summaryrefslogtreecommitdiff
path: root/theories/Numbers/Natural/BigN/NMake_gen.ml
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Natural/BigN/NMake_gen.ml')
-rw-r--r--theories/Numbers/Natural/BigN/NMake_gen.ml3166
1 files changed, 3166 insertions, 0 deletions
diff --git a/theories/Numbers/Natural/BigN/NMake_gen.ml b/theories/Numbers/Natural/BigN/NMake_gen.ml
new file mode 100644
index 00000000..bd0fb5b1
--- /dev/null
+++ b/theories/Numbers/Natural/BigN/NMake_gen.ml
@@ -0,0 +1,3166 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: NMake_gen.ml 11136 2008-06-18 10:41:34Z herbelin $ i*)
+
+(*S NMake_gen.ml : this file generates NMake.v *)
+
+
+(*s The two parameters that control the generation: *)
+
+let size = 6 (* how many times should we repeat the Z/nZ --> Z/2nZ
+ process before relying on a generic construct *)
+let gen_proof = true (* should we generate proofs ? *)
+
+
+(*s Some utilities *)
+
+let t = "t"
+let c = "N"
+let pz n = if n == 0 then "w_0" else "W0"
+let rec gen2 n = if n == 0 then "1" else if n == 1 then "2"
+ else "2 * " ^ (gen2 (n - 1))
+let rec genxO n s =
+ if n == 0 then s else " (xO" ^ (genxO (n - 1) s) ^ ")"
+
+(* NB: in ocaml >= 3.10, we could use Printf.ifprintf for printing to
+ /dev/null, but for being compatible with earlier ocaml and not
+ relying on system-dependent stuff like open_out "/dev/null",
+ let's use instead a magical hack *)
+
+(* Standard printer, with a final newline *)
+let pr s = Printf.printf (s^^"\n")
+(* Printing to /dev/null *)
+let pn = (fun s -> Obj.magic (fun _ _ _ _ _ _ _ _ _ _ _ _ _ _ -> ())
+ : ('a, out_channel, unit) format -> 'a)
+(* Proof printer : prints iff gen_proof is true *)
+let pp = if gen_proof then pr else pn
+(* Printer for admitted parts : prints iff gen_proof is false *)
+let pa = if not gen_proof then pr else pn
+(* Same as before, but without the final newline *)
+let pr0 = Printf.printf
+let pp0 = if gen_proof then pr0 else pn
+
+
+(*s The actual printing *)
+
+let _ =
+
+ pr "(************************************************************************)";
+ pr "(* v * The Coq Proof Assistant / The Coq Development Team *)";
+ pr "(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)";
+ pr "(* \\VV/ **************************************************************)";
+ pr "(* // * This file is distributed under the terms of the *)";
+ pr "(* * GNU Lesser General Public License Version 2.1 *)";
+ pr "(************************************************************************)";
+ pr "(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)";
+ pr "(************************************************************************)";
+ pr "";
+ pr "(** * NMake *)";
+ pr "";
+ pr "(** From a cyclic Z/nZ representation to arbitrary precision natural numbers.*)";
+ pr "";
+ pr "(** Remark: File automatically generated by NMake_gen.ml, DO NOT EDIT ! *)";
+ pr "";
+ pr "Require Import BigNumPrelude.";
+ pr "Require Import ZArith.";
+ pr "Require Import CyclicAxioms.";
+ pr "Require Import DoubleType.";
+ pr "Require Import DoubleMul.";
+ pr "Require Import DoubleDivn1.";
+ pr "Require Import DoubleCyclic.";
+ pr "Require Import Nbasic.";
+ pr "Require Import Wf_nat.";
+ pr "Require Import StreamMemo.";
+ pr "Require Import NSig.";
+ pr "";
+ pr "Module Make (Import W0:CyclicType) <: NType.";
+ pr "";
+
+ pr " Definition w0 := W0.w.";
+ for i = 1 to size do
+ pr " Definition w%i := zn2z w%i." i (i-1)
