diff options
Diffstat (limited to 'theories/Numbers/Natural/BigN/NMake_gen.ml')
-rw-r--r-- | theories/Numbers/Natural/BigN/NMake_gen.ml | 3166 |
1 files changed, 3166 insertions, 0 deletions
diff --git a/theories/Numbers/Natural/BigN/NMake_gen.ml b/theories/Numbers/Natural/BigN/NMake_gen.ml new file mode 100644 index 00000000..bd0fb5b1 --- /dev/null +++ b/theories/Numbers/Natural/BigN/NMake_gen.ml @@ -0,0 +1,3166 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) +(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *) +(************************************************************************) + +(*i $Id: NMake_gen.ml 11136 2008-06-18 10:41:34Z herbelin $ i*) + +(*S NMake_gen.ml : this file generates NMake.v *) + + +(*s The two parameters that control the generation: *) + +let size = 6 (* how many times should we repeat the Z/nZ --> Z/2nZ + process before relying on a generic construct *) +let gen_proof = true (* should we generate proofs ? *) + + +(*s Some utilities *) + +let t = "t" +let c = "N" +let pz n = if n == 0 then "w_0" else "W0" +let rec gen2 n = if n == 0 then "1" else if n == 1 then "2" + else "2 * " ^ (gen2 (n - 1)) +let rec genxO n s = + if n == 0 then s else " (xO" ^ (genxO (n - 1) s) ^ ")" + +(* NB: in ocaml >= 3.10, we could use Printf.ifprintf for printing to + /dev/null, but for being compatible with earlier ocaml and not + relying on system-dependent stuff like open_out "/dev/null", + let's use instead a magical hack *) + +(* Standard printer, with a final newline *) +let pr s = Printf.printf (s^^"\n") +(* Printing to /dev/null *) +let pn = (fun s -> Obj.magic (fun _ _ _ _ _ _ _ _ _ _ _ _ _ _ -> ()) + : ('a, out_channel, unit) format -> 'a) +(* Proof printer : prints iff gen_proof is true *) +let pp = if gen_proof then pr else pn +(* Printer for admitted parts : prints iff gen_proof is false *) +let pa = if not gen_proof then pr else pn +(* Same as before, but without the final newline *) +let pr0 = Printf.printf +let pp0 = if gen_proof then pr0 else pn + + +(*s The actual printing *) + +let _ = + + pr "(************************************************************************)"; + pr "(* v * The Coq Proof Assistant / The Coq Development Team *)"; + pr "(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)"; + pr "(* \\VV/ **************************************************************)"; + pr "(* // * This file is distributed under the terms of the *)"; + pr "(* * GNU Lesser General Public License Version 2.1 *)"; + pr "(************************************************************************)"; + pr "(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)"; + pr "(************************************************************************)"; + pr ""; + pr "(** * NMake *)"; + pr ""; + pr "(** From a cyclic Z/nZ representation to arbitrary precision natural numbers.*)"; + pr ""; + pr "(** Remark: File automatically generated by NMake_gen.ml, DO NOT EDIT ! *)"; + pr ""; + pr "Require Import BigNumPrelude."; + pr "Require Import ZArith."; + pr "Require Import CyclicAxioms."; + pr "Require Import DoubleType."; + pr "Require Import DoubleMul."; + pr "Require Import DoubleDivn1."; + pr "Require Import DoubleCyclic."; + pr "Require Import Nbasic."; + pr "Require Import Wf_nat."; + pr "Require Import StreamMemo."; + pr "Require Import NSig."; + pr ""; + pr "Module Make (Import W0:CyclicType) <: NType."; + pr ""; + + pr " Definition w0 := W0.w."; + for i = 1 to size do + pr " Definition w%i := zn2z w%i." i (i-1) + done; + pr ""; + + pr " Definition w0_op := W0.w_op."; + for i = 1 to 3 do + pr " Definition w%i_op := mk_zn2z_op w%i_op." i (i-1) + done; + for i = 4 to size + 3 do + pr " Definition w%i_op := mk_zn2z_op_karatsuba w%i_op." i (i-1) + done; + pr ""; + + pr " Section Make_op."; + pr " Variable mk : forall w', znz_op w' -> znz_op (zn2z w')."; + pr ""; + pr " Fixpoint make_op_aux (n:nat) : znz_op (word w%i (S n)):=" size; + pr " match n return znz_op (word w%i (S n)) with" size; + pr " | O => w%i_op" (size+1); + pr " | S n1 =>"; + pr " match n1 return znz_op (word w%i (S (S n1))) with" size; + pr " | O => w%i_op" (size+2); + pr " | S n2 =>"; + pr " match n2 return znz_op (word w%i (S (S (S n2)))) with" size; + pr " | O => w%i_op" (size+3); + pr " | S n3 => mk _ (mk _ (mk _ (make_op_aux n3)))"; + pr " end"; + pr " end"; + pr " end."; + pr ""; + pr " End Make_op."; + pr ""; + pr " Definition omake_op := make_op_aux mk_zn2z_op_karatsuba."; + pr ""; + pr ""; + pr " Definition make_op_list := dmemo_list _ omake_op."; + pr ""; + pr " Definition make_op n := dmemo_get _ omake_op n make_op_list."; + pr ""; + pr " Lemma make_op_omake: forall n, make_op n = omake_op n."; + pr " intros n; unfold make_op, make_op_list."; + pr " refine (dmemo_get_correct _ _ _)."; + pr " Qed."; + pr ""; + + pr " Inductive %s_ :=" t; + for i = 0 to size do + pr " | %s%i : w%i -> %s_" c i i t + done; + pr " | %sn : forall n, word w%i (S n) -> %s_." c size t; + pr ""; + pr " Definition %s := %s_." t t; + pr ""; + + pr " Definition w_0 := w0_op.(znz_0)."; + pr ""; + + for i = 0 to size do + pr " Definition one%i := w%i_op.(znz_1)." i i + done; + pr ""; + + + pr " Definition zero := %s0 w_0." c; + pr " Definition one := %s0 one0." c; + pr ""; + + pr " Definition to_Z x :="; + pr " match x with"; + for i = 0 to size do + pr " | %s%i wx => w%i_op.(znz_to_Z) wx" c i i + done; + pr " | %sn n wx => (make_op n).(znz_to_Z) wx" c; + pr " end."; + pr ""; + + pr " Open Scope Z_scope."; + pr " Notation \"[ x ]\" := (to_Z x)."; + pr ""; + + pr " Definition to_N x := Zabs_N (to_Z x)."; + pr ""; + + pr " Definition eq x y := (to_Z x = to_Z y)."; + pr ""; + + pp " (* Regular make op (no karatsuba) *)"; + pp " Fixpoint nmake_op (ww:Type) (ww_op: znz_op ww) (n: nat) : "; + pp " znz_op (word ww n) :="; + pp " match n return znz_op (word ww n) with "; + pp " O => ww_op"; + pp " | S n1 => mk_zn2z_op (nmake_op ww ww_op n1) "; + pp " end."; + pp ""; + pp " (* Simplification by rewriting for nmake_op *)"; + pp " Theorem nmake_op_S: forall ww (w_op: znz_op ww) x, "; + pp " nmake_op _ w_op (S x) = mk_zn2z_op (nmake_op _ w_op x)."; + pp " auto."; + pp " Qed."; + pp ""; + + + pr " (* Eval and extend functions for each level *)"; + for i = 0 to size do + pp " Let nmake_op%i := nmake_op _ w%i_op." i i; + pp " Let eval%in n := znz_to_Z (nmake_op%i n)." i i; + if i == 0 then + pr " Let extend%i := DoubleBase.extend (WW w_0)." i + else + pr " Let extend%i := DoubleBase.extend (WW (W0: w%i))." i i; + done; + pr ""; + + + pp " Theorem digits_doubled:forall n ww (w_op: znz_op ww), "; + pp " znz_digits (nmake_op _ w_op n) = "; + pp " DoubleBase.double_digits (znz_digits w_op) n."; + pp " Proof."; + pp " intros n; elim n; auto; clear n."; + pp " intros n Hrec ww ww_op; simpl DoubleBase.double_digits."; + pp " rewrite <- Hrec; auto."; + pp " Qed."; + pp ""; + pp " Theorem nmake_double: forall n ww (w_op: znz_op ww), "; + pp " znz_to_Z (nmake_op _ w_op n) ="; + pp " @DoubleBase.double_to_Z _ (znz_digits w_op) (znz_to_Z w_op) n."; + pp " Proof."; + pp " intros n; elim n; auto; clear n."; + pp " intros n Hrec ww ww_op; simpl DoubleBase.double_to_Z; unfold zn2z_to_Z."; + pp " rewrite <- Hrec; auto."; + pp " unfold DoubleBase.double_wB; rewrite <- digits_doubled; auto."; + pp " Qed."; + pp ""; + + + pp " Theorem digits_nmake:forall n ww (w_op: znz_op ww), "; + pp " znz_digits (nmake_op _ w_op (S n)) = "; + pp " xO (znz_digits (nmake_op _ w_op n))."; + pp " Proof."; + pp " auto."; + pp " Qed."; + pp ""; + + + pp " Theorem znz_nmake_op: forall ww ww_op n xh xl,"; + pp " znz_to_Z (nmake_op ww ww_op (S n)) (WW xh xl) ="; + pp " znz_to_Z (nmake_op ww ww_op n) xh *"; + pp " base (znz_digits (nmake_op ww ww_op n)) +"; + pp " znz_to_Z (nmake_op ww ww_op n) xl."; + pp " Proof."; + pp " auto."; + pp " Qed."; + pp ""; + + pp " Theorem make_op_S: forall n,"; + pp " make_op (S n) = mk_zn2z_op_karatsuba (make_op n)."; + pp " intro n."; + pp " do 2 rewrite make_op_omake."; + pp " pattern n; apply lt_wf_ind; clear n."; + pp " intros n; case n; clear n."; + pp " intros _; unfold omake_op, make_op_aux, w%i_op; apply refl_equal." (size + 2); + pp " intros n; case n; clear n."; + pp " intros _; unfold omake_op, make_op_aux, w%i_op; apply refl_equal." (size + 3); + pp " intros n; case n; clear n."; + pp " intros _; unfold omake_op, make_op_aux, w%i_op, w%i_op; apply refl_equal." (size + 3) (size + 2); + pp " intros n Hrec."; + pp " change (omake_op (S (S (S (S n))))) with"; + pp " (mk_zn2z_op_karatsuba (mk_zn2z_op_karatsuba (mk_zn2z_op_karatsuba (omake_op (S n)))))."; + pp " change (omake_op (S (S (S n)))) with"; + pp " (mk_zn2z_op_karatsuba (mk_zn2z_op_karatsuba (mk_zn2z_op_karatsuba (omake_op n))))."; + pp " rewrite Hrec; auto with arith."; + pp " Qed."; + pp " "; + + + for i = 1 to size + 2 do + pp " Let znz_to_Z_%i: forall x y," i; + pp " znz_to_Z w%i_op (WW x y) = " i; + pp " znz_to_Z w%i_op x * base (znz_digits w%i_op) + znz_to_Z w%i_op y." (i-1) (i-1) (i-1); + pp " Proof."; + pp " auto."; + pp " Qed. "; + pp ""; + done; + + pp " Let znz_to_Z_n: forall n x y,"; + pp " znz_to_Z (make_op (S n)) (WW x y) = "; + pp " znz_to_Z (make_op n) x * base (znz_digits (make_op n)) + znz_to_Z (make_op n) y."; + pp " Proof."; + pp " intros n x y; rewrite make_op_S; auto."; + pp " Qed. "; + pp ""; + + pp " Let w0_spec: znz_spec w0_op := W0.w_spec."; + for i = 1 to 3 do + pp " Let w%i_spec: znz_spec w%i_op := mk_znz2_spec w%i_spec." i i (i-1) + done; + for i = 4 to size + 3 do + pp " Let w%i_spec : znz_spec w%i_op := mk_znz2_karatsuba_spec w%i_spec." i i (i-1) + done; + pp ""; + + pp " Let wn_spec: forall n, znz_spec (make_op n)."; + pp " intros n; elim n; clear n."; + pp " exact w%i_spec." (size + 1); + pp " intros n Hrec; rewrite make_op_S."; + pp " exact (mk_znz2_karatsuba_spec Hrec)."; + pp " Qed."; + pp ""; + + for i = 0 to size do + pr " Definition w%i_eq0 := w%i_op.(znz_eq0)." i i; + pr " Let spec_w%i_eq0: forall x, if w%i_eq0 x then [%s%i x] = 0 else True." i i c i; + pa " Admitted."; + pp " Proof."; + pp " intros x; unfold w%i_eq0, to_Z; generalize (spec_eq0 w%i_spec x);" i i; + pp " case znz_eq0; auto."; + pp " Qed."; + pr ""; + done; + pr ""; + + + for i = 0 to size do + pp " Theorem digits_w%i: znz_digits w%i_op = znz_digits (nmake_op _ w0_op %i)." i i i; + if i == 0 then + pp " auto." + else + pp " rewrite digits_nmake; rewrite <- digits_w%i; auto." (i - 1); + pp " Qed."; + pp ""; + pp " Let spec_double_eval%in: forall n, eval%in n = DoubleBase.double_to_Z (znz_digits w%i_op) (znz_to_Z w%i_op) n." i i i i; + pp " Proof."; + pp " intros n; exact (nmake_double n w%i w%i_op)." i i; + pp " Qed."; + pp ""; + done; + + for i = 0 to size do + for j = 0 to (size - i) do + pp " Theorem digits_w%in%i: znz_digits w%i_op = znz_digits (nmake_op _ w%i_op %i)." i j (i + j) i j; + pp " Proof."; + if j == 0 then + if i == 0 then + pp " auto." + else + begin + pp " apply trans_equal with (xO (znz_digits w%i_op))." (i + j -1); + pp " auto."; + pp " unfold nmake_op; auto."; + end + else + begin + pp " apply trans_equal with (xO (znz_digits w%i_op))." (i + j -1); + pp " auto."; + pp " rewrite digits_nmake."; + pp " rewrite digits_w%in%i." i (j - 1); + pp " auto."; + end; + pp " Qed."; + pp ""; + pp " Let spec_eval%in%i: forall x, [%s%i x] = eval%in %i x." i j c (i + j) i j; + pp " Proof."; + if j == 0 then + pp " intros x; rewrite spec_double_eval%in; unfold DoubleBase.double_to_Z, to_Z; auto." i + else + begin + pp " intros x; case x."; + pp " auto."; + pp " intros xh xl; unfold to_Z; rewrite znz_to_Z_%i." (i + j); + pp " rewrite digits_w%in%i." i (j - 1); + pp " generalize (spec_eval%in%i); unfold to_Z; intros HH; repeat rewrite HH." i (j - 1); + pp " unfold eval%in, nmake_op%i." i i; + pp " rewrite (znz_nmake_op _ w%i_op %i); auto." i (j - 1); + end; + pp " Qed."; + if i + j <> size then + begin + pp " Let spec_extend%in%i: forall x, [%s%i x] = [%s%i (extend%i %i x)]." i (i + j + 1) c i c (i + j + 1) i j; + if j == 0 then + begin + pp " intros x; change (extend%i 0 x) with (WW (znz_0 w%i_op) x)." i (i + j); + pp " unfold to_Z; rewrite znz_to_Z_%i." (i + j + 1); + pp " rewrite (spec_0 w%i_spec); auto." (i + j); + end + else + begin + pp " intros x; change (extend%i %i x) with (WW (znz_0 w%i_op) (extend%i %i x))." i j (i + j) i (j - 1); + pp " unfold to_Z; rewrite znz_to_Z_%i." (i + j + 1); + pp " rewrite (spec_0 w%i_spec)." (i + j); + pp " generalize (spec_extend%in%i x); unfold to_Z." i (i + j); + pp " intros HH; rewrite <- HH; auto."; + end; + pp " Qed."; + pp ""; + end; + done; + + pp " Theorem digits_w%in%i: znz_digits w%i_op = znz_digits (nmake_op _ w%i_op %i)." i (size - i + 1) (size + 1) i (size - i + 1); + pp " Proof."; + pp " apply trans_equal with (xO (znz_digits w%i_op))." size; + pp " auto."; + pp " rewrite digits_nmake."; + pp " rewrite digits_w%in%i." i (size - i); + pp " auto."; + pp " Qed."; + pp ""; + + pp " Let spec_eval%in%i: forall x, [%sn 0 x] = eval%in %i x." i (size - i + 1) c i (size - i + 1); + pp " Proof."; + pp " intros x; case x."; + pp " auto."; + pp " intros xh xl; unfold to_Z; rewrite znz_to_Z_%i." (size + 1); + pp " rewrite digits_w%in%i." i (size - i); + pp " generalize (spec_eval%in%i); unfold to_Z; intros HH; repeat rewrite HH." i (size - i); + pp " unfold eval%in, nmake_op%i." i i; + pp " rewrite (znz_nmake_op _ w%i_op %i); auto." i (size - i); + pp " Qed."; + pp ""; + + pp " Let spec_eval%in%i: forall x, [%sn 1 x] = eval%in %i x." i (size - i + 2) c i (size - i + 2); + pp " intros x; case x."; + pp " auto."; + pp " intros xh xl; unfold to_Z; rewrite znz_to_Z_%i." (size + 2); + pp " rewrite digits_w%in%i." i (size + 1 - i); + pp " generalize (spec_eval%in%i); unfold to_Z; change (make_op 0) with (w%i_op); intros HH; repeat rewrite HH." i (size + 1 - i) (size + 1); + pp " unfold eval%in, nmake_op%i." i i; + pp " rewrite (znz_nmake_op _ w%i_op %i); auto." i (size + 