_compare_spec.
-Definition eq_dec := eq_nat_dec.
-Definition leb_le := leb_le.
-Definition ltb_lt := ltb_lt.
-
-Definition Even := Even.
-Definition Odd := Odd.
-Definition even := even.
-Definition odd := odd.
-Definition even_spec := even_spec.
-Definition odd_spec := odd_spec.
-
-Program Instance pow_wd : Proper (eq==>eq==>eq) pow.
-Definition pow_0_r := pow_0_r.
-Definition pow_succ_r := pow_succ_r.
-Lemma pow_neg_r : forall a b, b<0 -> a^b = 0. inversion 1. Qed.
-Definition pow := pow.
-
-Definition square := square.
-Definition square_spec := square_spec.
-
-Definition log2_spec := log2_spec.
-Definition log2_nonpos := log2_nonpos.
-Definition log2 := log2.
-
-Definition sqrt_spec a (Ha:0<=a) := sqrt_spec a.
-Lemma sqrt_neg : forall a, a<0 -> sqrt a = 0. inversion 1. Qed.
-Definition sqrt := sqrt.
-
-Definition div := div.
-Definition modulo := modulo.
-Program Instance div_wd : Proper (eq==>eq==>eq) div.
-Program Instance mod_wd : Proper (eq==>eq==>eq) modulo.
-Definition div_mod := div_mod.
-Definition mod_bound_pos := mod_bound_pos.
-
-Definition divide := divide.
-Definition gcd := gcd.
-Definition gcd_divide_l := gcd_divide_l.
-Definition gcd_divide_r := gcd_divide_r.
-Definition gcd_greatest := gcd_greatest.
-Lemma gcd_nonneg : forall a b, 0<=gcd a b.
-Proof. intros. apply le_O_n. Qed.
-
-Definition testbit := testbit.
-Definition shiftl := shiftl.
-Definition shiftr := shiftr.
-Definition lxor := lxor.
-Definition land := land.
-Definition lor := lor.
-Definition ldiff := ldiff.
-Definition div2 := div2.
-
-Program Instance testbit_wd : Proper (eq==>eq==>Logic.eq) testbit.
-Definition testbit_odd_0 := testbit_odd_0.
-Definition testbit_even_0 := testbit_even_0.
-Definition testbit_odd_succ a n (_:0<=n) := testbit_odd_succ a n.
-Definition testbit_even_succ a n (_:0<=n) := testbit_even_succ a n.
-Lemma testbit_neg_r a n (H:n<0) : testbit a n = false.
-Proof. inversion H. Qed.
-Definition shiftl_spec_low := shiftl_spec_low.
-Definition shiftl_spec_high a n m (_:0<=m) := shiftl_spec_high a n m.
-Definition shiftr_spec a n m (_:0<=m) := shiftr_spec a n m.
-Definition lxor_spec := lxor_spec.
-Definition land_spec := land_spec.
-Definition lor_spec := lor_spec.
-Definition ldiff_spec := ldiff_spec.
-Definition div2_spec a : div2 a = shiftr a 1 := eq_refl _.
-
-(** Generic Properties *)
-
-Include NProp
- <+ UsualMinMaxLogicalProperties <+ UsualMinMaxDecProperties.
-
-End Nat.
-
-(** [Nat] contains an [order] tactic for natural numbers *)
-
-(** Note that [Nat.order] is domain-agnostic: it will not prove
- [1<=2] or [x<=x+x], but rather things like [x<=y -> y<=x -> x=y]. *)
-
-Section TestOrder.
- Let test : forall x y, x<=y -> y<=x -> x=y.
- Proof.
- Nat.order.
- Qed.
-End TestOrder.
+Module Nat <: NAxiomsSig := Nat.
diff --git a/theories/Numbers/Natural/SpecViaZ/NSig.v b/theories/Numbers/Natural/SpecViaZ/NSig.v
index 2b52bffe..1049c156 100644
--- a/theories/Numbers/Natural/SpecViaZ/NSig.v
+++ b/theories/Numbers/Natural/SpecViaZ/NSig.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v b/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v
index e22627e8..11569b3f 100644
--- a/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v
+++ b/theories/Numbers/Natural/SpecViaZ/NSigNAxioms.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)