+ done;
+ pr "";
+
+ pr " Definition w0_op := W0.w_op.";
+ for i = 1 to 3 do
+ pr " Definition w%i_op := mk_zn2z_op w%i_op." i (i-1)
+ done;
+ for i = 4 to size + 3 do
+ pr " Definition w%i_op := mk_zn2z_op_karatsuba w%i_op." i (i-1)
+ done;
+ pr "";
+
+ pr " Section Make_op.";
+ pr " Variable mk : forall w', znz_op w' -> znz_op (zn2z w').";
+ pr "";
+ pr " Fixpoint make_op_aux (n:nat) : znz_op (word w%i (S n)):=" size;
+ pr " match n return znz_op (word w%i (S n)) with" size;
+ pr " | O => w%i_op" (size+1);
+ pr " | S n1 =>";
+ pr " match n1 return znz_op (word w%i (S (S n1))) with" size;
+ pr " | O => w%i_op" (size+2);
+ pr " | S n2 =>";
+ pr " match n2 return znz_op (word w%i (S (S (S n2)))) with" size;
+ pr " | O => w%i_op" (size+3);
+ pr " | S n3 => mk _ (mk _ (mk _ (make_op_aux n3)))";
+ pr " end";
+ pr " end";
+ pr " end.";
+ pr "";
+ pr " End Make_op.";
+ pr "";
+ pr " Definition omake_op := make_op_aux mk_zn2z_op_karatsuba.";
+ pr "";
+ pr "";
+ pr " Definition make_op_list := dmemo_list _ omake_op.";
+ pr "";
+ pr " Definition make_op n := dmemo_get _ omake_op n make_op_list.";
+ pr "";
+ pr " Lemma make_op_omake: forall n, make_op n = omake_op n.";
+ pr " intros n; unfold make_op, make_op_list.";
+ pr " refine (dmemo_get_correct _ _ _).";
+ pr " Qed.";
+ pr "";
+
+ pr " Inductive %s_ :=" t;
+ for i = 0 to size do
+ pr " | %s%i : w%i -> %s_" c i i t
+ done;
+ pr " | %sn : forall n, word w%i (S n) -> %s_." c size t;
+ pr "";
+ pr " Definition %s := %s_." t t;
+ pr "";
+
+ pr " Definition w_0 := w0_op.(znz_0).";
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition one%i := w%i_op.(znz_1)." i i
+ done;
+ pr "";
+
+
+ pr " Definition zero := %s0 w_0." c;
+ pr " Definition one := %s0 one0." c;
+ pr "";
+
+ pr " Definition to_Z x :=";
+ pr " match x with";
+ for i = 0 to size do
+ pr " | %s%i wx => w%i_op.(znz_to_Z) wx" c i i
+ done;
+ pr " | %sn n wx => (make_op n).(znz_to_Z) wx" c;
+ pr " end.";
+ pr "";
+
+ pr " Open Scope Z_scope.";
+ pr " Notation \"[ x ]\" := (to_Z x).";
+ pr "";
+
+ pr " Definition to_N x := Zabs_N (to_Z x).";
+ pr "";
+
+ pr " Definition eq x y := (to_Z x = to_Z y).";
+ pr "";
+
+ pp " (* Regular make op (no karatsuba) *)";
+ pp " Fixpoint nmake_op (ww:Type) (ww_op: znz_op ww) (n: nat) : ";
+ pp " znz_op (word ww n) :=";
+ pp " match n return znz_op (word ww n) with ";
+ pp " O => ww_op";
+ pp " | S n1 => mk_zn2z_op (nmake_op ww ww_op n1) ";
+ pp " end.";
+ pp "";
+ pp " (* Simplification by rewriting for nmake_op *)";
+ pp " Theorem nmake_op_S: forall ww (w_op: znz_op ww) x, ";
+ pp " nmake_op _ w_op (S x) = mk_zn2z_op (nmake_op _ w_op x).";
+ pp " auto.";
+ pp " Qed.";
+ pp "";
+
+
+ pr " (* Eval and extend functions for each level *)";
+ for i = 0 to size do
+ pp " Let nmake_op%i := nmake_op _ w%i_op." i i;
+ pp " Let eval%in n := znz_to_Z (nmake_op%i n)." i i;
+ if i == 0 then
+ pr " Let extend%i := DoubleBase.extend (WW w_0)." i
+ else
+ pr " Let extend%i := DoubleBase.extend (WW (W0: w%i))." i i;
+ done;
+ pr "";
+
+
+ pp " Theorem digits_doubled:forall n ww (w_op: znz_op ww), ";
+ pp " znz_digits (nmake_op _ w_op n) = ";
+ pp " DoubleBase.double_digits (znz_digits w_op) n.";
+ pp " Proof.";
+ pp " intros n; elim n; auto; clear n.";
+ pp " intros n Hrec ww ww_op; simpl DoubleBase.double_digits.";
+ pp " rewrite <- Hrec; auto.";
+ pp " Qed.";
+ pp "";
+ pp " Theorem nmake_double: forall n ww (w_op: znz_op ww), ";