1 - i); + pp " Qed."; + pp ""; + done; + + pp " Let digits_w%in: forall n," size; + pp " znz_digits (make_op n) = znz_digits (nmake_op _ w%i_op (S n))." size; + pp " intros n; elim n; clear n."; + pp " change (znz_digits (make_op 0)) with (xO (znz_digits w%i_op))." size; + pp " rewrite nmake_op_S; apply sym_equal; auto."; + pp " intros n Hrec."; + pp " replace (znz_digits (make_op (S n))) with (xO (znz_digits (make_op n)))."; + pp " rewrite Hrec."; + pp " rewrite nmake_op_S; apply sym_equal; auto."; + pp " rewrite make_op_S; apply sym_equal; auto."; + pp " Qed."; + pp ""; + + pp " Let spec_eval%in: forall n x, [%sn n x] = eval%in (S n) x." size c size; + pp " intros n; elim n; clear n."; + pp " exact spec_eval%in1." size; + pp " intros n Hrec x; case x; clear x."; + pp " unfold to_Z, eval%in, nmake_op%i." size size; + pp " rewrite make_op_S; rewrite nmake_op_S; auto."; + pp " intros xh xl."; + pp " unfold to_Z in Hrec |- *."; + pp " rewrite znz_to_Z_n."; + pp " rewrite digits_w%in." size; + pp " repeat rewrite Hrec."; + pp " unfold eval%in, nmake_op%i." size size; + pp " apply sym_equal; rewrite nmake_op_S; auto."; + pp " Qed."; + pp ""; + + pp " Let spec_extend%in: forall n x, [%s%i x] = [%sn n (extend%i n x)]." size c size c size ; + pp " intros n; elim n; clear n."; + pp " intros x; change (extend%i 0 x) with (WW (znz_0 w%i_op) x)." size size; + pp " unfold to_Z."; + pp " change (make_op 0) with w%i_op." (size + 1); + pp " rewrite znz_to_Z_%i; rewrite (spec_0 w%i_spec); auto." (size + 1) size; + pp " intros n Hrec x."; + pp " change (extend%i (S n) x) with (WW W0 (extend%i n x))." size size; + pp " unfold to_Z in Hrec |- *; rewrite znz_to_Z_n; auto."; + pp " rewrite <- Hrec."; + pp " replace (znz_to_Z (make_op n) W0) with 0; auto."; + pp " case n; auto; intros; rewrite make_op_S; auto."; + pp " Qed."; + pp ""; + + pr " Theorem spec_pos: forall x, 0 <= [x]."; + pa " Admitted."; + pp " Proof."; + pp " intros x; case x; clear x."; + for i = 0 to size do + pp " intros x; case (spec_to_Z w%i_spec x); auto." i; + done; + pp " intros n x; case (spec_to_Z (wn_spec n) x); auto."; + pp " Qed."; + pr ""; + + pp " Let spec_extendn_0: forall n wx, [%sn n (extend n _ wx)] = [%sn 0 wx]." c c; + pp " intros n; elim n; auto."; + pp " intros n1 Hrec wx; simpl extend; rewrite <- Hrec; auto."; + pp " unfold to_Z."; + pp " case n1; auto; intros n2; repeat rewrite make_op_S; auto."; + pp " Qed."; + pp " Hint Rewrite spec_extendn_0: extr."; + pp ""; + pp " Let spec_extendn0_0: forall n wx, [%sn (S n) (WW W0 wx)] = [%sn n wx]." c c; + pp " Proof."; + pp " intros n x; unfold to_Z."; + pp " rewrite znz_to_Z_n."; + pp " rewrite <- (Zplus_0_l (znz_to_Z (make_op n) x))."; + pp " apply (f_equal2 Zplus); auto."; + pp " case n; auto."; + pp " intros n1; rewrite make_op_S; auto."; + pp " Qed."; + pp " Hint Rewrite spec_extendn_0: extr."; + pp ""; + pp " Let spec_extend_tr: forall m n (w: word _ (S n)),"; + pp " [%sn (m + n) (extend_tr w m)] = [%sn n w]." c c; + pp " Proof."; + pp " induction m; auto."; + pp " intros n x; simpl extend_tr."; + pp " simpl plus; rewrite spec_extendn0_0; auto."; + pp " Qed."; + pp " Hint Rewrite spec_extend_tr: extr."; + pp ""; + pp " Let spec_cast_l: forall n m x1,"; + pp " [%sn (Max.max n m)" c; + pp " (castm (diff_r n m) (extend_tr x1 (snd (diff n m))))] ="; + pp " [%sn n x1]." c; + pp " Proof."; + pp " intros n m x1; case (diff_r n m); simpl castm."; + pp " rewrite spec_extend_tr; auto."; + pp " Qed."; + pp " Hint Rewrite spec_cast_l: extr."; + pp ""; + pp " Let spec_cast_r: forall n m x1,"; + pp " [%sn (Max.max n m)" c; + pp " (castm (diff_l n m) (extend_tr x1 (fst (diff n m))))] ="; + pp " [%sn m x1]." c; + pp " Proof."; + pp " intros n m x1; case (diff_l n m); simpl castm."; + pp " rewrite spec_extend_tr; auto."; + pp " Qed."; + pp " Hint Rewrite spec_cast_r: extr."; + pp ""; + + + pr " Section LevelAndIter."; + pr ""; + pr " Variable res: Type."; + pr " Variable xxx: res."; + pr " Variable P: Z -> Z -> res -> Prop."; + pr " (* Abstraction function for each level *)"; + for i = 0 to size do + pr " Variable f%i: w%i -> w%i -> res." i i i; + pr " Variable f%in: forall n, w%i -> word w%i (S n) -> res." i i i; + pr " Variable fn%i: forall n, word w%i (S n) -> w%i -> res." i i i; + pp " Variable Pf%i: forall x y, P [%s%i x] [%s%i y] (f%i x y)." i c i c i i; + if i == size then + begin + pp " Variable Pf%in: forall n x y, P [%s%i x] (eval%in (S n) y) (f%in n x y)." i c i i i; + pp " Variable Pfn%i: forall n x y, P (eval%in (S n) x) [%s%i y] (fn%i n x y)." i i c i i; + end + else + begin + pp " Variable Pf%in: forall n x y, Z_of_nat n <= %i -> P [%s%i x] (eval%in (S n) y) (f%in n x y)." i (size - i) c i i i; + pp " Variable Pfn%i: forall n x y, Z_of_nat n <= %i -> P (eval%in (S n) x) [%s%i y] (fn%i n x y)." i (size - i) i c i i; + end; + pr ""; + done; + pr " Variable fnn: forall n, word w%i (S n) -> word w%i (S n) -> res." size size; + pp " Variable Pfnn: forall n x y, P [%sn n x] [%sn n y] (fnn n x y)." c c; + pr " Variable fnm: forall n m, word w%i (S n) -> word w%i (S m) -> res." size size; + pp " Variable Pfnm: forall n m x y, P [%sn n x] [%sn m y] (fnm n m x y)." c c; + pr ""; + pr " (* Special zero functions *)"; + pr " Variable f0t: t_ -> res."; + pp " Variable Pf0t: forall x, P 0 [x] (f0t x)."; + pr " Variable ft0: t_ -> res."; + pp " Variable Pft0: forall x, P [x] 0 (ft0 x)."; + pr ""; + + + pr " (* We level the two arguments before applying *)"; + pr " (* the functions at each leval *)"; + pr " Definition same_level (x y: t_): res :="; + pr0 " Eval lazy zeta beta iota delta ["; + for i = 0 to size do + pr0 "extend%i " i; + done; + pr ""; + pr " DoubleBase.extend DoubleBase.extend_aux"; + pr " ] in"; + pr " match x, y with"; + for i = 0 to size do + for j = 0 to i - 1 do + pr " | %s%i wx, %s%i wy => f%i wx (extend%i %i wy)" c i c j i j (i - j -1); + done; + pr " | %s%i wx, %s%i wy => f%i wx wy" c i c i i; + for j = i + 1 to size do + pr " | %s%i wx, %s%i wy => f%i (extend%i %i wx) wy" c i c j j i (j - i - 1); + done; + if i == size then + pr " | %s%i wx, %sn m wy => fnn m (extend%i m wx) wy" c size c size + else + pr " | %s%i wx, %sn m wy => fnn m (extend%i m (extend%i %i wx)) wy" c i c size i (size - i - 1); + done; + for i = 0 to size do + if i == size then + pr " | %sn n wx, %s%i wy => fnn n wx (extend%i n wy)" c c size size + else + pr " | %sn n wx, %s%i wy => fnn n wx (extend%i n (extend%i %i wy))" c c i size i (size - i - 1); + done; + pr " | %sn n wx, Nn m wy =>" c; + pr " let mn := Max.max n m in"; + pr " let d := diff n m in"; + pr " fnn mn"; + pr " (castm (diff_r n m) (extend_tr wx (snd d)))"; + pr " (castm (diff_l n m) (extend_tr wy (fst d)))"; + pr " end."; + pr ""; + + pp " Lemma spec_same_level: forall x y, P [x] [y] (same_level x y)."; + pp " Proof."; + pp " intros x; case x; clear x; unfold same_level."; + for i = 0 to size do + pp " intros x y; case y; clear y."; + for j = 0 to i - 1 do + pp " intros y; rewrite spec_extend%in%i; apply Pf%i." j i i; + done; + pp " intros y; apply Pf%i." i; + for j = i + 1 to size do + pp " intros y; rewrite spec_extend%in%i; apply Pf%i." i j j; + done; + if i == size then + pp " intros m y; rewrite (spec_extend%in m); apply Pfnn." size + else + pp " intros m y; rewrite spec_extend%in%i; rewrite (spec_extend%in m); apply Pfnn." i size size; + done; + pp " intros n x y; case y; clear y."; + for i = 0 to size do + if i == size then + pp " intros y; rewrite (spec_extend%in n); apply Pfnn." size + else + pp " intros y; rewrite spec_extend%in%i; rewrite (spec_extend%in n); apply Pfnn." i size size; + done; + pp " intros m y; rewrite <- (spec_cast_l n m x); "; + pp " rewrite <- (spec_cast_r n m y); apply Pfnn."; + pp " Qed."; + pp ""; + + pr " (* We level the two arguments before applying *)"; + pr " (* the functions at each level (special zero case) *)"; + pr " Definition same_level0 (x y: t_): res :="; + pr0 " Eval lazy zeta beta iota delta ["; + for i = 0 to size do + pr0 "extend%i " i; + done; + pr ""; + pr " DoubleBase.extend DoubleBase.extend_aux"; + pr " ] in"; + pr " match x with"; + for i = 0 to size do + pr " | %s%i wx =>" c i; + if i == 0 then + pr " if w0_eq0 wx then f0t y else"; + pr " match y with"; + for j = 0 to i - 1 do + pr " | %s%i wy =>" c j; + if j == 0 then + pr " if w0_eq0 wy then ft0 x else"; + pr " f%i wx (extend%i %i wy)" i j (i - j -1); + done; + pr " | %s%i wy => f%i wx wy" c i i; + for j = i + 1 to size do + pr " | %s%i wy => f%i (extend%i %i wx) wy" c j j i (j - i - 1); + done; + if i == size then + pr " | %sn m wy => fnn m (extend%i m wx) wy" c size + else + pr " | %sn m wy => fnn m (extend%i m (extend%i %i wx)) wy" c size i (size - i - 1); + pr" end"; + done; + pr " | %sn n wx =>" c; + pr " match y with"; + for i = 0 to size do + pr " | %s%i wy =>" c i; + if i == 0 then + pr " if w0_eq0 wy then ft0 x else"; + if i == size then + pr " fnn n wx (extend%i n wy)" size + else + pr " fnn n wx (extend%i n (extend%i %i wy))" size i (size - i - 1); + done; + pr " | %sn m wy =>" c; + pr " let mn := Max.max n m in"; + pr " let d := diff n m in"; + pr " fnn mn"; + pr " (castm (diff_r n m) (extend_tr wx (snd d)))"; + pr " (castm (diff_l n m) (extend_tr wy (fst d)))"; + pr " end"; + pr " end."; + pr ""; + + pp " Lemma spec_same_level0: forall x y, P [x] [y] (same_level0 x y)."; + pp " Proof."; + pp " intros x; case x; clear x; unfold same_level0."; + for i = 0 to size do + pp " intros x."; + if i == 0 then + begin + pp " generalize (spec_w0_eq0 x); case w0_eq0; intros H."; + pp " intros y; rewrite H; apply Pf0t."; + pp " clear H."; + end; + pp " intros y; case y; clear y."; + for j = 0 to i - 1 do + pp " intros y."; + if j == 0 then + begin + pp " generalize (spec_w0_eq0 y); case w0_eq0; intros H."; + pp " rewrite H; apply Pft0."; + pp " clear H."; + end; + pp " rewrite spec_extend%in%i; apply Pf%i." j i i; + done; + pp " intros y; apply Pf%i." i; + for j = i + 1 to size do + pp " intros y; rewrite spec_extend%in%i; apply Pf%i." i j j; + done; + if i == size then + pp " intros m y; rewrite (spec_extend%in m); apply Pfnn." size + else + pp " intros m y; rewrite spec_extend%in%i; rewrite (spec_extend%in m); apply Pfnn." i size size; + done; + pp " intros n x y; case y; clear y."; + for i = 0 to size do + pp " intros y."; + if i = 0 then + begin + pp " generalize (spec_w0_eq0 y); case w0_eq0; intros H."; + pp " rewrite H; apply Pft0."; + pp " clear H."; + end; + if i == size then + pp " rewrite (spec_extend%in n); apply Pfnn." size + else + pp " rewrite spec_extend%in%i; rewrite (spec_extend%in n); apply Pfnn." i size size; + done; + pp " intros m y; rewrite <- (spec_cast_l n m x); "; + pp " rewrite <- (spec_cast_r n m y); apply Pfnn."; + pp " Qed."; + pp ""; + + pr " (* We iter the smaller argument with the bigger *)"; + pr " Definition iter (x y: t_): res := "; + pr0 " Eval lazy zeta beta iota delta ["; + for i = 0 to size do + pr0 "extend%i " i; + done; + pr ""; + pr " DoubleBase.extend DoubleBase.extend_aux"; + pr " ] in"; + pr " match x, y with"; + for i = 0 to size do + for j = 0 to i - 1 do + pr " | %s%i wx, %s%i wy => fn%i %i wx wy" c i c j j (i - j - 1); + done; + pr " | %s%i wx, %s%i wy => f%i wx wy" c i c i i; + for j = i + 1 to size do + pr " | %s%i wx, %s%i wy => f%in %i wx wy" c i c j i (j - i - 1); + done; + if i == size then + pr " | %s%i wx, %sn m wy => f%in m wx wy" c size c size + else + pr " | %s%i wx, %sn m wy => f%in m (extend%i %i wx) wy" c i c size i (size - i - 1); + done; + for i = 0 to size do + if i == size then + pr " | %sn n wx, %s%i wy => fn%i n wx wy" c c size size + else + pr " | %sn n wx, %s%i wy => fn%i n wx (extend%i %i wy)" c c i size i (size - i - 1); + done; + pr " | %sn n wx, %sn m wy => fnm n m wx wy" c c; + pr " end."; + pr ""; + + pp " Ltac zg_tac := try"; + pp " (red; simpl Zcompare; auto;"; + pp " let t := fresh \"H\" in (intros t; discriminate t))."; + pp " Lemma spec_iter: forall x y, P [x] [y] (iter x y)."; + pp " Proof."; + pp " intros x; case x; clear x; unfold iter."; + for i = 0 to size do + pp " intros x y; case y; clear y."; + for j = 0 to i - 1 do + pp " intros y; rewrite spec_eval%in%i; apply (Pfn%i %i); zg_tac." j (i - j) j (i - j - 1); + done; + pp " intros y; apply Pf%i." i; + for j = i + 1 to size do + pp " intros y; rewrite spec_eval%in%i; apply (Pf%in %i); zg_tac." i (j - i) i (j - i - 1); + done; + if i == size then + pp " intros m y; rewrite spec_eval%in; apply Pf%in." size size + else + pp " intros m y; rewrite spec_extend%in%i; rewrite spec_eval%in; apply Pf%in." i size size size; + done; + pp " intros n x y; case y; clear y."; + for i = 0 to size do + if i == size then + pp " intros y; rewrite spec_eval%in; apply Pfn%i." size size + else + pp " intros y; rewrite spec_extend%in%i; rewrite spec_eval%in; apply Pfn%i." i size size size; + done; + pp " intros m y; apply Pfnm."; + pp " Qed."; + pp ""; + + + pr " (* We iter the smaller argument with the bigger (zero case) *)"; + pr " Definition iter0 (x y: t_): res :="; + pr0 " Eval lazy zeta beta iota delta ["; + for i = 0 to size do + pr0 "extend%i " i; + done; + pr ""; + pr " DoubleBase.extend DoubleBase.extend_aux"; + pr " ] in"; + pr " match x with"; + for i = 0 to size do + pr " | %s%i wx =>" c i; + if i == 0 then + pr " if w0_eq0 wx then f0t y else"; + pr " match y with"; + for j = 0 to i - 1 do + pr " | %s%i wy =>" c j; + if j == 0 then + pr " if w0_eq0 wy then ft0 x else"; + pr " fn%i %i wx wy" j (i - j - 1); + done; + pr " | %s%i wy => f%i wx wy" c i i; + for j = i + 1 to size do + pr " | %s%i wy => f%in %i wx wy" c j i (j - i - 1); + done; + if i == size then + pr " | %sn m wy => f%in m wx wy" c size + else + pr " | %sn m wy => f%in m (extend%i %i wx) wy" c size i (size - i - 1); + pr " end"; + done; + pr " | %sn n wx =>" c; + pr " match y with"; + for i = 0 to size do + pr " | %s%i wy =>" c i; + if i == 0 then + pr " if