+ pp " znz_to_Z (nmake_op _ w_op n) =";
+ pp " @DoubleBase.double_to_Z _ (znz_digits w_op) (znz_to_Z w_op) n.";
+ pp " Proof.";
+ pp " intros n; elim n; auto; clear n.";
+ pp " intros n Hrec ww ww_op; simpl DoubleBase.double_to_Z; unfold zn2z_to_Z.";
+ pp " rewrite <- Hrec; auto.";
+ pp " unfold DoubleBase.double_wB; rewrite <- digits_doubled; auto.";
+ pp " Qed.";
+ pp "";
+
+
+ pp " Theorem digits_nmake:forall n ww (w_op: znz_op ww), ";
+ pp " znz_digits (nmake_op _ w_op (S n)) = ";
+ pp " xO (znz_digits (nmake_op _ w_op n)).";
+ pp " Proof.";
+ pp " auto.";
+ pp " Qed.";
+ pp "";
+
+
+ pp " Theorem znz_nmake_op: forall ww ww_op n xh xl,";
+ pp " znz_to_Z (nmake_op ww ww_op (S n)) (WW xh xl) =";
+ pp " znz_to_Z (nmake_op ww ww_op n) xh *";
+ pp " base (znz_digits (nmake_op ww ww_op n)) +";
+ pp " znz_to_Z (nmake_op ww ww_op n) xl.";
+ pp " Proof.";
+ pp " auto.";
+ pp " Qed.";
+ pp "";
+
+ pp " Theorem make_op_S: forall n,";
+ pp " make_op (S n) = mk_zn2z_op_karatsuba (make_op n).";
+ pp " intro n.";
+ pp " do 2 rewrite make_op_omake.";
+ pp " pattern n; apply lt_wf_ind; clear n.";
+ pp " intros n; case n; clear n.";
+ pp " intros _; unfold omake_op, make_op_aux, w%i_op; apply refl_equal." (size + 2);
+ pp " intros n; case n; clear n.";
+ pp " intros _; unfold omake_op, make_op_aux, w%i_op; apply refl_equal." (size + 3);
+ pp " intros n; case n; clear n.";
+ pp " intros _; unfold omake_op, make_op_aux, w%i_op, w%i_op; apply refl_equal." (size + 3) (size + 2);
+ pp " intros n Hrec.";
+ pp " change (omake_op (S (S (S (S n))))) with";
+ pp " (mk_zn2z_op_karatsuba (mk_zn2z_op_karatsuba (mk_zn2z_op_karatsuba (omake_op (S n))))).";
+ pp " change (omake_op (S (S (S n)))) with";
+ pp " (mk_zn2z_op_karatsuba (mk_zn2z_op_karatsuba (mk_zn2z_op_karatsuba (omake_op n)))).";
+ pp " rewrite Hrec; auto with arith.";
+ pp " Qed.";
+ pp " ";
+
+
+ for i = 1 to size + 2 do
+ pp " Let znz_to_Z_%i: forall x y," i;
+ pp " znz_to_Z w%i_op (WW x y) = " i;
+ pp " znz_to_Z w%i_op x * base (znz_digits w%i_op) + znz_to_Z w%i_op y." (i-1) (i-1) (i-1);
+ pp " Proof.";
+ pp " auto.";
+ pp " Qed. ";
+ pp "";
+ done;
+
+ pp " Let znz_to_Z_n: forall n x y,";
+ pp " znz_to_Z (make_op (S n)) (WW x y) = ";
+ pp " znz_to_Z (make_op n) x * base (znz_digits (make_op n)) + znz_to_Z (make_op n) y.";
+ pp " Proof.";
+ pp " intros n x y; rewrite make_op_S; auto.";
+ pp " Qed. ";
+ pp "";
+
+ pp " Let w0_spec: znz_spec w0_op := W0.w_spec.";
+ for i = 1 to 3 do
+ pp " Let w%i_spec: znz_spec w%i_op := mk_znz2_spec w%i_spec." i i (i-1)
+ done;
+ for i = 4 to size + 3 do
+ pp " Let w%i_spec : znz_spec w%i_op := mk_znz2_karatsuba_spec w%i_spec." i i (i-1)
+ done;
+ pp "";
+
+ pp " Let wn_spec: forall n, znz_spec (make_op n).";
+ pp " intros n; elim n; clear n.";
+ pp " exact w%i_spec." (size + 1);
+ pp " intros n Hrec; rewrite make_op_S.";
+ pp " exact (mk_znz2_karatsuba_spec Hrec).";
+ pp " Qed.";
+ pp "";
+
+ for i = 0 to size do
+ pr " Definition w%i_eq0 := w%i_op.(znz_eq0)." i i;
+ pr " Let spec_w%i_eq0: forall x, if w%i_eq0 x then [%s%i x] = 0 else True." i i c i;
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; unfold w%i_eq0, to_Z; generalize (spec_eq0 w%i_spec x);" i i;
+ pp " case znz_eq0; auto.";
+ pp " Qed.";
+ pr "";
+ done;
+ pr "";
+
+
+ for i = 0 to size do
+ pp " Theorem digits_w%i: znz_digits w%i_op = znz_digits (nmake_op _ w0_op %i)." i i i;
+ if i == 0 then
+ pp " auto."