w0_eq0 wy then ft0 x else"; + if i == size then + pr " fn%i n wx wy" size + else + pr " fn%i n wx (extend%i %i wy)" size i (size - i - 1); + done; + pr " | %sn m wy => fnm n m wx wy" c; + pr " end"; + pr " end."; + pr ""; + + pp " Lemma spec_iter0: forall x y, P [x] [y] (iter0 x y)."; + pp " Proof."; + pp " intros x; case x; clear x; unfold iter0."; + for i = 0 to size do + pp " intros x."; + if i == 0 then + begin + pp " generalize (spec_w0_eq0 x); case w0_eq0; intros H."; + pp " intros y; rewrite H; apply Pf0t."; + pp " clear H."; + end; + pp " intros y; case y; clear y."; + for j = 0 to i - 1 do + pp " intros y."; + if j == 0 then + begin + pp " generalize (spec_w0_eq0 y); case w0_eq0; intros H."; + pp " rewrite H; apply Pft0."; + pp " clear H."; + end; + pp " rewrite spec_eval%in%i; apply (Pfn%i %i); zg_tac." j (i - j) j (i - j - 1); + done; + pp " intros y; apply Pf%i." i; + for j = i + 1 to size do + pp " intros y; rewrite spec_eval%in%i; apply (Pf%in %i); zg_tac." i (j - i) i (j - i - 1); + done; + if i == size then + pp " intros m y; rewrite spec_eval%in; apply Pf%in." size size + else + pp " intros m y; rewrite spec_extend%in%i; rewrite spec_eval%in; apply Pf%in." i size size size; + done; + pp " intros n x y; case y; clear y."; + for i = 0 to size do + pp " intros y."; + if i = 0 then + begin + pp " generalize (spec_w0_eq0 y); case w0_eq0; intros H."; + pp " rewrite H; apply Pft0."; + pp " clear H."; + end; + if i == size then + pp " rewrite spec_eval%in; apply Pfn%i." size size + else + pp " rewrite spec_extend%in%i; rewrite spec_eval%in; apply Pfn%i." i size size size; + done; + pp " intros m y; apply Pfnm."; + pp " Qed."; + pp ""; + + + pr " End LevelAndIter."; + pr ""; + + + pr " (***************************************************************)"; + pr " (* *)"; + pr " (* Reduction *)"; + pr " (* *)"; + pr " (***************************************************************)"; + pr ""; + + pr " Definition reduce_0 (x:w) := %s0 x." c; + pr " Definition reduce_1 :="; + pr " Eval lazy beta iota delta[reduce_n1] in"; + pr " reduce_n1 _ _ zero w0_eq0 %s0 %s1." c c; + for i = 2 to size do + pr " Definition reduce_%i :=" i; + pr " Eval lazy beta iota delta[reduce_n1] in"; + pr " reduce_n1 _ _ zero w%i_eq0 reduce_%i %s%i." + (i-1) (i-1) c i + done; + pr " Definition reduce_%i :=" (size+1); + pr " Eval lazy beta iota delta[reduce_n1] in"; + pr " reduce_n1 _ _ zero w%i_eq0 reduce_%i (%sn 0)." + size size c; + + pr " Definition reduce_n n := "; + pr " Eval lazy beta iota delta[reduce_n] in"; + pr " reduce_n _ _ zero reduce_%i %sn n." (size + 1) c; + pr ""; + + pp " Let spec_reduce_0: forall x, [reduce_0 x] = [%s0 x]." c; + pp " Proof."; + pp " intros x; unfold to_Z, reduce_0."; + pp " auto."; + pp " Qed."; + pp " "; + + for i = 1 to size + 1 do + if i == size + 1 then + pp " Let spec_reduce_%i: forall x, [reduce_%i x] = [%sn 0 x]." i i c + else + pp " Let spec_reduce_%i: forall x, [reduce_%i x] = [%s%i x]." i i c i; + pp " Proof."; + pp " intros x; case x; unfold reduce_%i." i; + pp " exact (spec_0 w0_spec)."; + pp " intros x1 y1."; + pp " generalize (spec_w%i_eq0 x1); " (i - 1); + pp " case w%i_eq0; intros H1; auto." (i - 1); + if i <> 1 then + pp " rewrite spec_reduce_%i." (i - 1); + pp " unfold to_Z; rewrite znz_to_Z_%i." i; + pp " unfold to_Z in H1; rewrite H1; auto."; + pp " Qed."; + pp " "; + done; + + pp " Let spec_reduce_n: forall n x, [reduce_n n x] = [%sn n x]." c; + pp " Proof."; + pp " intros n; elim n; simpl reduce_n."; + pp " intros x; rewrite <- spec_reduce_%i; auto." (size + 1); + pp " intros n1 Hrec x; case x."; + pp " unfold to_Z; rewrite make_op_S; auto."; + pp " exact (spec_0 w0_spec)."; + pp " intros x1 y1; case x1; auto."; + pp " rewrite Hrec."; + pp " rewrite spec_extendn0_0; auto."; + pp " Qed."; + pp " "; + + pr " (***************************************************************)"; + pr " (* *)"; + pr " (* Successor *)"; + pr " (* *)"; + pr " (***************************************************************)"; + pr ""; + + for i = 0 to size do + pr " Definition w%i_succ_c := w%i_op.(znz_succ_c)." i i + done; + pr ""; + + for i = 0 to size do + pr " Definition w%i_succ := w%i_op.(znz_succ)." i i + done; + pr ""; + + pr " Definition succ x :="; + pr " match x with"; + for i = 0 to size-1 do + pr " | %s%i wx =>" c i; + pr " match w%i_succ_c wx with" i; + pr " | C0 r => %s%i r" c i; + pr " | C1 r => %s%i (WW one%i r)" c (i+1) i; + pr " end"; + done; + pr " | %s%i wx =>" c size; + pr " match w%i_succ_c wx with" size; + pr " | C0 r => %s%i r" c size; + pr " | C1 r => %sn 0 (WW one%i r)" c size ; + pr " end"; + pr " | %sn n wx =>" c; + pr " let op := make_op n in"; + pr " match op.(znz_succ_c) wx with"; + pr " | C0 r => %sn n r" c; + pr " | C1 r => %sn (S n) (WW op.(znz_1) r)" c; + pr " end"; + pr " end."; + pr ""; + + pr " Theorem spec_succ: forall n, [succ n] = [n] + 1."; + pa " Admitted."; + pp " Proof."; + pp " intros n; case n; unfold succ, to_Z."; + for i = 0 to size do + pp " intros n1; generalize (spec_succ_c w%i_spec n1);" i; + pp " unfold succ, to_Z, w%i_succ_c; case znz_succ_c; auto." i; + pp " intros ww H; rewrite <- H."; + pp " (rewrite znz_to_Z_%i; unfold interp_carry;" (i + 1); + pp " apply f_equal2 with (f := Zplus); auto;"; + pp " apply f_equal2 with (f := Zmult); auto;"; + pp " exact (spec_1 w%i_spec))." i; + done; + pp " intros k n1; generalize (spec_succ_c (wn_spec k) n1)."; + pp " unfold succ, to_Z; case znz_succ_c; auto."; + pp " intros ww H; rewrite <- H."; + pp " (rewrite (znz_to_Z_n k); unfold interp_carry;"; + pp " apply f_equal2 with (f := Zplus); auto;"; + pp " apply f_equal2 with (f := Zmult); auto;"; + pp " exact (spec_1 (wn_spec k)))."; + pp " Qed."; + pr ""; + + + pr " (***************************************************************)"; + pr " (* *)"; + pr " (* Adddition *)"; + pr " (* *)"; + pr " (***************************************************************)"; + pr ""; + + for i = 0 to size do + pr " Definition w%i_add_c := znz_add_c w%i_op." i i; + pr " Definition w%i_add x y :=" i; + pr " match w%i_add_c x y with" i; + pr " | C0 r => %s%i r" c i; + if i == size then + pr " | C1 r => %sn 0 (WW one%i r)" c size + else + pr " | C1 r => %s%i (WW one%i r)" c (i + 1) i; + pr " end."; + pr ""; + done ; + pr " Definition addn n (x y : word w%i (S n)) :=" size; + pr " let op := make_op n in"; + pr " match op.(znz_add_c) x y with"; + pr " | C0 r => %sn n r" c; + pr " | C1 r => %sn (S n) (WW op.(znz_1) r) end." c; + pr ""; + + + for i = 0 to size do + pp " Let spec_w%i_add: forall x y, [w%i_add x y] = [%s%i x] + [%s%i y]." i i c i c i; + pp " Proof."; + pp " intros n m; unfold to_Z, w%i_add, w%i_add_c." i i; + pp " generalize (spec_add_c w%i_spec n m); case znz_add_c; auto." i; + pp " intros ww H; rewrite <- H."; + pp " rewrite znz_to_Z_%i; unfold interp_carry;" (i + 1); + pp " apply f_equal2 with (f := Zplus); auto;"; + pp " apply f_equal2 with (f := Zmult); auto;"; + pp " exact (spec_1 w%i_spec)." i; + pp " Qed."; + pp " Hint Rewrite spec_w%i_add: addr." i; + pp ""; + done; + pp " Let spec_wn_add: forall n x y, [addn n x y] = [%sn n x] + [%sn n y]." c c; + pp " Proof."; + pp " intros k n m; unfold to_Z, addn."; + pp " generalize (spec_add_c (wn_spec k) n m); case znz_add_c; auto."; + pp " intros ww H; rewrite <- H."; + pp " rewrite (znz_to_Z_n k); unfold interp_carry;"; + pp " apply f_equal2 with (f := Zplus); auto;"; + pp " apply f_equal2 with (f := Zmult); auto;"; + pp " exact (spec_1 (wn_spec k))."; + pp " Qed."; + pp " Hint Rewrite spec_wn_add: addr."; + + pr " Definition add := Eval lazy beta delta [same_level] in"; + pr0 " (same_level t_ "; + for i = 0 to size do + pr0 "w%i_add " i; + done; + pr "addn)."; + pr ""; + + pr " Theorem spec_add: forall x y, [add x y] = [x] + [y]."; + pa " Admitted."; + pp " Proof."; + pp " unfold add."; + pp " generalize (spec_same_level t_ (fun x y res => [res] = x + y))."; + pp " unfold same_level; intros HH; apply HH; clear HH."; + for i = 0 to size do + pp " exact spec_w%i_add." i; + done; + pp " exact spec_wn_add."; + pp " Qed."; + pr ""; + + pr " (***************************************************************)"; + pr " (* *)"; + pr " (* Predecessor *)"; + pr " (* *)"; + pr " (***************************************************************)"; + pr ""; + + for i = 0 to size do + pr " Definition w%i_pred_c := w%i_op.(znz_pred_c)." i i + done; + pr ""; + + pr " Definition pred x :="; + pr " match x with"; + for i = 0 to size do + pr " | %s%i wx =>" c i; + pr " match w%i_pred_c wx with" i; + pr " | C0 r => reduce_%i r" i; + pr " | C1 r => zero"; + pr " end"; + done; + pr " | %sn n wx =>" c; + pr " let op := make_op n in"; + pr " match op.(znz_pred_c) wx with"; + pr " | C0 r => reduce_n n r"; + pr " | C1 r => zero"; + pr " end"; + pr " end."; + pr ""; + + pr " Theorem spec_pred: forall x, 0 < [x] -> [pred x] = [x] - 1."; + pa " Admitted."; + pp " Proof."; + pp " intros x; case x; unfold pred."; + for i = 0 to size do + pp " intros x1 H1; unfold w%i_pred_c; " i; + pp " generalize (spec_pred_c w%i_spec x1); case znz_pred_c; intros y1." i; + pp " rewrite spec_reduce_%i; auto." i; + pp " unfold interp_carry; unfold to_Z."; + pp " case (spec_to_Z w%i_spec x1); intros HH1 HH2." i; + pp " case (spec_to_Z w%i_spec y1); intros HH3 HH4 HH5." i; + pp " assert (znz_to_Z w%i_op x1 - 1 < 0); auto with zarith." i; + pp " unfold to_Z in H1; auto with zarith."; + done; + pp " intros n x1 H1; "; + pp " generalize (spec_pred_c (wn_spec n) x1); case znz_pred_c; intros y1."; + pp " rewrite spec_reduce_n; auto."; + pp " unfold interp_carry; unfold to_Z."; + pp " case (spec_to_Z (wn_spec n) x1); intros HH1 HH2."; + pp " case (spec_to_Z (wn_spec n) y1); intros HH3 HH4 HH5."; + pp " assert (znz_to_Z (make_op n) x1 - 1 < 0); auto with zarith."; + pp " unfold to_Z in H1; auto with zarith."; + pp " Qed."; + pp " "; + + pp " Let spec_pred0: forall x, [x] = 0 -> [pred x] = 0."; + pp " Proof."; + pp " intros x; case x; unfold pred."; + for i = 0 to size do + pp " intros x1 H1; unfold w%i_pred_c; " i; + pp " generalize (spec_pred_c w%i_spec x1); case znz_pred_c; intros y1." i; + pp " unfold interp_carry; unfold to_Z."; + pp " unfold to_Z in H1; auto with zarith."; + pp " case (spec_to_Z w%i_spec y1); intros HH3 HH4; auto with zarith." i; + pp " intros; exact (spec_0 w0_spec)."; + done; + pp " intros n x1 H1; "; + pp " generalize (spec_pred_c (wn_spec n) x1); case znz_pred_c; intros y1."; + pp " unfold interp_carry; unfold to_Z."; + pp " unfold to_Z in H1; auto with zarith."; + pp " case (spec_to_Z (wn_spec n) y1); intros HH3 HH4; auto with zarith."; + pp " intros; exact (spec_0 w0_spec)."; + pp " Qed."; + pr " "; + + + pr " (***************************************************************)"; + pr " (* *)"; + pr " (* Subtraction *)"; + pr " (* *)"; + pr " (***************************************************************)"; + pr ""; + + for i = 0 to size do + pr " Definition w%i_sub_c := w%i_op.(znz_sub_c)." i i + done; + pr ""; + + for i = 0 to size do + pr " Definition w%i_sub x y :=" i; + pr " match w%i_sub_c x y with" i; + pr " | C0 r => reduce_%i r" i; + pr " | C1 r => zero"; + pr " end." + done; + pr ""; + + pr " Definition subn n (x y : word w%i (S n)) :=" size; + pr " let op := make_op n in"; + pr " match op.(znz_sub_c) x y with"; + pr " | C0 r => %sn n r" c; + pr " | C1 r => N0 w_0"; + pr " end."; + pr ""; + + for i = 0 to size do + pp " Let spec_w%i_sub: forall x y, [%s%i y] <= [%s%i x] -> [w%i_sub x y] = [%s%i x] - [%s%i y]." i c i c i i c i c i; + pp " Proof."; + pp " intros n m; unfold w%i_sub, w%i_sub_c." i i; + pp " generalize (spec_sub_c w%i_spec n m); case znz_sub_c; " i; + if i == 0 then + pp " intros x; auto." + else + pp " intros x; try rewrite spec_reduce_%i; auto." i; + pp " unfold interp_carry; unfold zero, w_0, to_Z."; + pp " rewrite (spec_0 w0_spec)."; + pp " case (spec_to_Z w%i_spec x); intros; auto with zarith." i; + pp " Qed."; + pp ""; + done; + + pp " Let spec_wn_sub: forall n x y, [%sn n y] <= [%sn n x] -> [subn n x y] = [%sn n x] - [%sn n y]." c c c c; + pp " Proof."; + pp " intros k n m; unfold subn."; + pp " generalize (spec_sub_c (wn_spec k) n m); case znz_sub_c; "; + pp " intros x; auto."; + pp " unfold interp_carry, to_Z."; + pp " case (spec_to_Z (wn_spec k) x); intros; auto with zarith."; + pp " Qed."; + pp ""; + + pr " Definition sub := Eval lazy beta delta [same_level] in"; + pr0 " (same_level t_ "; + for i = 0 to size do + pr0 "w%i_sub " i; + done; + pr "subn)."; + pr ""; + + pr " Theorem spec_sub: forall x y, [y] <= [x] -> [sub x y] = [x] - [y]."; + pa " Admitted."; + pp " Proof."; + pp " unfold sub."; + pp " generalize (spec_same_level t_ (fun x y res => y <= x -> [res] = x - y))."; + pp " unfold same_level; intros HH; apply HH; clear HH."; + for i = 0 to size do + pp " exact spec_w%i_sub." i; + done; + pp " exact spec_wn_sub."; + pp " Qed."; + pr ""; + + for i = 0 to size do + pp " Let spec_w%i_sub0: forall x y, [%s%i x] < [%s%i y] -> [w%i_sub x y] = 0." i c i c i i; + pp " Proof."; + pp " intros n m; unfold w%i_sub, w%i_sub_c." i i; + pp " generalize (spec_sub_c w%i_spec n m); case znz_sub_c; " i; + pp " intros x; unfold interp_carry."; + pp " unfold to_Z; case (spec_to_Z w%i_spec x); intros; auto with zarith." i; + pp " intros; unfold to_Z, zero, w_0; rewrite (spec_0 w0_spec); auto."; + pp " Qed."; + pp ""; + done; + + pp " Let spec_wn_sub0: forall n x y, [%sn n x] < [%sn n y] -> [subn n x y] = 0." c c; + pp " Proof."; + pp " intros k n m; unfold subn."; + pp " generalize (spec_sub_c (wn_spec k) n m); case znz_sub_c; "; + pp " intros x; unfold interp_carry."; + pp " unfold to_Z; case (spec_to_Z (wn_spec k) x); intros; auto with zarith."; + pp " intros; unfold to_Z, w_0; rewrite (spec_0 (w0_spec)); auto."; + pp " Qed."; + pp ""; + + pr " Theorem spec_sub0: forall x y, [x] < [y] -> [sub x y] = 0."; + pa " Admitted."; + pp " Proof."; + pp " unfold sub."; + pp " generalize (spec_same_level t_ (fun x y res => x < y -> [res] = 0))."; + pp " unfold same_level; intros HH; apply HH; clear HH."; + for i = 0 to size do + pp " exact spec_w%i_sub0." i; + done; + pp " exact spec_wn_sub0."; + pp " Qed."; + pr ""; + + + pr " (***************************************************************)"; + pr " (* *)"; + pr " (* Comparison *)"; + pr " (* *)"; + pr " (***************************************************************)"; + pr ""; + + for i = 0 to size do + pr " Definition compare_%i := w%i_op.