+ else
+ pp " rewrite digits_nmake; rewrite <- digits_w%i; auto." (i - 1);
+ pp " Qed.";
+ pp "";
+ pp " Let spec_double_eval%in: forall n, eval%in n = DoubleBase.double_to_Z (znz_digits w%i_op) (znz_to_Z w%i_op) n." i i i i;
+ pp " Proof.";
+ pp " intros n; exact (nmake_double n w%i w%i_op)." i i;
+ pp " Qed.";
+ pp "";
+ done;
+
+ for i = 0 to size do
+ for j = 0 to (size - i) do
+ pp " Theorem digits_w%in%i: znz_digits w%i_op = znz_digits (nmake_op _ w%i_op %i)." i j (i + j) i j;
+ pp " Proof.";
+ if j == 0 then
+ if i == 0 then
+ pp " auto."
+ else
+ begin
+ pp " apply trans_equal with (xO (znz_digits w%i_op))." (i + j -1);
+ pp " auto.";
+ pp " unfold nmake_op; auto.";
+ end
+ else
+ begin
+ pp " apply trans_equal with (xO (znz_digits w%i_op))." (i + j -1);
+ pp " auto.";
+ pp " rewrite digits_nmake.";
+ pp " rewrite digits_w%in%i." i (j - 1);
+ pp " auto.";
+ end;
+ pp " Qed.";
+ pp "";
+ pp " Let spec_eval%in%i: forall x, [%s%i x] = eval%in %i x." i j c (i + j) i j;
+ pp " Proof.";
+ if j == 0 then
+ pp " intros x; rewrite spec_double_eval%in; unfold DoubleBase.double_to_Z, to_Z; auto." i
+ else
+ begin
+ pp " intros x; case x.";
+ pp " auto.";
+ pp " intros xh xl; unfold to_Z; rewrite znz_to_Z_%i." (i + j);
+ pp " rewrite digits_w%in%i." i (j - 1);
+ pp " generalize (spec_eval%in%i); unfold to_Z; intros HH; repeat rewrite HH." i (j - 1);
+ pp " unfold eval%in, nmake_op%i." i i;
+ pp " rewrite (znz_nmake_op _ w%i_op %i); auto." i (j - 1);
+ end;
+ pp " Qed.";
+ if i + j <> size then
+ begin
+ pp " Let spec_extend%in%i: forall x, [%s%i x] = [%s%i (extend%i %i x)]." i (i + j + 1) c i c (i + j + 1) i j;
+ if j == 0 then
+ begin
+ pp " intros x; change (extend%i 0 x) with (WW (znz_0 w%i_op) x)." i (i + j);
+ pp " unfold to_Z; rewrite znz_to_Z_%i." (i + j + 1);
+ pp " rewrite (spec_0 w%i_spec); auto." (i + j);
+ end
+ else
+ begin
+ pp " intros x; change (extend%i %i x) with (WW (znz_0 w%i_op) (extend%i %i x))." i j (i + j) i (j - 1);
+ pp " unfold to_Z; rewrite znz_to_Z_%i." (i + j + 1);
+ pp " rewrite (spec_0 w%i_spec)." (i + j);
+ pp " generalize (spec_extend%in%i x); unfold to_Z." i (i + j);
+ pp " intros HH; rewrite <- HH; auto.";
+ end;
+ pp " Qed.";
+ pp "";
+ end;
+ done;
+
+ pp " Theorem digits_w%in%i: znz_digits w%i_op = znz_digits (nmake_op _ w%i_op %i)." i (size - i + 1) (size + 1) i (size - i + 1);
+ pp " Proof.";
+ pp " apply trans_equal with (xO (znz_digits w%i_op))." size;
+ pp " auto.";
+ pp " rewrite digits_nmake.";
+ pp " rewrite digits_w%in%i." i (size - i);
+ pp " auto.";
+ pp " Qed.";
+ pp "";
+
+ pp " Let spec_eval%in%i: forall x, [%sn 0 x] = eval%in %i x." i (size - i + 1) c i (size - i + 1);
+ pp " Proof.";
+ pp " intros x; case x.";
+ pp " auto.";
+ pp " intros xh xl; unfold to_Z; rewrite znz_to_Z_%i." (size + 1);