(znz_compare)." i i; + pr " Definition comparen_%i :=" i; + pr " compare_mn_1 w%i w%i %s compare_%i (compare_%i %s) compare_%i." i i (pz i) i i (pz i) i + done; + pr ""; + + pr " Definition comparenm n m wx wy :="; + pr " let mn := Max.max n m in"; + pr " let d := diff n m in"; + pr " let op := make_op mn in"; + pr " op.(znz_compare)"; + pr " (castm (diff_r n m) (extend_tr wx (snd d)))"; + pr " (castm (diff_l n m) (extend_tr wy (fst d)))."; + pr ""; + + pr " Definition compare := Eval lazy beta delta [iter] in "; + pr " (iter _ "; + for i = 0 to size do + pr " compare_%i" i; + pr " (fun n x y => opp_compare (comparen_%i (S n) y x))" i; + pr " (fun n => comparen_%i (S n))" i; + done; + pr " comparenm)."; + pr ""; + + pr " Definition lt n m := compare n m = Lt."; + pr " Definition le n m := compare n m <> Gt."; + pr " Definition min n m := match compare n m with Gt => m | _ => n end."; + pr " Definition max n m := match compare n m with Lt => m | _ => n end."; + pr ""; + + for i = 0 to size do + pp " Let spec_compare_%i: forall x y," i; + pp " match compare_%i x y with " i; + pp " Eq => [%s%i x] = [%s%i y]" c i c i; + pp " | Lt => [%s%i x] < [%s%i y]" c i c i; + pp " | Gt => [%s%i x] > [%s%i y]" c i c i; + pp " end."; + pp " Proof."; + pp " unfold compare_%i, to_Z; exact (spec_compare w%i_spec)." i i; + pp " Qed."; + pp ""; + + pp " Let spec_comparen_%i:" i; + pp " forall (n : nat) (x : word w%i n) (y : w%i)," i i; + pp " match comparen_%i n x y with" i; + pp " | Eq => eval%in n x = [%s%i y]" i c i; + pp " | Lt => eval%in n x < [%s%i y]" i c i; + pp " | Gt => eval%in n x > [%s%i y]" i c i; + pp " end."; + pp " intros n x y."; + pp " unfold comparen_%i, to_Z; rewrite spec_double_eval%in." i i; + pp " apply spec_compare_mn_1."; + pp " exact (spec_0 w%i_spec)." i; + pp " intros x1; exact (spec_compare w%i_spec %s x1)." i (pz i); + pp " exact (spec_to_Z w%i_spec)." i; + pp " exact (spec_compare w%i_spec)." i; + pp " exact (spec_compare w%i_spec)." i; + pp " exact (spec_to_Z w%i_spec)." i; + pp " Qed."; + pp ""; + done; + + pp " Let spec_opp_compare: forall c (u v: Z),"; + pp " match c with Eq => u = v | Lt => u < v | Gt => u > v end ->"; + pp " match opp_compare c with Eq => v = u | Lt => v < u | Gt => v > u end."; + pp " Proof."; + pp " intros c u v; case c; unfold opp_compare; auto with zarith."; + pp " Qed."; + pp ""; + + + pr " Theorem spec_compare: forall x y,"; + pr " match compare x y with "; + pr " Eq => [x] = [y]"; + pr " | Lt => [x] < [y]"; + pr " | Gt => [x] > [y]"; + pr " end."; + pa " Admitted."; + pp " Proof."; + pp " refine (spec_iter _ (fun x y res => "; + pp " match res with "; + pp " Eq => x = y"; + pp " | Lt => x < y"; + pp " | Gt => x > y"; + pp " end)"; + for i = 0 to size do + pp " compare_%i" i; + pp " (fun n x y => opp_compare (comparen_%i (S n) y x))" i; + pp " (fun n => comparen_%i (S n)) _ _ _" i; + done; + pp " comparenm _)."; + + for i = 0 to size - 1 do + pp " exact spec_compare_%i." i; + pp " intros n x y H;apply spec_opp_compare; apply spec_comparen_%i." i; + pp " intros n x y H; exact (spec_comparen_%i (S n) x y)." i; + done; + pp " exact spec_compare_%i." size; + pp " intros n x y;apply spec_opp_compare; apply spec_comparen_%i." size; + pp " intros n; exact (spec_comparen_%i (S n))." size; + pp " intros n m x y; unfold comparenm."; + pp " rewrite <- (spec_cast_l n m x); rewrite <- (spec_cast_r n m y)."; + pp " unfold to_Z; apply (spec_compare (wn_spec (Max.max n m)))."; + pp " Qed."; + pr ""; + + pr " Definition eq_bool x y :="; + pr " match compare x y with"; + pr " | Eq => true"; + pr " | _ => false"; + pr " end."; + pr ""; + + + pr " Theorem spec_eq_bool: forall x y,"; + pr " if eq_bool x y then [x] = [y] else [x] <> [y]."; + pa " Admitted."; + pp " Proof."; + pp " intros x y; unfold eq_bool."; + pp " generalize (spec_compare x y); case compare; auto with zarith."; + pp " Qed."; + pr ""; + + + + pr " (***************************************************************)"; + pr " (* *)"; + pr " (* Multiplication *)"; + pr " (* *)"; + pr " (***************************************************************)"; + pr ""; + + for i = 0 to size do + pr " Definition w%i_mul_c := w%i_op.(znz_mul_c)." i i + done; + pr ""; + + for i = 0 to size do + pr " Definition w%i_mul_add :=" i; + pr " Eval lazy beta delta [w_mul_add] in"; + pr " @w_mul_add w%i %s w%i_succ w%i_add_c w%i_mul_c." i (pz i) i i i + done; + pr ""; + + for i = 0 to size do + pr " Definition w%i_0W := znz_0W w%i_op." i i + done; + pr ""; + + for i = 0 to size do + pr " Definition w%i_WW := znz_WW w%i_op." i i + done; + pr ""; + + for i = 0 to size do + pr " Definition w%i_mul_add_n1 :=" i; + pr " @double_mul_add_n1 w%i %s w%i_WW w%i_0W w%i_mul_add." i (pz i) i i i + done; + pr ""; + + for i = 0 to size - 1 do + pr " Let to_Z%i n :=" i; + pr " match n return word w%i (S n) -> t_ with" i; + for j = 0 to size - i do + if (i + j) == size then + begin + pr " | %i%s => fun x => %sn 0 x" j "%nat" c; + pr " | %i%s => fun x => %sn 1 x" (j + 1) "%nat" c + end + else + pr " | %i%s => fun x => %s%i x" j "%nat" c (i + j + 1) + done; + pr " | _ => fun _ => N0 w_0"; + pr " end."; + pr ""; + done; + + + for i = 0 to size - 1 do + pp "Theorem to_Z%i_spec:" i; + pp " forall n x, Z_of_nat n <= %i -> [to_Z%i n x] = znz_to_Z (nmake_op _ w%i_op (S n)) x." (size + 1 - i) i i; + for j = 1 to size + 2 - i do + pp " intros n; case n; clear n."; + pp " unfold to_Z%i." i; + pp " intros x H; rewrite spec_eval%in%i; auto." i j; + done; + pp " intros n x."; + pp " repeat rewrite inj_S; unfold Zsucc; auto with zarith."; + pp " Qed."; + pp ""; + done; + + + for i = 0 to size do + pr " Definition w%i_mul n x y :=" i; + pr " let (w,r) := w%i_mul_add_n1 (S n) x y %s in" i (pz i); + if i == size then + begin + pr " if w%i_eq0 w then %sn n r" i c; + pr " else %sn (S n) (WW (extend%i n w) r)." c i; + end + else + begin + pr " if w%i_eq0 w then to_Z%i n r" i i; + pr " else to_Z%i (S n) (WW (extend%i n w) r)." i i; + end; + pr ""; + done; + + pr " Definition mulnm n m x y :="; + pr " let mn := Max.max n m in"; + pr " let d := diff n m in"; + pr " let op := make_op mn in"; + pr " reduce_n (S mn) (op.(znz_mul_c)"; + pr " (castm (diff_r n m) (extend_tr x (snd d)))"; + pr " (castm (diff_l n m) (extend_tr y (fst d))))."; + pr ""; + + pr " Definition mul := Eval lazy beta delta [iter0] in "; + pr " (iter0 t_ "; + for i = 0 to size do + pr " (fun x y => reduce_%i (w%i_mul_c x y)) " (i + 1) i; + pr " (fun n x y => w%i_mul n y x)" i; + pr " w%i_mul" i; + done; + pr " mulnm"; + pr " (fun _ => N0 w_0)"; + pr " (fun _ => N0 w_0)"; + pr " )."; + pr ""; + for i = 0 to size do + pp " Let spec_w%i_mul_add: forall x y z," i; + pp " let (q,r) := w%i_mul_add x y z in" i; + pp " znz_to_Z w%i_op q * (base (znz_digits w%i_op)) + znz_to_Z w%i_op r =" i i i; + pp " znz_to_Z w%i_op x * znz_to_Z w%i_op y + znz_to_Z w%i_op z :=" i i i ; + pp " (spec_mul_add w%i_spec)." i; + pp ""; + done; + + for i = 0 to size do + pp " Theorem spec_w%i_mul_add_n1: forall n x y z," i; + pp " let (q,r) := w%i_mul_add_n1 n x y z in" i; + pp " znz_to_Z w%i_op q * (base (znz_digits (nmake_op _ w%i_op n))) +" i i; + pp " znz_to_Z (nmake_op _ w%i_op n) r =" i; + pp " znz_to_Z (nmake_op _ w%i_op n) x * znz_to_Z w%i_op y +" i i; + pp " znz_to_Z w%i_op z." i; + pp " Proof."; + pp " intros n x y z; unfold w%i_mul_add_n1." i; + pp " rewrite nmake_double."; + pp " rewrite digits_doubled."; + pp " change (base (DoubleBase.double_digits (znz_digits w%i_op) n)) with" i; + pp " (DoubleBase.double_wB (znz_digits w%i_op) n)." i; + pp " apply spec_double_mul_add_n1; auto."; + if i == 0 then pp " exact (spec_0 w%i_spec)." i; + pp " exact (spec_WW w%i_spec)." i; + pp " exact (spec_0W w%i_spec)." i; + pp " exact (spec_mul_add w%i_spec)." i; + pp " Qed."; + pp ""; + done; + + pp " Lemma nmake_op_WW: forall ww ww1 n x y,"; + pp " znz_to_Z (nmake_op ww ww1 (S n)) (WW x y) ="; + pp " znz_to_Z (nmake_op ww ww1 n) x * base (znz_digits (nmake_op ww ww1 n)) +"; + pp " znz_to_Z (nmake_op ww ww1 n) y."; + pp " auto."; + pp " Qed."; + pp ""; + + for i = 0 to size do + pp " Lemma extend%in_spec: forall n x1," i; + pp " znz_to_Z (nmake_op _ w%i_op (S n)) (extend%i n x1) = " i i; + pp " znz_to_Z w%i_op x1." i; + pp " Proof."; + pp " intros n1 x2; rewrite nmake_double."; + pp " unfold extend%i." i; + pp " rewrite DoubleBase.spec_extend; auto."; + if i == 0 then + pp " intros l; simpl; unfold w_0; rewrite (spec_0 w0_spec); ring."; + pp " Qed."; + pp ""; + done; + + pp " Lemma spec_muln:"; + pp " forall n (x: word _ (S n)) y,"; + pp " [%sn (S n) (znz_mul_c (make_op n) x y)] = [%sn n x] * [%sn n y]." c c c; + pp " Proof."; + pp " intros n x y; unfold to_Z."; + pp " rewrite <- (spec_mul_c (wn_spec n))."; + pp " rewrite make_op_S."; + pp " case znz_mul_c; auto."; + pp " Qed."; + + pr " Theorem spec_mul: forall x y, [mul x y] = [x] * [y]."; + pa " Admitted."; + pp " Proof."; + for i = 0 to size do + pp " assert(F%i: " i; + pp " forall n x y,"; + if i <> size then + pp0 " Z_of_nat n <= %i -> " (size - i); + pp " [w%i_mul n x y] = eval%in (S n) x * [%s%i y])." i i c i; + if i == size then + pp " intros n x y; unfold w%i_mul." i + else + pp " intros n x y H; unfold w%i_mul." i; + pp " generalize (spec_w%i_mul_add_n1 (S n) x y %s)." i (pz i); + pp " case w%i_mul_add_n1; intros x1 y1." i; + pp " change (znz_to_Z (nmake_op _ w%i_op (S n)) x) with (eval%in (S n) x)." i i; + pp " change (znz_to_Z w%i_op y) with ([%s%i y])." i c i; + if i == 0 then + pp " unfold w_0; rewrite (spec_0 w0_spec); rewrite Zplus_0_r." + else + pp " change (znz_to_Z w%i_op W0) with 0; rewrite Zplus_0_r." i; + pp " intros H1; rewrite <- H1; clear H1."; + pp " generalize (spec_w%i_eq0 x1); case w%i_eq0; intros HH." i i; + pp " unfold to_Z in HH; rewrite HH."; + if i == size then + begin + pp " rewrite spec_eval%in; unfold eval%in, nmake_op%i; auto." i i i; + pp " rewrite spec_eval%in; unfold eval%in, nmake_op%i." i i i + end + else + begin + pp " rewrite to_Z%i_spec; auto with zarith." i; + pp " rewrite to_Z%i_spec; try (rewrite inj_S; auto with zarith)." i + end; + pp " rewrite nmake_op_WW; rewrite extend%in_spec; auto." i; + done; + pp " refine (spec_iter0 t_ (fun x y res => [res] = x * y)"; + for i = 0 to size do + pp " (fun x y => reduce_%i (w%i_mul_c x y)) " (i + 1) i; + pp " (fun n x y => w%i_mul n y x)" i; + pp " w%i_mul _ _ _" i; + done; + pp " mulnm _"; + pp " (fun _ => N0 w_0) _"; + pp " (fun _ => N0 w_0) _"; + pp " )."; + for i = 0 to size do + pp " intros x y; rewrite spec_reduce_%i." (i + 1); + pp " unfold w%i_mul_c, to_Z." i; + pp " generalize (spec_mul_c w%i_spec x y)." i; + pp " intros HH; rewrite <- HH; clear HH; auto."; + if i == size then + begin + pp " intros n x y; rewrite F%i; auto with zarith." i; + pp " intros n x y; rewrite F%i; auto with zarith. " i; + end + else + begin + pp " intros n x y H; rewrite F%i; auto with zarith." i; + pp " intros n x y H; rewrite F%i; auto with zarith. " i; + end; + done; + pp " intros n m x y; unfold mulnm."; + pp " rewrite spec_reduce_n."; + pp " rewrite <- (spec_cast_l n m x)."; + pp " rewrite <- (spec_cast_r n m y)."; + pp " rewrite spec_muln; rewrite spec_cast_l; rewrite spec_cast_r; auto."; + pp " intros x; unfold to_Z, w_0; rewrite (spec_0 w0_spec); ring."; + pp " intros x; unfold to_Z, w_0; rewrite (spec_0 w0_spec); ring."; + pp " Qed."; + pr ""; + + pr " (***************************************************************)"; + pr " (* *)"; + pr " (* Square *)"; + pr " (* *)"; + pr " (***************************************************************)"; + pr ""; + + for i = 0 to size do + pr " Definition w%i_square_c := w%i_op.(znz_square_c)." i i + done; + pr ""; + + pr " Definition square x :="; + pr " match x with"; + pr " | %s0 wx => reduce_1 (w0_square_c wx)" c; + for i = 1 to size - 1 do + pr " | %s%i wx => %s%i (w%i_square_c wx)" c i c (i+1) i + done; + pr " | %s%i wx => %sn 0 (w%i_square_c wx)" c size c size; + pr " | %sn n wx =>" c; + pr " let op := make_op n in"; + pr " %sn (S n) (op.(znz_square_c) wx)" c; + pr " end."; + pr ""; + + pr " Theorem spec_square: forall x, [square x] = [x] * [x]."; + pa " Admitted."; + pp " Proof."; + pp " intros x; case x; unfold square; clear x."; + pp " intros x; rewrite spec_reduce_1; unfold to_Z."; + pp " exact (spec_square_c w%i_spec x)." 0; + for i = 1 to size do + pp " intros x; unfold to_Z."; + pp " exact (spec_square_c w%i_spec x)." i; + done; + pp " intros n x; unfold to_Z."; + pp " rewrite make_op_S."; + pp " exact (spec_square_c (wn_spec n) x)."; + pp "Qed."; + pr ""; + + + pr " (***************************************************************)"; + pr " (* *)"; + pr " (* Power *)"; + pr " (* *)"; + pr " (***************************************************************)"; + pr ""; + + pr " Fixpoint power_pos (x:%s) (p:positive) {struct p} : %s :=" t t; + pr " match p with"; + pr " | xH => x"; + pr " | xO p => square (power_pos x p)"; + pr " | xI p => mul (square (power_pos x p)) x"; + pr " end."; + pr ""; + + pr " Theorem spec_power_pos: forall x n, [power_pos x n] = [x] ^ Zpos n."; + pa " Admitted."; + pp " Proof."; + pp " intros x n; generalize x; elim n; clear n x; simpl power_pos."; + pp " intros; rewrite spec_mul; rewrite spec_square; rewrite H."; + pp " rewrite Zpos_xI; rewrite Zpower_exp; auto with zarith."; + pp " rewrite (Zmult_comm 2); rewrite Zpower_mult; auto with zarith."; + pp " rewrite Zpower_2; rewrite Zpower_1_r; auto."; + pp " intros; rewrite spec_square; rewrite H."; + pp " rewrite Zpos_xO; auto with zarith."; + pp " rewrite (Zmult_comm 2); rewrite Zpower_mult; auto with zarith."; + pp " rewrite Zpower_2; auto."; + pp " intros; rewrite Zpower_1_r; auto."; + pp " Qed."; + pp ""; + pr ""; + + pr " (***************************************************************)"; + pr " (* *)"; + pr " (* Square root *)"; + pr " (* *)"; + pr " (***************************************************************)"; + pr ""; + + for i = 0 to size do + pr " Definition w%i_sqrt := w%i_op.