+ pp " rewrite digits_w%in%i." i (size - i);
+ pp " generalize (spec_eval%in%i); unfold to_Z; intros HH; repeat rewrite HH." i (size - i);
+ pp " unfold eval%in, nmake_op%i." i i;
+ pp " rewrite (znz_nmake_op _ w%i_op %i); auto." i (size - i);
+ pp " Qed.";
+ pp "";
+
+ pp " Let spec_eval%in%i: forall x, [%sn 1 x] = eval%in %i x." i (size - i + 2) c i (size - i + 2);
+ pp " intros x; case x.";
+ pp " auto.";
+ pp " intros xh xl; unfold to_Z; rewrite znz_to_Z_%i." (size + 2);
+ pp " rewrite digits_w%in%i." i (size + 1 - i);
+ pp " generalize (spec_eval%in%i); unfold to_Z; change (make_op 0) with (w%i_op); intros HH; repeat rewrite HH." i (size + 1 - i) (size + 1);
+ pp " unfold eval%in, nmake_op%i." i i;
+ pp " rewrite (znz_nmake_op _ w%i_op %i); auto." i (size + 1 - i);
+ pp " Qed.";
+ pp "";
+ done;
+
+ pp " Let digits_w%in: forall n," size;
+ pp " znz_digits (make_op n) = znz_digits (nmake_op _ w%i_op (S n))." size;
+ pp " intros n; elim n; clear n.";
+ pp " change (znz_digits (make_op 0)) with (xO (znz_digits w%i_op))." size;
+ pp " rewrite nmake_op_S; apply sym_equal; auto.";
+ pp " intros n Hrec.";
+ pp " replace (znz_digits (make_op (S n))) with (xO (znz_digits (make_op n))).";
+ pp " rewrite Hrec.";
+ pp " rewrite nmake_op_S; apply sym_equal; auto.";
+ pp " rewrite make_op_S; apply sym_equal; auto.";
+ pp " Qed.";
+ pp "";
+
+ pp " Let spec_eval%in: forall n x, [%sn n x] = eval%in (S n) x." size c size;
+ pp " intros n; elim n; clear n.";
+ pp " exact spec_eval%in1." size;
+ pp " intros n Hrec x; case x; clear x.";
+ pp " unfold to_Z, eval%in, nmake_op%i." size size;
+ pp " rewrite make_op_S; rewrite nmake_op_S; auto.";
+ pp " intros xh xl.";
+ pp " unfold to_Z in Hrec |- *.";
+ pp " rewrite znz_to_Z_n.";
+ pp " rewrite digits_w%in." size;
+ pp " repeat rewrite Hrec.";
+ pp " unfold eval%in, nmake_op%i." size size;
+ pp " apply sym_equal; rewrite nmake_op_S; auto.";
+ pp " Qed.";
+ pp "";
+
+ pp " Let spec_extend%in: forall n x, [%s%i x] = [%sn n (extend%i n x)]." size c size c size ;
+ pp " intros n; elim n; clear n.";
+ pp " intros x; change (extend%i 0 x) with (WW (znz_0 w%i_op) x)." size size;
+ pp " unfold to_Z.";
+ pp " change (make_op 0) with w%i_op." (size + 1);
+ pp " rewrite znz_to_Z_%i; rewrite (spec_0 w%i_spec); auto." (size + 1) size;
+ pp " intros n Hrec x.";
+ pp " change (extend%i (S n) x) with (WW W0 (extend%i n x))." size size;
+ pp " unfold to_Z in Hrec |- *; rewrite znz_to_Z_n; auto.";
+ pp " rewrite <- Hrec.";
+ pp " replace (znz_to_Z (make_op n) W0) with 0; auto.";
+ pp " case n; auto; intros; rewrite make_op_S; auto.";
+ pp " Qed.";
+ pp "";
+
+ pr " Theorem spec_pos: forall x, 0 <= [x].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; case x; clear x.";
+ for i = 0 to size do