(znz_sqrt)." i i + done; + pr ""; + + pr " Definition sqrt x :="; + pr " match x with"; + for i = 0 to size do + pr " | %s%i wx => reduce_%i (w%i_sqrt wx)" c i i i; + done; + pr " | %sn n wx =>" c; + pr " let op := make_op n in"; + pr " reduce_n n (op.(znz_sqrt) wx)"; + pr " end."; + pr ""; + + pr " Theorem spec_sqrt: forall x, [sqrt x] ^ 2 <= [x] < ([sqrt x] + 1) ^ 2."; + pa " Admitted."; + pp " Proof."; + pp " intros x; unfold sqrt; case x; clear x."; + for i = 0 to size do + pp " intros x; rewrite spec_reduce_%i; exact (spec_sqrt w%i_spec x)." i i; + done; + pp " intros n x; rewrite spec_reduce_n; exact (spec_sqrt (wn_spec n) x)."; + pp " Qed."; + pr ""; + + + pr " (***************************************************************)"; + pr " (* *)"; + pr " (* Division *)"; + pr " (* *)"; + pr " (***************************************************************)"; + pr ""; + + for i = 0 to size do + pr " Definition w%i_div_gt := w%i_op.(znz_div_gt)." i i + done; + pr ""; + + pp " Let spec_divn1 ww (ww_op: znz_op ww) (ww_spec: znz_spec ww_op) := "; + pp " (spec_double_divn1 "; + pp " ww_op.(znz_zdigits) ww_op.(znz_0)"; + pp " (znz_WW ww_op) ww_op.(znz_head0)"; + pp " ww_op.(znz_add_mul_div) ww_op.(znz_div21)"; + pp " ww_op.(znz_compare) ww_op.(znz_sub) (znz_to_Z ww_op)"; + pp " (spec_to_Z ww_spec) "; + pp " (spec_zdigits ww_spec)"; + pp " (spec_0 ww_spec) (spec_WW ww_spec) (spec_head0 ww_spec)"; + pp " (spec_add_mul_div ww_spec) (spec_div21 ww_spec) "; + pp " (CyclicAxioms.spec_compare ww_spec) (CyclicAxioms.spec_sub ww_spec))."; + pp ""; + + for i = 0 to size do + pr " Definition w%i_divn1 n x y :=" i; + pr " let (u, v) :="; + pr " double_divn1 w%i_op.(znz_zdigits) w%i_op.(znz_0)" i i; + pr " (znz_WW w%i_op) w%i_op.(znz_head0)" i i; + pr " w%i_op.(znz_add_mul_div) w%i_op.(znz_div21)" i i; + pr " w%i_op.(znz_compare) w%i_op.(znz_sub) (S n) x y in" i i; + if i == size then + pr " (%sn _ u, %s%i v)." c c i + else + pr " (to_Z%i _ u, %s%i v)." i c i; + done; + pr ""; + + for i = 0 to size do + pp " Lemma spec_get_end%i: forall n x y," i; + pp " eval%in n x <= [%s%i y] -> " i c i; + pp " [%s%i (DoubleBase.get_low %s n x)] = eval%in n x." c i (pz i) i; + pp " Proof."; + pp " intros n x y H."; + pp " rewrite spec_double_eval%in; unfold to_Z." i; + pp " apply DoubleBase.spec_get_low."; + pp " exact (spec_0 w%i_spec)." i; + pp " exact (spec_to_Z w%i_spec)." i; + pp " apply Zle_lt_trans with [%s%i y]; auto." c i; + pp " rewrite <- spec_double_eval%in; auto." i; + pp " unfold to_Z; case (spec_to_Z w%i_spec y); auto." i; + pp " Qed."; + pp ""; + done; + + for i = 0 to size do + pr " Let div_gt%i x y := let (u,v) := (w%i_div_gt x y) in (reduce_%i u, reduce_%i v)." i i i i; + done; + pr ""; + + + pr " Let div_gtnm n m wx wy :="; + pr " let mn := Max.max n m in"; + pr " let d := diff n m in"; + pr " let op := make_op mn in"; + pr " let (q, r):= op.(znz_div_gt)"; + pr " (castm (diff_r n m) (extend_tr wx (snd d)))"; + pr " (castm (diff_l n m) (extend_tr wy (fst d))) in"; + pr " (reduce_n mn q, reduce_n mn r)."; + pr ""; + + pr " Definition div_gt := Eval lazy beta delta [iter] in"; + pr " (iter _ "; + for i = 0 to size do + pr " div_gt%i" i; + pr " (fun n x y => div_gt%i x (DoubleBase.get_low %s (S n) y))" i (pz i); + pr " w%i_divn1" i; + done; + pr " div_gtnm)."; + pr ""; + + pr " Theorem spec_div_gt: forall x y,"; + pr " [x] > [y] -> 0 < [y] ->"; + pr " let (q,r) := div_gt x y in"; + pr " [q] = [x] / [y] /\\ [r] = [x] mod [y]."; + pa " Admitted."; + pp " Proof."; + pp " assert (FO:"; + pp " forall x y, [x] > [y] -> 0 < [y] ->"; + pp " let (q,r) := div_gt x y in"; + pp " [x] = [q] * [y] + [r] /\\ 0 <= [r] < [y])."; + pp " refine (spec_iter (t_*t_) (fun x y res => x > y -> 0 < y ->"; + pp " let (q,r) := res in"; + pp " x = [q] * y + [r] /\\ 0 <= [r] < y)"; + for i = 0 to size do + pp " div_gt%i" i; + pp " (fun n x y => div_gt%i x (DoubleBase.get_low %s (S n) y))" i (pz i); + pp " w%i_divn1 _ _ _" i; + done; + pp " div_gtnm _)."; + for i = 0 to size do + pp " intros x y H1 H2; unfold div_gt%i, w%i_div_gt." i i; + pp " generalize (spec_div_gt w%i_spec x y H1 H2); case znz_div_gt." i; + pp " intros xx yy; repeat rewrite spec_reduce_%i; auto." i; + if i == size then + pp " intros n x y H2 H3; unfold div_gt%i, w%i_div_gt." i i + else + pp " intros n x y H1 H2 H3; unfold div_gt%i, w%i_div_gt." i i; + pp " generalize (spec_div_gt w%i_spec x " i; + pp " (DoubleBase.get_low %s (S n) y))." (pz i); + pp0 " "; + for j = 0 to i do + pp0 "unfold w%i; " (i-j); + done; + pp "case znz_div_gt."; + pp " intros xx yy H4; repeat rewrite spec_reduce_%i." i; + pp " generalize (spec_get_end%i (S n) y x); unfold to_Z; intros H5." i; + pp " unfold to_Z in H2; rewrite H5 in H4; auto with zarith."; + if i == size then + pp " intros n x y H2 H3." + else + pp " intros n x y H1 H2 H3."; + pp " generalize"; + pp " (spec_divn1 w%i w%i_op w%i_spec (S n) x y H3)." i i i; + pp0 " unfold w%i_divn1; " i; + for j = 0 to i do + pp0 "unfold w%i; " (i-j); + done; + pp "case double_divn1."; + pp " intros xx yy H4."; + if i == size then + begin + pp " repeat rewrite <- spec_double_eval%in in H4; auto." i; + pp " rewrite spec_eval%in; auto." i; + end + else + begin + pp " rewrite to_Z%i_spec; auto with zarith." i; + pp " repeat rewrite <- spec_double_eval%in in H4; auto." i; + end; + done; + pp " intros n m x y H1 H2; unfold div_gtnm."; + pp " generalize (spec_div_gt (wn_spec (Max.max n m))"; + pp " (castm (diff_r n m)"; + pp " (extend_tr x (snd (diff n m))))"; + pp " (castm (diff_l n m)"; + pp " (extend_tr y (fst (diff n m)))))."; + pp " case znz_div_gt."; + pp " intros xx yy HH."; + pp " repeat rewrite spec_reduce_n."; + pp " rewrite <- (spec_cast_l n m x)."; + pp " rewrite <- (spec_cast_r n m y)."; + pp " unfold to_Z; apply HH."; + pp " rewrite <- (spec_cast_l n m x) in H1; auto."; + pp " rewrite <- (spec_cast_r n m y) in H1; auto."; + pp " rewrite <- (spec_cast_r n m y) in H2; auto."; + pp " intros x y H1 H2; generalize (FO x y H1 H2); case div_gt."; + pp " intros q r (H3, H4); split."; + pp " apply (Zdiv_unique [x] [y] [q] [r]); auto."; + pp " rewrite Zmult_comm; auto."; + pp " apply (Zmod_unique [x] [y] [q] [r]); auto."; + pp " rewrite Zmult_comm; auto."; + pp " Qed."; + pr ""; + + pr " Definition div_eucl x y :="; + pr " match compare x y with"; + pr " | Eq => (one, zero)"; + pr " | Lt => (zero, x)"; + pr " | Gt => div_gt x y"; + pr " end."; + pr ""; + + pr " Theorem spec_div_eucl: forall x y,"; + pr " 0 < [y] ->"; + pr " let (q,r) := div_eucl x y in"; + pr " ([q], [r]) = Zdiv_eucl [x] [y]."; + pa " Admitted."; + pp " Proof."; + pp " assert (F0: [zero] = 0)."; + pp " exact (spec_0 w0_spec)."; + pp " assert (F1: [one] = 1)."; + pp " exact (spec_1 w0_spec)."; + pp " intros x y H; generalize (spec_compare x y);"; + pp " unfold div_eucl; case compare; try rewrite F0;"; + pp " try rewrite F1; intros; auto with zarith."; + pp " rewrite H0; generalize (Z_div_same [y] (Zlt_gt _ _ H))"; + pp " (Z_mod_same [y] (Zlt_gt _ _ H));"; + pp " unfold Zdiv, Zmod; case Zdiv_eucl; intros; subst; auto."; + pp " assert (F2: 0 <= [x] < [y])."; + pp " generalize (spec_pos x); auto."; + pp " generalize (Zdiv_small _ _ F2)"; + pp " (Zmod_small _ _ F2);"; + pp " unfold Zdiv, Zmod; case Zdiv_eucl; intros; subst; auto."; + pp " generalize (spec_div_gt _ _ H0 H); auto."; + pp " unfold Zdiv, Zmod; case Zdiv_eucl; case div_gt."; + pp " intros a b c d (H1, H2); subst; auto."; + pp " Qed."; + pr ""; + + pr " Definition div x y := fst (div_eucl x y)."; + pr ""; + + pr " Theorem spec_div:"; + pr " forall x y, 0 < [y] -> [div x y] = [x] / [y]."; + pa " Admitted."; + pp " Proof."; + pp " intros x y H1; unfold div; generalize (spec_div_eucl x y H1);"; + pp " case div_eucl; simpl fst."; + pp " intros xx yy; unfold Zdiv; case Zdiv_eucl; intros qq rr H; "; + pp " injection H; auto."; + pp " Qed."; + pr ""; + + pr " (***************************************************************)"; + pr " (* *)"; + pr " (* Modulo *)"; + pr " (* *)"; + pr " (***************************************************************)"; + pr ""; + + for i = 0 to size do + pr " Definition w%i_mod_gt := w%i_op.(znz_mod_gt)." i i + done; + pr ""; + + for i = 0 to size do + pr " Definition w%i_modn1 :=" i; + pr " double_modn1 w%i_op.(znz_zdigits) w%i_op.(znz_0)" i i; + pr " w%i_op.(znz_head0) w%i_op.(znz_add_mul_div) w%i_op.(znz_div21)" i i i; + pr " w%i_op.(znz_compare) w%i_op.(znz_sub)." i i; + done; + pr ""; + + pr " Let mod_gtnm n m wx wy :="; + pr " let mn := Max.max n m in"; + pr " let d := diff n m in"; + pr " let op := make_op mn in"; + pr " reduce_n mn (op.(znz_mod_gt)"; + pr " (castm (diff_r n m) (extend_tr wx (snd d)))"; + pr " (castm (diff_l n m) (extend_tr wy (fst d))))."; + pr ""; + + pr " Definition mod_gt := Eval lazy beta delta[iter] in"; + pr " (iter _ "; + for i = 0 to size do + pr " (fun x y => reduce_%i (w%i_mod_gt x y))" i i; + pr " (fun n x y => reduce_%i (w%i_mod_gt x (DoubleBase.get_low %s (S n) y)))" i i (pz i); + pr " (fun n x y => reduce_%i (w%i_modn1 (S n) x y))" i i; + done; + pr " mod_gtnm)."; + pr ""; + + pp " Let spec_modn1 ww (ww_op: znz_op ww) (ww_spec: znz_spec ww_op) := "; + pp " (spec_double_modn1 "; + pp " ww_op.(znz_zdigits) ww_op.(znz_0)"; + pp " (znz_WW ww_op) ww_op.(znz_head0)"; + pp " ww_op.(znz_add_mul_div) ww_op.(znz_div21)"; + pp " ww_op.(znz_compare) ww_op.(znz_sub) (znz_to_Z ww_op)"; + pp " (spec_to_Z ww_spec) "; + pp " (spec_zdigits ww_spec)"; + pp " (spec_0 ww_spec) (spec_WW ww_spec) (spec_head0 ww_spec)"; + pp " (spec_add_mul_div ww_spec) (spec_div21 ww_spec) "; + pp " (CyclicAxioms.spec_compare ww_spec) (CyclicAxioms.spec_sub ww_spec))."; + pp ""; + + pr " Theorem spec_mod_gt:"; + pr " forall x y, [x] > [y] -> 0 < [y] -> [mod_gt x y] = [x] mod [y]."; + pa " Admitted."; + pp " Proof."; + pp " refine (spec_iter _ (fun x y res => x > y -> 0 < y ->"; + pp " [res] = x mod y)"; + for i = 0 to size do + pp " (fun x y => reduce_%i (w%i_mod_gt x y))" i i; + pp " (fun n x y => reduce_%i (w%i_mod_gt x (DoubleBase.get_low %s (S n) y)))" i i (pz i); + pp " (fun n x y => reduce_%i (w%i_modn1 (S n) x y)) _ _ _" i i; + done; + pp " mod_gtnm _)."; + for i = 0 to size do + pp " intros x y H1 H2; rewrite spec_reduce_%i." i; + pp " exact (spec_mod_gt w%i_spec x y H1 H2)." i; + if i == size then + pp " intros n x y H2 H3; rewrite spec_reduce_%i." i + else + pp " intros n x y H1 H2 H3; rewrite spec_reduce_%i." i; + pp " unfold w%i_mod_gt." i; + pp " rewrite <- (spec_get_end%i (S n) y x); auto with zarith." i; + pp " unfold to_Z; apply (spec_mod_gt w%i_spec); auto." i; + pp " rewrite <- (spec_get_end%i (S n) y x) in H2; auto with zarith." i; + pp " rewrite <- (spec_get_end%i (S n) y x) in H3; auto with zarith." i; + if i == size then + pp " intros n x y H2 H3; rewrite spec_reduce_%i." i + else + pp " intros n x y H1 H2 H3; rewrite spec_reduce_%i." i; + pp " unfold w%i_modn1, to_Z; rewrite spec_double_eval%in." i i; + pp " apply (spec_modn1 _ _ w%i_spec); auto." i; + done; + pp " intros n m x y H1 H2; unfold mod_gtnm."; + pp " repeat rewrite spec_reduce_n."; + pp " rewrite <- (spec_cast_l n m x)."; + pp " rewrite <- (spec_cast_r n m y)."; + pp " unfold to_Z; apply (spec_mod_gt (wn_spec (Max.max n m)))."; + pp " rewrite <- (spec_cast_l n m x) in H1; auto."; + pp " rewrite <- (spec_cast_r n m y) in H1; auto."; + pp " rewrite <- (spec_cast_r n m y) in H2; auto."; + pp " Qed."; + pr ""; + + pr " Definition modulo x y := "; + pr " match compare x y with"; + pr " | Eq => zero"; + pr " | Lt => x"; + pr " | Gt => mod_gt x y"; + pr " end."; + pr ""; + + pr " Theorem spec_modulo:"; + pr " forall x y, 0 < [y] -> [modulo x y] = [x] mod [y]."; + pa " Admitted."; + pp " Proof."; + pp " assert (F0: [zero] = 0)."; + pp " exact (spec_0 w0_spec)."; + pp " assert (F1: [one] = 1)."; + pp " exact (spec_1 w0_spec)."; + pp " intros x y H; generalize (spec_compare x y);"; + pp " unfold modulo; case compare; try rewrite F0;"; + pp " try rewrite F1; intros; try split; auto with zarith."; + pp " rewrite H0; apply sym_equal; apply Z_mod_same; auto with zarith."; + pp " apply sym_equal; apply Zmod_small; auto with zarith."; + pp " generalize (spec_pos x); auto with zarith."; + pp " apply spec_mod_gt; auto."; + pp " Qed."; + pr ""; + + pr " (***************************************************************)"; + pr " (* *)"; + pr " (* Gcd *)"; + pr " (* *)"; + pr " (***************************************************************)"; + pr ""; + + pr " Definition digits x :="; + pr " match x with"; + for i = 0 to size do + pr " | %s%i _ => w%i_op.(znz_digits)" c i i; + done; + pr " | %sn n _ => (make_op n).(znz_digits)" c; + pr " end."; + pr ""; + + pr " Theorem spec_digits: forall x, 0 <= [x] < 2 ^ Zpos (digits x)."; + pa " Admitted."; + pp " Proof."; + pp " intros x; case x; clear x."; + for i = 0 to size do + pp " intros x; unfold to_Z, digits;"; + pp " generalize (spec_to_Z w%i_spec x); unfold base; intros H; exact H." i; + done; + pp " intros n x; unfold to_Z, digits;"; + pp " generalize (spec_to_Z (wn_spec n) x); unfold base; intros H; exact H."; + pp " Qed."; + pr ""; + + pr " Definition gcd_gt_body a b cont :="; + pr " match compare b zero with"; + pr " | Gt =>"; + pr " let r := mod_gt a b in"; + pr " match compare r zero with"; + pr " | Gt => cont r (mod_gt b r)"; + pr " | _ => b"; + pr " end"; + pr " | _ => a"; + pr " end."; + pr ""; + + pp " Theorem Zspec_gcd_gt_body: forall a b cont p,"; + pp " [a] > [b] -> [a] < 2 ^ p ->"; + pp " (forall a1 b1, [a1] < 2 ^ (p - 1) -> [a1] > [b1] ->"; + pp " Zis_gcd [a1] [b1] [cont a1 b1]) -> "; + pp " Zis_gcd [a] [b] [gcd_gt_body a b cont]."; + pp " Proof."; + pp " assert (F1: [zero] = 0)."; + pp " unfold zero, w_0, to_Z; rewrite (spec_0 w0_spec); auto."; + pp " intros a b cont p H2 H3 H4; unfold gcd_gt_body."; + pp " generalize (spec_compare b zero); case compare; try rewrite F1."; + pp " intros HH; rewrite HH; apply Zis_gcd_0."; + pp " intros HH; absurd (0 <= [b]); auto with zarith."; + pp " case (spec_digits b); auto with zarith."; + pp " intros H5; generalize (spec_compare (mod_gt a b) zero); "; + pp " case compare; try rewrite F1."; + pp " intros H6; rewrite <- (Zmult_1_r [b])."; + pp " rewrite (Z_div_mod_eq [a] [b]); auto with zarith."; + pp " rewrite <- spec_mod_gt; auto with zarith."; + pp " rewrite H6; rewrite Zplus_0_r."; + pp " apply Zis_gcd_mult; apply Zis_gcd_1."; + pp " intros; apply False_ind."; + pp " case (spec_digits (mod_gt a b)); auto with zarith."; + pp " intros H6; apply DoubleDiv.Zis_gcd_mod; auto with zarith."; + pp " apply DoubleDiv.Zis_gcd_mod; auto with zarith."; + pp " rewrite <- spec_mod_gt; auto with zarith."; + pp " assert (F2: [b] > [mod_gt a b])."; + pp " case (Z_mod_lt [a] [b]); auto with zarith."; + pp " repeat rewrite <- spec_mod_gt; auto with zarith."; + pp " assert (F3: [mod_gt a b] > [mod_gt b (mod_gt a b)])."; + pp " case (Z_mod_lt [b] [mod_gt a b]); auto with zarith."; + pp " rewrite <- spec_mod_gt; auto with zarith."; + pp " repeat rewrite <- spec_mod_gt; auto with zarith."; + pp " apply H4; auto with zarith."; + pp " apply Zmult_lt_reg_r with 2; auto with zarith."; + pp " apply Zle_lt_trans with ([b] + [mod_gt a b]); auto with zarith."; + pp " apply Zle_lt_trans with (([a]/[b]) * [b] + [mod_gt a b]); auto with zarith."; + pp " apply Zplus_le_compat_r."; + pp " pattern [b] at 1; rewrite <- (Zmult_1_l [b])."; + pp " apply Zmult_le_compat_r; auto with zarith."; + pp " case (Zle_lt_or_eq 0 ([a]/[b])); auto with zarith."; + pp " intros HH; rewrite (Z_div_mod_eq [a] [b]) in H2;"; + pp " try rewrite <- HH in H2; auto with zarith."; + pp " case (Z_mod_lt [a] [b]); auto with zarith."; + pp " rewrite Zmult_comm; rewrite spec_mod_gt; auto with zarith."; + pp " rewrite <- Z_div_mod_eq; auto with zarith."; + pp " pattern 2 at 2; rewrite <- (Zpower_1_r 2)."; + pp " rewrite <- Zpower_exp; auto with zarith."; + pp " ring_simplify (p - 1 + 1); auto."; + pp " case (Zle_lt_or_eq 0 p); auto with zarith."; + pp " generalize H3; case p; simpl Zpower; auto with zarith."; + pp " intros HH; generalize H3; rewrite <- HH; simpl Zpower; auto with zarith."; + pp " Qed."; + pp ""; + + pr " Fixpoint gcd_gt_aux (p:positive) (cont:t->t->t) (a b:t) {struct p} : t :="; + pr " gcd_gt_body a b"; + pr " (fun a b =>"; + pr " match p with"; + pr " | xH => cont a b"; + pr " | xO p => gcd_gt_aux p (gcd_gt_aux p cont) a b"; + pr " | xI p => gcd_gt_aux p (gcd_gt_aux p cont) a b"; + pr " end)."; + pr ""; + + pp " Theorem Zspec_gcd_gt_aux: forall p n a b cont,"; + pp " [a] > [b] -> [a] < 2 ^ (Zpos p + n) ->"; + pp " (forall a1 b1, [a1] < 2 ^ n -> [a1] > [b1] ->"; + pp " Zis_gcd [a1] [b1] [cont a1 b1]) ->"; + pp " Zis_gcd [a] [b] [gcd_gt_aux p cont a b]."; + pp " intros p; elim p; clear p."; + pp " intros p Hrec n a b cont H2 H3 H4."; + pp " unfold gcd_gt_aux; apply Zspec_gcd_gt_body with (Zpos (xI p) + n); auto."; + pp " intros a1 b1 H6 H7."; + pp " apply Hrec with (Zpos p + n); auto."; + pp " replace (Zpos p + (Zpos p + n)) with"; + pp " (Zpos (xI p) + n - 1); auto."; + pp " rewrite Zpos_xI; ring."; + pp " intros a2 b2 H9 H10."; + pp " apply Hrec with n; auto."; + pp " intros p Hrec n a b cont H2 H3 H4."; + pp " unfold gcd_gt_aux; apply Zspec_gcd_gt_body with (Zpos (xO p) + n); auto."; + pp " intros a1 b1 H6 H7."; + pp " apply Hrec with (Zpos p + n - 1); auto."; + pp " replace (Zpos p + (Zpos p + n - 1)) with"; + pp " (Zpos (xO p) + n - 1); auto."; + pp " rewrite Zpos_xO; ring."; + pp " intros a2 b2 H9 H10."; + pp " apply Hrec with (n - 1); auto."; + pp " replace (Zpos p + (n - 1)) with"; + pp " (Zpos p + n - 1); auto with zarith."; + pp " intros a3 b3 H12 H13; apply H4; auto with zarith."; + pp " apply Zlt_le_trans with (1 := H12)."; + pp " case (Zle_or_lt 1 n); intros HH."; + pp " apply Zpower_le_monotone; auto with zarith."; + pp " apply Zle_trans with 0; auto with zarith."; + pp " assert (HH1: n - 1 < 0); auto with zarith."; + pp " generalize HH1; case (n - 1); auto with zarith."; + pp " intros p1 HH2; discriminate."; + pp " intros n a b cont H H2 H3."; + pp " simpl gcd_gt_aux."; + pp " apply Zspec_gcd_gt_body with (n + 1); auto with zarith."; + pp " rewrite Zplus_comm; auto."; + pp " intros a1 b1 H5 H6; apply H3; auto."; + pp " replace n with (n + 1 - 1); auto; try ring."; + pp " Qed."; + pp ""; + + pr " Definition gcd_cont a b :="; + pr " match compare one b with"; + pr " | Eq => one"; + pr " | _ => a"; + pr " end."; + pr ""; + + pr " Definition gcd_gt a b := gcd_gt_aux (digits a) gcd_cont a b."; + pr ""; + + pr " Theorem spec_gcd_gt: forall a b,"; + pr " [a] > [b] -> [gcd_gt a b] = Zgcd [a] [b]."; + pa " Admitted."; + pp " Proof."; + pp " intros a b H2."; + pp " case (spec_digits (gcd_gt a b)); intros H3 H4."; + pp " case (spec_digits a); intros H5 H6."; + pp " apply sym_equal; apply Zis_gcd_gcd; auto with zarith."; + pp " unfold gcd_gt; apply Zspec_gcd_gt_aux with 0; auto with zarith."; + pp " intros a1 a2; rewrite Zpower_0_r."; + pp " case (spec_digits a2); intros H7 H8;"; + pp " intros; apply False_ind; auto with zarith."; + pp " Qed."; + pr ""; + + pr " Definition gcd a b :="; + pr " match compare a b with"; + pr " | Eq => a"; + pr " | Lt => gcd_gt b a"; + pr " | Gt => gcd_gt a b"; + pr " end."; + pr ""; + + pr " Theorem spec_gcd: forall a b, [gcd a b] = Zgcd [a] [b]."; + pa " Admitted."; + pp " Proof."; + pp " intros a b."; + pp " case (spec_digits a); intros H1 H2."; + pp " case (spec_digits b); intros H3 H4."; + pp " unfold gcd; generalize (spec_compare a b); case compare."; + pp " intros HH; rewrite HH; apply sym_equal; apply Zis_gcd_gcd; auto."; + pp " apply Zis_gcd_refl."; + pp " intros; apply trans_equal with (Zgcd [b] [a])."; + pp " apply spec_gcd_gt; auto with zarith."; + pp " apply Zis_gcd_gcd; auto with zarith."; + pp " apply Zgcd_is_pos."; + pp " apply Zis_gcd_sym; apply Zgcd_is_gcd."; + pp " intros; apply spec_gcd_gt; auto."; + pp " Qed."; + pr ""; + + + pr " (***************************************************************)"; + pr " (* *)"; + pr " (* Conversion *)"; + pr " (* *)"; + pr " (***************************************************************)"; + pr ""; + + pr " Definition pheight p := "; + pr " Peano.pred (nat_of_P (get_height w0_op.(znz_digits) (plength p)))."; + pr ""; + + pr " Theorem pheight_correct: forall p, "; + pr " Zpos p < 2 ^ (Zpos (znz_digits w0_op) * 2 ^ (Z_of_nat (pheight p)))."; + pr " Proof."; + pr " intros p; unfold pheight."; + pr " assert (F1: forall x, Z_of_nat (Peano.pred (nat_of_P x)) = Zpos x - 1)."; + pr " intros x."; + pr " assert (Zsucc (Z_of_nat (Peano.pred (nat_of_P x))) = Zpos x); auto with zarith."; + pr " rewrite <- inj_S."; + pr " rewrite <- (fun x => S_pred x 0); auto with zarith."; + pr " rewrite Zpos_eq_Z_of_nat_o_nat_of_P; auto."; + pr " apply lt_le_trans with 1%snat; auto with zarith." "%"; + pr " exact (le_Pmult_nat x 1)."; + pr " rewrite F1; clear F1."; + pr " assert (F2:= (get_height_correct (znz_digits w0_op) (plength p)))."; + pr " apply Zlt_le_trans with (Zpos (Psucc p))."; + pr " rewrite Zpos_succ_morphism; auto with zarith."; + pr " apply Zle_trans with (1 := plength_pred_correct (Psucc p))."; + pr " rewrite Ppred_succ."; + pr " apply Zpower_le_monotone; auto with zarith."; + pr " Qed."; + pr ""; + + pr " Definition of_pos x :="; + pr " let h := pheight x in"; + pr " match h with"; + for i = 0 to size do + pr " | %i%snat => reduce_%i (snd (w%i_op.(znz_of_pos) x))" i "%" i i; + done; + pr " | _ =>"; + pr " let n := minus h %i in" (size + 1); + pr " reduce_n n (snd ((make_op n).(znz_of_pos) x))"; + pr " end."; + pr ""; + + pr " Theorem spec_of_pos: forall x,"; + pr " [of_pos x] = Zpos x."; + pa " Admitted."; + pp " Proof."; + pp " assert (F := spec_more_than_1_digit w0_spec)."; + pp " intros x; unfold of_pos; case_eq (pheight x)."; + for i = 0 to size do + if i <> 0 then + pp " intros n; case n; clear n."; + pp " intros H1; rewrite spec_reduce_%i; unfold to_Z." i; + pp " apply (znz_of_pos_correct w%i_spec)." i; + pp " apply Zlt_le_trans with (1 := pheight_correct x)."; + pp " rewrite H1; simpl Z_of_nat; change (2^%i) with (%s)." i (gen2 i); + pp " unfold base."; + pp " apply Zpower_le_monotone; split; auto with zarith."; + if i <> 0 then + begin + pp " rewrite Zmult_comm; repeat rewrite <- Zmult_assoc."; + pp " repeat rewrite <- Zpos_xO."; + pp " refine (Zle_refl _)."; + end; + done; + pp " intros n."; + pp " intros H1; rewrite spec_reduce_n; unfold to_Z."; + pp " simpl minus; rewrite <- minus_n_O."; + pp " apply (znz_of_pos_correct (wn_spec n))."; + pp " apply Zlt_le_trans with (1 := pheight_correct x)."; + pp " unfold base."; + pp " apply Zpower_le_monotone; auto with zarith."; + pp " split; auto with zarith."; + pp " rewrite H1."; + pp " elim n; clear n H1."; + pp " simpl Z_of_nat; change (2^%i) with (%s)." (size + 1) (gen2 (size + 1)); + pp " rewrite Zmult_comm; repeat rewrite <- Zmult_assoc."; + pp " repeat rewrite <- Zpos_xO."; + pp " refine (Zle_refl _)."; + pp " intros n Hrec."; + pp " rewrite make_op_S."; + pp " change (@znz_digits (word _ (S (S n))) (mk_zn2z_op_karatsuba (make_op n))) with"; + pp " (xO (znz_digits (make_op n)))."; + pp " rewrite (fun x y => (Zpos_xO (@znz_digits x y)))."; + pp " rewrite inj_S; unfold Zsucc."; + pp " rewrite Zplus_comm; rewrite Zpower_exp; auto with zarith."; + pp " rewrite Zpower_1_r."; + pp " assert (tmp: forall x y z, x * (y * z) = y * (x * z));"; + pp " [intros; ring | rewrite tmp; clear tmp]."; + pp " apply Zmult_le_compat_l; auto with zarith."; + pp " Qed."; + pr ""; + + pr " Definition of_N x :="; + pr " match x with"; + pr " | BinNat.N0 => zero"; + pr " | Npos p => of_pos p"; + pr " end."; + pr ""; + + pr " Theorem spec_of_N: forall x,"; + pr " [of_N x] = Z_of_N x."; + pa " Admitted."; + pp " Proof."; + pp " intros x; case x."; + pp " simpl of_N."; + pp " unfold zero, w_0, to_Z; rewrite (spec_0 w0_spec); auto."; + pp " intros p; exact (spec_of_pos p)."; + pp " Qed."; + pr ""; + + pr " (***************************************************************)"; + pr " (* *)"; + pr " (* Shift *)"; + pr " (* *)"; + pr " (***************************************************************)"; + pr ""; + + (* Head0 *) + pr " Definition head0 w := match w with"; + for i = 0 to size do + pr " | %s%i w=> reduce_%i (w%i_op.(znz_head0) w)" c i i i; + done; + pr " | %sn n w=> reduce_n n ((make_op n).(znz_head0) w)" c; + pr " end."; + pr ""; + + pr " Theorem spec_head00: forall x, [x] = 0 ->[head0 x] = Zpos (digits x)."; + pa " Admitted."; + pp " Proof."; + pp " intros x; case x; unfold head0; clear x."; + for i = 0 to size do + pp " intros x; rewrite spec_reduce_%i; exact (spec_head00 w%i_spec x)." i i; + done; + pp " intros n x; rewrite spec_reduce_n; exact (spec_head00 (wn_spec n) x)."; + pp " Qed."; + pr " "; + + pr " Theorem spec_head0: forall x, 0 < [x] ->"; + pr " 2 ^ (Zpos (digits x) - 1) <= 2 ^ [head0 x] * [x] < 2 ^ Zpos (digits x)."; + pa " Admitted."; + pp " Proof."; + pp " assert (F0: forall x, (x - 1) + 1 = x)."; + pp " intros; ring. "; + pp " intros x; case x; unfold digits, head0; clear x."; + for i = 0 to size do + pp " intros x Hx; rewrite spec_reduce_%i." i; + pp " assert (F1:= spec_more_than_1_digit w%i_spec)." i; + pp " generalize (spec_head0 w%i_spec x Hx)." i; + pp " unfold base."; + pp " pattern (Zpos (znz_digits w%i_op)) at 1; " i; + pp " rewrite <- (fun x => (F0 (Zpos x)))."; + pp " rewrite Zpower_exp; auto with zarith."; + pp " rewrite Zpower_1_r; rewrite Z_div_mult; auto with zarith."; + done; + pp " intros n x Hx; rewrite spec_reduce_n."; + pp " assert (F1:= spec_more_than_1_digit (wn_spec n))."; + pp " generalize (spec_head0 (wn_spec n) x Hx)."; + pp " unfold base."; + pp " pattern (Zpos (znz_digits (make_op n))) at 1; "; + pp " rewrite <- (fun x => (F0 (Zpos x)))."; + pp " rewrite Zpower_exp; auto with zarith."; + pp " rewrite Zpower_1_r; rewrite Z_div_mult; auto with zarith."; + pp " Qed."; + pr ""; + + + (* Tail0 *) + pr " Definition tail0 w := match w with"; + for i = 0 to size do + pr " | %s%i w=> reduce_%i (w%i_op.(znz_tail0) w)" c i i i; + done; + pr " | %sn n w=> reduce_n n ((make_op n).(znz_tail0) w)" c; + pr " end."; + pr ""; + + + pr " Theorem spec_tail00: forall x, [x] = 0 ->[tail0 x] = Zpos (digits x)."; + pa " Admitted."; + pp " Proof."; + pp " intros x; case x; unfold tail0; clear x."; + for i = 0 to size do + pp " intros x; rewrite spec_reduce_%i; exact (spec_tail00 w%i_spec x)." i i; + done; + pp " intros n x; rewrite spec_reduce_n; exact (spec_tail00 (wn_spec n) x)."; + pp " Qed."; + pr " "; + + + pr " Theorem spec_tail0: forall x,"; + pr " 0 < [x] -> exists y, 0 <= y /\\ [x] = (2 * y + 1) * 2 ^ [tail0 x]."; + pa " Admitted."; + pp " Proof."; + pp " intros x; case x; clear x; unfold tail0."; + for i = 0 to size do + pp " intros x Hx; rewrite spec_reduce_%i; exact (spec_tail0 w%i_spec x Hx)." i i; + done; + pp " intros n x Hx; rewrite spec_reduce_n; exact (spec_tail0 (wn_spec n) x Hx)."; + pp " Qed."; + pr ""; + + + (* Number of digits *) + pr " Definition %sdigits x :=" c; + pr " match x with"; + pr " | %s0 _ => %s0 w0_op.(znz_zdigits)" c c; + for i = 1 to size do + pr " | %s%i _ => reduce_%i w%i_op.