+ pp " intros x; case (spec_to_Z w%i_spec x); auto." i;
+ done;
+ pp " intros n x; case (spec_to_Z (wn_spec n) x); auto.";
+ pp " Qed.";
+ pr "";
+
+ pp " Let spec_extendn_0: forall n wx, [%sn n (extend n _ wx)] = [%sn 0 wx]." c c;
+ pp " intros n; elim n; auto.";
+ pp " intros n1 Hrec wx; simpl extend; rewrite <- Hrec; auto.";
+ pp " unfold to_Z.";
+ pp " case n1; auto; intros n2; repeat rewrite make_op_S; auto.";
+ pp " Qed.";
+ pp " Hint Rewrite spec_extendn_0: extr.";
+ pp "";
+ pp " Let spec_extendn0_0: forall n wx, [%sn (S n) (WW W0 wx)] = [%sn n wx]." c c;
+ pp " Proof.";
+ pp " intros n x; unfold to_Z.";
+ pp " rewrite znz_to_Z_n.";
+ pp " rewrite <- (Zplus_0_l (znz_to_Z (make_op n) x)).";
+ pp " apply (f_equal2 Zplus); auto.";
+ pp " case n; auto.";
+ pp " intros n1; rewrite make_op_S; auto.";
+ pp " Qed.";
+ pp " Hint Rewrite spec_extendn_0: extr.";
+ pp "";
+ pp " Let spec_extend_tr: forall m n (w: word _ (S n)),";
+ pp " [%sn (m + n) (extend_tr w m)] = [%sn n w]." c c;
+ pp " Proof.";
+ pp " induction m; auto.";
+ pp " intros n x; simpl extend_tr.";
+ pp " simpl plus; rewrite spec_extendn0_0; auto.";
+ pp " Qed.";
+ pp " Hint Rewrite spec_extend_tr: extr.";
+ pp "";
+ pp " Let spec_cast_l: forall n m x1,";
+ pp " [%sn (Max.max n m)" c;
+ pp " (castm (diff_r n m) (extend_tr x1 (snd (diff n m))))] =";
+ pp " [%sn n x1]." c;
+ pp " Proof.";
+ pp " intros n m x1; case (diff_r n m); simpl castm.";
+ pp " rewrite spec_extend_tr; auto.";
+ pp " Qed.";
+ pp " Hint Rewrite spec_cast_l: extr.";
+ pp "";
+ pp " Let spec_cast_r: forall n m x1,";
+ pp " [%sn (Max.max n m)" c;
+ pp " (castm (diff_l n m) (extend_tr x1 (fst (diff n m))))] =";
+ pp " [%sn m x1]." c;
+ pp " Proof.";
+ pp " intros n m x1; case (diff_l n m); simpl castm.";
+ pp " rewrite spec_extend_tr; auto.";
+ pp " Qed.";
+ pp " Hint Rewrite spec_cast_r: extr.";
+ pp "";
+
+
+ pr " Section LevelAndIter.";
+ pr "";
+ pr " Variable res: Type.";
+ pr " Variable xxx: res.";
+ pr " Variable P: Z -> Z -> res -> Prop.";
+ pr " (* Abstraction function for each level *)";
+ for i = 0 to size do
+ pr " Variable f%i: w%i -> w%i -> res." i i i;
+ pr " Variable f%in: forall n, w%i -> word w%i (S n) -> res." i i i;
+ pr " Variable fn%i: forall n, word w%i (S n) -> w%i -> res." i i i;
+ pp " Variable Pf%i: forall x y, P [%s%i x] [%s%i y] (f%i x y)." i c i c i i;
+ if i == size then
+ begin
+ pp " Variable Pf%in: forall n x y, P [%s%i x] (eval%in (S n) y) (f%in n x y)." i c i i i;
+ pp " Variable Pfn%i: forall n x y, P (eval%in (S n) x) [%s%i y] (fn%i n x y)." i i c i i;
+ end
+ else
+ begin
+ pp " Variable Pf%in: forall n x y, Z_of_nat n <= %i -> P [%s%i x] (eval%in (S n) y) (f%in n x y)." i (size - i) c i i i;
+ pp " Variable Pfn%i: forall n x y, Z_of_nat n <= %i -> P (eval%in (S n) x) [%s%i y] (fn%i n x y)." i (size - i) i c i i;