(znz_zdigits)" c i i i; + done; + pr " | %sn n _ => reduce_n n (make_op n).(znz_zdigits)" c; + pr " end."; + pr ""; + + pr " Theorem spec_Ndigits: forall x, [Ndigits x] = Zpos (digits x)."; + pa " Admitted."; + pp " Proof."; + pp " intros x; case x; clear x; unfold Ndigits, digits."; + for i = 0 to size do + pp " intros _; try rewrite spec_reduce_%i; exact (spec_zdigits w%i_spec)." i i; + done; + pp " intros n _; try rewrite spec_reduce_n; exact (spec_zdigits (wn_spec n))."; + pp " Qed."; + pr ""; + + + (* Shiftr *) + for i = 0 to size do + pr " Definition shiftr%i n x := w%i_op.(znz_add_mul_div) (w%i_op.(znz_sub) w%i_op.(znz_zdigits) n) w%i_op.(znz_0) x." i i i i i; + done; + pr " Definition shiftrn n p x := (make_op n).(znz_add_mul_div) ((make_op n).(znz_sub) (make_op n).(znz_zdigits) p) (make_op n).(znz_0) x."; + pr ""; + + pr " Definition shiftr := Eval lazy beta delta [same_level] in "; + pr " same_level _ (fun n x => %s0 (shiftr0 n x))" c; + for i = 1 to size do + pr " (fun n x => reduce_%i (shiftr%i n x))" i i; + done; + pr " (fun n p x => reduce_n n (shiftrn n p x))."; + pr ""; + + + pr " Theorem spec_shiftr: forall n x,"; + pr " [n] <= [Ndigits x] -> [shiftr n x] = [x] / 2 ^ [n]."; + pa " Admitted."; + pp " Proof."; + pp " assert (F0: forall x y, x - (x - y) = y)."; + pp " intros; ring."; + pp " assert (F2: forall x y z, 0 <= x -> 0 <= y -> x < z -> 0 <= x / 2 ^ y < z)."; + pp " intros x y z HH HH1 HH2."; + pp " split; auto with zarith."; + pp " apply Zle_lt_trans with (2 := HH2); auto with zarith."; + pp " apply Zdiv_le_upper_bound; auto with zarith."; + pp " pattern x at 1; replace x with (x * 2 ^ 0); auto with zarith."; + pp " apply Zmult_le_compat_l; auto."; + pp " apply Zpower_le_monotone; auto with zarith."; + pp " rewrite Zpower_0_r; ring."; + pp " assert (F3: forall x y, 0 <= y -> y <= x -> 0 <= x - y < 2 ^ x)."; + pp " intros xx y HH HH1."; + pp " split; auto with zarith."; + pp " apply Zle_lt_trans with xx; auto with zarith."; + pp " apply Zpower2_lt_lin; auto with zarith."; + pp " assert (F4: forall ww ww1 ww2 "; + pp " (ww_op: znz_op ww) (ww1_op: znz_op ww1) (ww2_op: znz_op ww2)"; + pp " xx yy xx1 yy1,"; + pp " znz_to_Z ww2_op yy <= znz_to_Z ww1_op (znz_zdigits ww1_op) ->"; + pp " znz_to_Z ww1_op (znz_zdigits ww1_op) <= znz_to_Z ww_op (znz_zdigits ww_op) ->"; + pp " znz_spec ww_op -> znz_spec ww1_op -> znz_spec ww2_op ->"; + pp " znz_to_Z ww_op xx1 = znz_to_Z ww1_op xx ->"; + pp " znz_to_Z ww_op yy1 = znz_to_Z ww2_op yy ->"; + pp " znz_to_Z ww_op"; + pp " (znz_add_mul_div ww_op (znz_sub ww_op (znz_zdigits ww_op) yy1)"; + pp " (znz_0 ww_op) xx1) = znz_to_Z ww1_op xx / 2 ^ znz_to_Z ww2_op yy)."; + pp " intros ww ww1 ww2 ww_op ww1_op ww2_op xx yy xx1 yy1 Hl Hl1 Hw Hw1 Hw2 Hx Hy."; + pp " case (spec_to_Z Hw xx1); auto with zarith; intros HH1 HH2."; + pp " case (spec_to_Z Hw yy1); auto with zarith; intros HH3 HH4."; + pp " rewrite <- Hx."; + pp " rewrite <- Hy."; + pp " generalize (spec_add_mul_div Hw"; + pp " (znz_0 ww_op) xx1"; + pp " (znz_sub ww_op (znz_zdigits ww_op) "; + pp " yy1)"; + pp " )."; + pp " rewrite (spec_0 Hw)."; + pp " rewrite Zmult_0_l; rewrite Zplus_0_l."; + pp " rewrite (CyclicAxioms.spec_sub Hw)."; + pp " rewrite Zmod_small; auto with zarith."; + pp " rewrite (spec_zdigits Hw)."; + pp " rewrite F0."; + pp " rewrite Zmod_small; auto with zarith."; + pp " unfold base; rewrite (spec_zdigits Hw) in Hl1 |- *;"; + pp " auto with zarith."; + pp " assert (F5: forall n m, (n <= m)%snat ->" "%"; + pp " Zpos (znz_digits (make_op n)) <= Zpos (znz_digits (make_op m)))."; + pp " intros n m HH; elim HH; clear m HH; auto with zarith."; + pp " intros m HH Hrec; apply Zle_trans with (1 := Hrec)."; + pp " rewrite make_op_S."; + pp " match goal with |- Zpos ?Y <= ?X => change X with (Zpos (xO Y)) end."; + pp " rewrite Zpos_xO."; + pp " assert (0 <= Zpos (znz_digits (make_op n))); auto with zarith."; + pp " assert (F6: forall n, Zpos (znz_digits w%i_op) <= Zpos (znz_digits (make_op n)))." size; + pp " intros n ; apply Zle_trans with (Zpos (znz_digits (make_op 0)))."; + pp " change (znz_digits (make_op 0)) with (xO (znz_digits w%i_op))." size; + pp " rewrite Zpos_xO."; + pp " assert (0 <= Zpos (znz_digits w%i_op)); auto with zarith." size; + pp " apply F5; auto with arith."; + pp " intros x; case x; clear x; unfold shiftr, same_level."; + for i = 0 to size do + pp " intros x y; case y; clear y."; + for j = 0 to i - 1 do + pp " intros y; unfold shiftr%i, Ndigits." i; + pp " repeat rewrite spec_reduce_%i; repeat rewrite spec_reduce_%i; unfold to_Z; intros H1." i j; + pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." i j i; + pp " rewrite (spec_zdigits w%i_spec)." i; + pp " rewrite (spec_zdigits w%i_spec)." j; + pp " change (znz_digits w%i_op) with %s." i (genxO (i - j) (" (znz_digits w"^(string_of_int j)^"_op)")); + pp " repeat rewrite (fun x => Zpos_xO (xO x))."; + pp " repeat rewrite (fun x y => Zpos_xO (@znz_digits x y))."; + pp " assert (0 <= Zpos (znz_digits w%i_op)); auto with zarith." j; + pp " try (apply sym_equal; exact (spec_extend%in%i y))." j i; + + done; + pp " intros y; unfold shiftr%i, Ndigits." i; + pp " repeat rewrite spec_reduce_%i; unfold to_Z; intros H1." i; + pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." i i i; + for j = i + 1 to size do + pp " intros y; unfold shiftr%i, Ndigits." j; + pp " repeat rewrite spec_reduce_%i; repeat rewrite spec_reduce_%i; unfold to_Z; intros H1." i j; + pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." j j i; + pp " try (apply sym_equal; exact (spec_extend%in%i x))." i j; + done; + if i == size then + begin + pp " intros m y; unfold shiftrn, Ndigits."; + pp " repeat rewrite spec_reduce_n; unfold to_Z; intros H1."; + pp " apply F4 with (3:=(wn_spec m))(4:=wn_spec m)(5:=w%i_spec); auto with zarith." size; + pp " try (apply sym_equal; exact (spec_extend%in m x))." size; + end + else + begin + pp " intros m y; unfold shiftrn, Ndigits."; + pp " repeat rewrite spec_reduce_n; unfold to_Z; intros H1."; + pp " apply F4 with (3:=(wn_spec m))(4:=wn_spec m)(5:=w%i_spec); auto with zarith." i; + pp " change ([Nn m (extend%i m (extend%i %i x))] = [N%i x])." size i (size - i - 1) i; + pp " rewrite <- (spec_extend%in m); rewrite <- spec_extend%in%i; auto." size i size; + end + done; + pp " intros n x y; case y; clear y;"; + pp " intros y; unfold shiftrn, Ndigits; try rewrite spec_reduce_n."; + for i = 0 to size do + pp " try rewrite spec_reduce_%i; unfold to_Z; intros H1." i; + pp " apply F4 with (3:=(wn_spec n))(4:=w%i_spec)(5:=wn_spec n); auto with zarith." i; + pp " rewrite (spec_zdigits w%i_spec)." i; + pp " rewrite (spec_zdigits (wn_spec n))."; + pp " apply Zle_trans with (2 := F6 n)."; + pp " change (znz_digits w%i_op) with %s." size (genxO (size - i) ("(znz_digits w" ^ (string_of_int i) ^ "_op)")); + pp " repeat rewrite (fun x => Zpos_xO (xO x))."; + pp " repeat rewrite (fun x y => Zpos_xO (@znz_digits x y))."; + pp " assert (H: 0 <= Zpos (znz_digits w%i_op)); auto with zarith." i; + if i == size then + pp " change ([Nn n (extend%i n y)] = [N%i y])." size i + else + pp " change ([Nn n (extend%i n (extend%i %i y))] = [N%i y])." size i (size - i - 1) i; + pp " rewrite <- (spec_extend%in n); auto." size; + if i <> size then + pp " try (rewrite <- spec_extend%in%i; auto)." i size; + done; + pp " generalize y; clear y; intros m y."; + pp " rewrite spec_reduce_n; unfold to_Z; intros H1."; + pp " apply F4 with (3:=(wn_spec (Max.max n m)))(4:=wn_spec m)(5:=wn_spec n); auto with zarith."; + pp " rewrite (spec_zdigits (wn_spec m))."; + pp " rewrite (spec_zdigits (wn_spec (Max.max n m)))."; + pp " apply F5; auto with arith."; + pp " exact (spec_cast_r n m y)."; + pp " exact (spec_cast_l n m x)."; + pp " Qed."; + pr ""; + + pr " Definition safe_shiftr n x := "; + pr " match compare n (Ndigits x) with"; + pr " | Lt => shiftr n x "; + pr " | _ => %s0 w_0" c; + pr " end."; + pr ""; + + + pr " Theorem spec_safe_shiftr: forall n x,"; + pr " [safe_shiftr n x] = [x] / 2 ^ [n]."; + pa " Admitted."; + pp " Proof."; + pp " intros n x; unfold safe_shiftr;"; + pp " generalize (spec_compare n (Ndigits x)); case compare; intros H."; + pp " apply trans_equal with (1 := spec_0 w0_spec)."; + pp " apply sym_equal; apply Zdiv_small; rewrite H."; + pp " rewrite spec_Ndigits; exact (spec_digits x)."; + pp " rewrite <- spec_shiftr; auto with zarith."; + pp " apply trans_equal with (1 := spec_0 w0_spec)."; + pp " apply sym_equal; apply Zdiv_small."; + pp " rewrite spec_Ndigits in H; case (spec_digits x); intros H1 H2."; + pp " split; auto."; + pp " apply Zlt_le_trans with (1 := H2)."; + pp " apply Zpower_le_monotone; auto with zarith."; + pp " Qed."; + pr ""; + + pr ""; + + (* Shiftl *) + for i = 0 to size do + pr " Definition shiftl%i n x := w%i_op.(znz_add_mul_div) n x w%i_op.(znz_0)." i i i + done; + pr " Definition shiftln n p x := (make_op n).(znz_add_mul_div) p x (make_op n).(znz_0)."; + pr " Definition shiftl := Eval lazy beta delta [same_level] in"; + pr " same_level _ (fun n x => %s0 (shiftl0 n x))" c; + for i = 1 to size do + pr " (fun n x => reduce_%i (shiftl%i n x))" i i; + done; + pr " (fun n p x => reduce_n n (shiftln n p x))."; + pr ""; + pr ""; + + + pr " Theorem spec_shiftl: forall n x,"; + pr " [n] <= [head0 x] -> [shiftl n x] = [x] * 2 ^ [n]."; + pa " Admitted."; + pp " Proof."; + pp " assert (F0: forall x y, x - (x - y) = y)."; + pp " intros; ring."; + pp " assert (F2: forall x y z, 0 <= x -> 0 <= y -> x < z -> 0 <= x / 2 ^ y < z)."; + pp " intros x y z HH HH1 HH2."; + pp " split; auto with zarith."; + pp " apply Zle_lt_trans with (2 := HH2); auto with zarith."; + pp " apply Zdiv_le_upper_bound; auto with zarith."; + pp " pattern x at 1; replace x with (x * 2 ^ 0); auto with zarith."; + pp " apply Zmult_le_compat_l; auto."; + pp " apply Zpower_le_monotone; auto with zarith."; + pp " rewrite Zpower_0_r; ring."; + pp " assert (F3: forall x y, 0 <= y -> y <= x -> 0 <= x - y < 2 ^ x)."; + pp " intros xx y HH HH1."; + pp " split; auto with zarith."; + pp " apply Zle_lt_trans with xx; auto with zarith."; + pp " apply Zpower2_lt_lin; auto with zarith."; + pp " assert (F4: forall ww ww1 ww2 "; + pp " (ww_op: znz_op ww) (ww1_op: znz_op ww1) (ww2_op: znz_op ww2)"; + pp " xx yy xx1 yy1,"; + pp " znz_to_Z ww2_op yy <= znz_to_Z ww1_op (znz_head0 ww1_op xx) ->"; + pp " znz_to_Z ww1_op (znz_zdigits ww1_op) <= znz_to_Z ww_op (znz_zdigits ww_op) ->"; + pp " znz_spec ww_op -> znz_spec ww1_op -> znz_spec ww2_op ->"; + pp " znz_to_Z ww_op xx1 = znz_to_Z ww1_op xx ->"; + pp " znz_to_Z ww_op yy1 = znz_to_Z ww2_op yy ->"; + pp " znz_to_Z ww_op"; + pp " (znz_add_mul_div ww_op yy1"; + pp " xx1 (znz_0 ww_op)) = znz_to_Z ww1_op xx * 2 ^ znz_to_Z ww2_op yy)."; + pp " intros ww ww1 ww2 ww_op ww1_op ww2_op xx yy xx1 yy1 Hl Hl1 Hw Hw1 Hw2 Hx Hy."; + pp " case (spec_to_Z Hw xx1); auto with zarith; intros HH1 HH2."; + pp " case (spec_to_Z Hw yy1); auto with zarith; intros HH3 HH4."; + pp " rewrite <- Hx."; + pp " rewrite <- Hy."; + pp " generalize (spec_add_mul_div Hw xx1 (znz_0 ww_op) yy1)."; + pp " rewrite (spec_0 Hw)."; + pp " assert (F1: znz_to_Z ww1_op (znz_head0 ww1_op xx) <= Zpos (znz_digits ww1_op))."; + pp " case (Zle_lt_or_eq _ _ HH1); intros HH5."; + pp " apply Zlt_le_weak."; + pp " case (CyclicAxioms.spec_head0 Hw1 xx)."; + pp " rewrite <- Hx; auto."; + pp " intros _ Hu; unfold base in Hu."; + pp " case (Zle_or_lt (Zpos (znz_digits ww1_op))"; + pp " (znz_to_Z ww1_op (znz_head0 ww1_op xx))); auto; intros H1."; + pp " absurd (2 ^ (Zpos (znz_digits ww1_op)) <= 2 ^ (znz_to_Z ww1_op (znz_head0 ww1_op xx)))."; + pp " apply Zlt_not_le."; + pp " case (spec_to_Z Hw1 xx); intros HHx3 HHx4."; + pp " rewrite <- (Zmult_1_r (2 ^ znz_to_Z ww1_op (znz_head0 ww1_op xx)))."; + pp " apply Zle_lt_trans with (2 := Hu)."; + pp " apply Zmult_le_compat_l; auto with zarith."; + pp " apply Zpower_le_monotone; auto with zarith."; + pp " rewrite (CyclicAxioms.spec_head00 Hw1 xx); auto with zarith."; + pp " rewrite Zdiv_0_l; auto with zarith."; + pp " rewrite Zplus_0_r."; + pp " case (Zle_lt_or_eq _ _ HH1); intros HH5."; + pp " rewrite Zmod_small; auto with zarith."; + pp " intros HH; apply HH."; + pp " rewrite Hy; apply Zle_trans with (1:= Hl)."; + pp " rewrite <- (spec_zdigits Hw). "; + pp " apply Zle_trans with (2 := Hl1); auto."; + pp " rewrite (spec_zdigits Hw1); auto with zarith."; + pp " split; auto with zarith ."; + pp " apply Zlt_le_trans with (base (znz_digits ww1_op))."; + pp " rewrite Hx."; + pp " case (CyclicAxioms.spec_head0 Hw1 xx); auto."; + pp " rewrite <- Hx; auto."; + pp " intros _ Hu; rewrite Zmult_comm in Hu."; + pp " apply Zle_lt_trans with (2 := Hu)."; + pp " apply Zmult_le_compat_l; auto with zarith."; + pp " apply Zpower_le_monotone; auto with zarith."; + pp " unfold base; apply Zpower_le_monotone; auto with zarith."; + pp " split; auto with zarith."; + pp " rewrite <- (spec_zdigits Hw); auto with zarith."; + pp " rewrite <- (spec_zdigits Hw1); auto with zarith."; + pp " rewrite <- HH5."; + pp " rewrite Zmult_0_l."; + pp " rewrite Zmod_small; auto with zarith."; + pp " intros HH; apply HH."; + pp " rewrite Hy; apply Zle_trans with (1 := Hl)."; + pp " rewrite (CyclicAxioms.spec_head00 Hw1 xx); auto with zarith."; + pp " rewrite <- (spec_zdigits Hw); auto with zarith."; + pp " rewrite <- (spec_zdigits Hw1); auto with zarith."; + pp " assert (F5: forall n m, (n <= m)%snat ->" "%"; + pp " Zpos (znz_digits (make_op n)) <= Zpos (znz_digits (make_op m)))."; + pp " intros n m HH; elim HH; clear m HH; auto with zarith."; + pp " intros m HH Hrec; apply Zle_trans with (1 := Hrec)."; + pp " rewrite make_op_S."; + pp " match goal with |- Zpos ?Y <= ?X => change X with (Zpos (xO Y)) end."; + pp " rewrite Zpos_xO."; + pp " assert (0 <= Zpos (znz_digits (make_op n))); auto with zarith."; + pp " assert (F6: forall n, Zpos (znz_digits w%i_op) <= Zpos (znz_digits (make_op n)))." size; + pp " intros n ; apply Zle_trans with (Zpos (znz_digits (make_op 0)))."; + pp " change (znz_digits (make_op 0)) with (xO (znz_digits w%i_op))." size; + pp " rewrite Zpos_xO."; + pp " assert (0 <= Zpos (znz_digits w%i_op)); auto with zarith." size; + pp " apply F5; auto with arith."; + pp " intros x; case x; clear x; unfold shiftl, same_level."; + for i = 0 to size do + pp " intros x y; case y; clear y."; + for j = 0 to i - 1 do + pp " intros y; unfold shiftl%i, head0." i; + pp " repeat rewrite spec_reduce_%i; repeat rewrite spec_reduce_%i; unfold to_Z; intros H1." i j; + pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." i j i; + pp " rewrite (spec_zdigits w%i_spec)." i; + pp " rewrite (spec_zdigits w%i_spec)." j; + pp " change (znz_digits w%i_op) with %s." i (genxO (i - j) (" (znz_digits w"^(string_of_int j)^"_op)")); + pp " repeat rewrite (fun x => Zpos_xO (xO x))."; + pp " repeat rewrite (fun x y => Zpos_xO (@znz_digits x y))."; + pp " assert (0 <= Zpos (znz_digits w%i_op)); auto with zarith." j; + pp " try (apply sym_equal; exact (spec_extend%in%i y))." j i; + done; + pp " intros y; unfold shiftl%i, head0." i; + pp " repeat rewrite spec_reduce_%i; unfold to_Z; intros H1." i; + pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." i i i; + for j = i + 1 to size do + pp " intros y; unfold shiftl%i, head0." j; + pp " repeat rewrite spec_reduce_%i; repeat rewrite spec_reduce_%i; unfold to_Z; intros H1." i j; + pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." j j i; + pp " try (apply sym_equal; exact (spec_extend%in%i x))." i j; + done; + if i == size then + begin + pp " intros m y; unfold shiftln, head0."; + pp " repeat rewrite spec_reduce_n; unfold to_Z; intros H1."; + pp " apply F4 with (3:=(wn_spec m))(4:=wn_spec m)(5:=w%i_spec); auto with zarith." size; + pp " try (apply sym_equal; exact (spec_extend%in m x))." size; + end + else + begin + pp " intros m y; unfold shiftln, head0."; + pp " repeat rewrite spec_reduce_n; unfold to_Z; intros H1."; + pp " apply F4 with (3:=(wn_spec m))(4:=wn_spec m)(5:=w%i_spec); auto with zarith." i; + pp " change ([Nn m (extend%i m (extend%i %i x))] = [N%i x])." size i (size - i - 1) i; + pp " rewrite <- (spec_extend%in m); rewrite <- spec_extend%in%i; auto." size i size; + end + done; + pp " intros n x y; case y; clear y;"; + pp " intros y; unfold shiftln, head0; try rewrite spec_reduce_n."; + for i = 0 to size do + pp " try rewrite spec_reduce_%i; unfold to_Z; intros H1." i; + pp " apply F4 with (3:=(wn_spec n))(4:=w%i_spec)(5:=wn_spec n); auto with zarith." i; + pp " rewrite (spec_zdigits w%i_spec)." i; + pp " rewrite (spec_zdigits (wn_spec n))."; + pp " apply Zle_trans with (2 := F6 n)."; + pp " change (znz_digits w%i_op) with %s." size (genxO (size - i) ("(znz_digits w" ^ (string_of_int i) ^ "_op)")); + pp " repeat rewrite (fun x => Zpos_xO (xO x))."; + pp " repeat rewrite (fun x y => Zpos_xO (@znz_digits x y))."; + pp " assert (H: 0 <= Zpos (znz_digits w%i_op)); auto with zarith." i; + if i == size then + pp " change ([Nn n (extend%i n y)] = [N%i y])." size i + else + pp " change ([Nn n (extend%i n (extend%i %i y))] = [N%i y])." size i (size - i - 1) i; + pp " rewrite <- (spec_extend%in n); auto." size; + if i <> size then + pp " try (rewrite <- spec_extend%in%i; auto)." i size; + done; + pp " generalize y; clear y; intros m y."; + pp " repeat rewrite spec_reduce_n; unfold to_Z; intros H1."; + pp " apply F4 with (3:=(wn_spec (Max.max n m)))(4:=wn_spec m)(5:=wn_spec n); auto with zarith."; + pp " rewrite (spec_zdigits (wn_spec m))."; + pp " rewrite (spec_zdigits (wn_spec (Max.max n m)))."; + pp " apply F5; auto with arith."; + pp " exact (spec_cast_r n m y)."; + pp " exact (spec_cast_l n m x)."; + pp " Qed."; + pr ""; + + (* Double size *) + pr " Definition double_size w := match w with"; + for i = 0 to size-1 do + pr " | %s%i x => %s%i (WW (znz_0 w%i_op) x)" c i c (i + 1) i; + done; + pr " | %s%i x => %sn 0 (WW (znz_0 w%i_op) x)" c size c size; + pr " | %sn n x => %sn (S n) (WW (znz_0 (make_op n)) x)" c c; + pr " end."; + pr ""; + + pr " Theorem spec_double_size_digits: "; + pr " forall x, digits (double_size x) = xO (digits x)."; + pa " Admitted."; + pp " Proof."; + pp " intros x; case x; unfold double_size, digits; clear x; auto."; + pp " intros n x; rewrite make_op_S; auto."; + pp " Qed."; + pr ""; + + + pr " Theorem spec_double_size: forall x, [double_size x] = [x]."; + pa " Admitted."; + pp " Proof."; + pp " intros x; case x; unfold double_size; clear x."; + for i = 0 to size do + pp " intros x; unfold to_Z, make_op; "; + pp " rewrite znz_to_Z_%i; rewrite (spec_0 w%i_spec); auto with zarith." (i + 1) i; + done; + pp " intros n x; unfold to_Z;"; + pp " generalize (znz_to_Z_n n); simpl word."; + pp " intros HH; rewrite HH; clear HH."; + pp " generalize (spec_0 (wn_spec n)); simpl word."; + pp " intros HH; rewrite HH; clear HH; auto with zarith."; + pp " Qed."; + pr ""; + + + pr " Theorem spec_double_size_head0: "; + pr " forall x, 2 * [head0 x] <= [head0 (double_size x)]."; + pa " Admitted."; + pp " Proof."; + pp " intros x."; + pp " assert (F1:= spec_pos (head0 x))."; + pp " assert (F2: 0 < Zpos (digits x))."; + pp " red; auto."; + pp " case (Zle_lt_or_eq _ _ (spec_pos x)); intros HH."; + pp " generalize HH; rewrite <- (spec_double_size x); intros HH1."; + pp " case (spec_head0 x HH); intros _ HH2."; + pp " case (spec_head0 _ HH1)."; + pp " rewrite (spec_double_size x); rewrite (spec_double_size_digits x)."; + pp " intros HH3 _."; + pp " case (Zle_or_lt ([head0 (double_size x)]) (2 * [head0 x])); auto; intros HH4."; + pp " absurd (2 ^ (2 * [head0 x] )* [x] < 2 ^ [head0 (double_size x)] * [x]); auto."; + pp " apply Zle_not_lt."; + pp " apply Zmult_le_compat_r; auto with zarith."; + pp " apply Zpower_le_monotone; auto; auto with zarith."; + pp " generalize (spec_pos (head0 (double_size x))); auto with zarith."; + pp " assert (HH5: 2 ^[head0 x] <= 2 ^(Zpos (digits x) - 1))."; + pp " case (Zle_lt_or_eq 1 [x]); auto with zarith; intros HH5."; + pp " apply Zmult_le_reg_r with (2 ^ 1); auto with zarith."; + pp " rewrite <- (fun x y z => Zpower_exp x (y - z)); auto with zarith."; + pp " assert (tmp: forall x, x - 1 + 1 = x); [intros; ring | rewrite tmp; clear tmp]."; + pp " apply Zle_trans with (2 := Zlt_le_weak _ _ HH2)."; + pp " apply Zmult_le_compat_l; auto with zarith."; + pp " rewrite Zpower_1_r; auto with zarith."; + pp " apply Zpower_le_monotone; auto with zarith."; + pp " split; auto with zarith. "; + pp " case (Zle_or_lt (Zpos (digits x)) [head0 x]); auto with zarith; intros HH6."; + pp " absurd (2 ^ Zpos (digits x) <= 2 ^ [head0 x] * [x]); auto with zarith."; + pp " rewrite <- HH5; rewrite Zmult_1_r."; + pp " apply Zpower_le_monotone; auto with zarith."; + pp " rewrite (Zmult_comm 2)."; + pp " rewrite Zpower_mult; auto with zarith."; + pp " rewrite Zpower_2."; + pp " apply Zlt_le_trans with (2 := HH3)."; + pp " rewrite <- Zmult_assoc."; + pp " replace (Zpos (xO (digits x)) - 1) with"; + pp " ((Zpos (digits x) - 1) + (Zpos (digits x)))."; + pp " rewrite Zpower_exp; auto with zarith."; + pp " apply Zmult_lt_compat2; auto with zarith."; + pp " split; auto with zarith."; + pp " apply Zmult_lt_0_compat; auto with zarith."; + pp " rewrite Zpos_xO; ring."; + pp " apply Zlt_le_weak; auto."; + pp " repeat rewrite spec_head00; auto."; + pp " rewrite spec_double_size_digits."; + pp " rewrite Zpos_xO; auto with zarith."; + pp " rewrite spec_double_size; auto."; + pp " Qed."; + pr ""; + + pr " Theorem spec_double_size_head0_pos: "; + pr " forall x, 0 < [head0 (double_size x)]."; + pa " Admitted."; + pp " Proof."; + pp " intros x."; + pp " assert (F: 0 < Zpos (digits x))."; + pp " red; auto."; + pp " case (Zle_lt_or_eq _ _ (spec_pos (head0 (double_size x)))); auto; intros F0."; + pp " case (Zle_lt_or_eq _ _ (spec_pos (head0 x))); intros F1."; + pp " apply Zlt_le_trans with (2 := (spec_double_size_head0 x)); auto with zarith."; + pp " case (Zle_lt_or_eq _ _ (spec_pos x)); intros F3."; + pp " generalize F3; rewrite <- (spec_double_size x); intros F4."; + pp " absurd (2 ^ (Zpos (xO (digits x)) - 1) < 2 ^ (Zpos (digits x)))."; + pp " apply Zle_not_lt."; + pp " apply Zpower_le_monotone; auto with zarith."; + pp " split; auto with zarith."; + pp " rewrite Zpos_xO; auto with zarith."; + pp " case (spec_head0 x F3)."; + pp " rewrite <- F1; rewrite Zpower_0_r; rewrite Zmult_1_l; intros _ HH."; + pp " apply Zle_lt_trans with (2 := HH)."; + pp " case (spec_head0 _ F4)."; + pp " rewrite (spec_double_size x); rewrite (spec_double_size_digits x)."; + pp " rewrite <- F0; rewrite Zpower_0_r; rewrite Zmult_1_l; auto."; + pp " generalize F1; rewrite (spec_head00 _ (sym_equal F3)); auto with zarith."; + pp " Qed."; + pr ""; + + + (* Safe shiftl *) + + pr " Definition safe_shiftl_aux_body cont n x :="; + pr " match compare n (head0 x) with"; + pr " Gt => cont n (double_size x)"; + pr " | _ => shiftl n x"; + pr " end."; + pr ""; + + pr " Theorem spec_safe_shift_aux_body: forall n p x cont,"; + pr " 2^ Zpos p <= [head0 x] ->"; + pr " (forall x, 2 ^ (Zpos p + 1) <= [head0 x]->"; + pr " [cont n x] = [x] * 2 ^ [n]) ->"; + pr " [safe_shiftl_aux_body cont n x] = [x] * 2 ^ [n]."; + pa " Admitted."; + pp " Proof."; + pp " intros n p x cont H1 H2; unfold safe_shiftl_aux_body."; + pp " generalize (spec_compare n (head0 x)); case compare; intros H."; + pp " apply spec_shiftl; auto with zarith."; + pp " apply spec_shiftl; auto with zarith."; + pp " rewrite H2."; + pp " rewrite spec_double_size; auto."; + pp " rewrite Zplus_comm; rewrite Zpower_exp; auto with zarith."; + pp " apply Zle_trans with (2 := spec_double_size_head0 x)."; + pp " rewrite Zpower_1_r; apply Zmult_le_compat_l; auto with zarith."; + pp " Qed."; + pr ""; + + pr " Fixpoint safe_shiftl_aux p cont n x {struct p} :="; + pr " safe_shiftl_aux_body "; + pr " (fun n x => match p with"; + pr " | xH => cont n x"; + pr " | xO p => safe_shiftl_aux p (safe_shiftl_aux p cont) n x"; + pr " | xI p => safe_shiftl_aux p (safe_shiftl_aux p cont) n x"; + pr " end) n x."; + pr ""; + + pr " Theorem spec_safe_shift_aux: forall p q n x cont,"; + pr " 2 ^ (Zpos q) <= [head0 x] ->"; + pr " (forall x, 2 ^ (Zpos p + Zpos q) <= [head0 x] ->"; + pr " [cont n x] = [x] * 2 ^ [n]) -> "; + pr " [safe_shiftl_aux p cont n x] = [x] * 2 ^ [n]."; + pa " Admitted."; + pp " Proof."; + pp " intros p; elim p; unfold safe_shiftl_aux; fold safe_shiftl_aux; clear p."; + pp " intros p Hrec q n x cont H1 H2."; + pp " apply spec_safe_shift_aux_body with (q); auto."; + pp " intros x1 H3; apply Hrec with (q + 1)%spositive; auto." "%"; + pp " intros x2 H4; apply Hrec with (p + q + 1)%spositive; auto." "%"; + pp " rewrite <- Pplus_assoc."; + pp " rewrite Zpos_plus_distr; auto."; + pp " intros x3 H5; apply H2."; + pp " rewrite Zpos_xI."; + pp " replace (2 * Zpos p + 1 + Zpos q) with (Zpos p + Zpos (p + q + 1));"; + pp " auto."; + pp " repeat rewrite Zpos_plus_distr; ring."; + pp " intros p Hrec q n x cont H1 H2."; + pp " apply spec_safe_shift_aux_body with (q); auto."; + pp " intros x1 H3; apply Hrec with (q); auto."; + pp " apply Zle_trans with (2 := H3); auto with zarith."; + pp " apply Zpower_le_monotone; auto with zarith."; + pp " intros x2 H4; apply Hrec with (p + q)%spositive; auto." "%"; + pp " intros x3 H5; apply H2."; + pp " rewrite (Zpos_xO p)."; + pp " replace (2 * Zpos p + Zpos q) with (Zpos p + Zpos (p + q));"; + pp " auto."; + pp " repeat rewrite Zpos_plus_distr; ring."; + pp " intros q n x cont H1 H2."; + pp " apply spec_safe_shift_aux_body with (q); auto."; + pp " rewrite Zplus_comm; auto."; + pp " Qed."; + pr ""; + + + pr " Definition safe_shiftl n x :="; + pr " safe_shiftl_aux_body"; + pr " (safe_shiftl_aux_body"; + pr " (safe_shiftl_aux (digits n) shiftl)) n x."; + pr ""; + + pr " Theorem spec_safe_shift: forall n x,"; + pr " [safe_shiftl n x] = [x] * 2 ^ [n]."; + pa " Admitted."; + pp " Proof."; + pp " intros n x; unfold safe_shiftl, safe_shiftl_aux_body."; + pp " generalize (spec_compare n (head0 x)); case compare; intros H."; + pp " apply spec_shiftl; auto with zarith."; + pp " apply spec_shiftl; auto with zarith."; + pp " rewrite <- (spec_double_size x)."; + pp " generalize (spec_compare n (head0 (double_size x))); case compare; intros H1."; + pp " apply spec_shiftl; auto with zarith."; + pp " apply spec_shiftl; auto with zarith."; + pp " rewrite <- (spec_double_size (double_size x))."; + pp " apply spec_safe_shift_aux with 1%spositive." "%"; + pp " apply Zle_trans with (2 := spec_double_size_head0 (double_size x))."; + pp " replace (2 ^ 1) with (2 * 1)."; + pp " apply Zmult_le_compat_l; auto with zarith."; + pp " generalize (spec_double_size_head0_pos x); auto with zarith."; + pp " rewrite Zpower_1_r; ring."; + pp " intros x1 H2; apply spec_shiftl."; + pp " apply Zle_trans with (2 := H2)."; + pp " apply Zle_trans with (2 ^ Zpos (digits n)); auto with zarith."; + pp " case (spec_digits n); auto with zarith."; + pp " apply Zpower_le_monotone; auto with zarith."; + pp " Qed."; + pr ""; + + (* even *) + pr " Definition is_even x :="; + pr " match x with"; + for i = 0 to size do + pr " | %s%i wx => w%i_op.(znz_is_even) wx" c i i + done; + pr " | %sn n wx => (make_op n).(znz_is_even) wx" c; + pr " end."; + pr ""; + + + pr " Theorem spec_is_even: forall x,"; + pr " if is_even x then [x] mod 2 = 0 else [x] mod 2 = 1."; + pa " Admitted."; + pp " Proof."; + pp " intros x; case x; unfold is_even, to_Z; clear x."; + for i = 0 to size do + pp " intros x; exact (spec_is_even w%i_spec x)." i; + done; + pp " intros n x; exact (spec_is_even (wn_spec n) x)."; + pp " Qed."; + pr ""; + + pr " Theorem spec_0: [zero] = 0."; + pa " Admitted."; + pp " Proof."; + pp " exact (spec_0 w0_spec)."; + pp " Qed."; + pr ""; + + pr " Theorem spec_1: [one] = 1."; + pa " Admitted."; + pp " Proof."; + pp " exact (spec_1 w0_spec)."; + pp " Qed."; + pr ""; + + pr "End Make."; + pr ""; + |