+ end;
+ pr "";
+ done;
+ pr " Variable fnn: forall n, word w%i (S n) -> word w%i (S n) -> res." size size;
+ pp " Variable Pfnn: forall n x y, P [%sn n x] [%sn n y] (fnn n x y)." c c;
+ pr " Variable fnm: forall n m, word w%i (S n) -> word w%i (S m) -> res." size size;
+ pp " Variable Pfnm: forall n m x y, P [%sn n x] [%sn m y] (fnm n m x y)." c c;
+ pr "";
+ pr " (* Special zero functions *)";
+ pr " Variable f0t: t_ -> res.";
+ pp " Variable Pf0t: forall x, P 0 [x] (f0t x).";
+ pr " Variable ft0: t_ -> res.";
+ pp " Variable Pft0: forall x, P [x] 0 (ft0 x).";
+ pr "";
+
+
+ pr " (* We level the two arguments before applying *)";
+ pr " (* the functions at each leval *)";
+ pr " Definition same_level (x y: t_): res :=";
+ pr0 " Eval lazy zeta beta iota delta [";
+ for i = 0 to size do
+ pr0 "extend%i " i;
+ done;
+ pr "";
+ pr " DoubleBase.extend DoubleBase.extend_aux";
+ pr " ] in";
+ pr " match x, y with";
+ for i = 0 to size do
+ for j = 0 to i - 1 do
+ pr " | %s%i wx, %s%i wy => f%i wx (extend%i %i wy)" c i c j i j (i - j -1);
+ done;
+ pr " | %s%i wx, %s%i wy => f%i wx wy" c i c i i;
+ for j = i + 1 to size do
+ pr " | %s%i wx, %s%i wy => f%i (extend%i %i wx) wy" c i c j j i (j - i - 1);
+ done;
+ if i == size then
+ pr " | %s%i wx, %sn m wy => fnn m (extend%i m wx) wy" c size c size
+ else
+ pr " | %s%i wx, %sn m wy => fnn m (extend%i m (extend%i %i wx)) wy" c i c size i (size - i - 1);
+ done;
+ for i = 0 to size do
+ if i == size then
+ pr " | %sn n wx, %s%i wy => fnn n wx (extend%i n wy)" c c size size
+ else
+ pr " | %sn n wx, %s%i wy => fnn n wx (extend%i n (extend%i %i wy))" c c i size i (size - i - 1);
+ done;
+ pr " | %sn n wx, Nn m wy =>" c;
+ pr " let mn := Max.max n m in";
+ pr " let d := diff n m in";
+ pr " fnn mn";
+ pr " (castm (diff_r n m) (extend_tr wx (snd d)))";
+ pr " (castm (diff_l n m) (extend_tr wy (fst d)))";
+ pr " end.";
+ pr "";
+
+ pp " Lemma spec_same_level: forall x y, P [x] [y] (same_level x y).";
+ pp " Proof.";
+ pp " intros x; case x; clear x; unfold same_level.";
+ for i = 0 to size do
+ pp " intros x y; case y; clear y.";
+ for j = 0 to i - 1 do
+ pp " intros y; rewrite spec_extend%in%i; apply Pf%i." j i i;
+ done;
+ pp " intros y; apply Pf%i." i;
+ for j = i + 1 to size do
+ pp " intros y; rewrite spec_extend%in%i; apply Pf%i." i j j;
+ done;
+ if i == size then
+ pp " intros m y; rewrite (spec_extend%in m); apply Pfnn." size
+ else
+ pp " intros m y; rewrite spec_extend%in%i; rewrite (spec_extend%in m); apply Pfnn." i size size;
+ done;
+ pp " intros n x y; case y; clear y.";
+ for i = 0 to size do
+ if i == size then
+ pp " intros y; rewrite (spec_extend%in n); apply Pfnn." size
+ else
+ pp " intros y; rewrite spec_extend%in%i; rewrite (spec_extend%in n); apply Pfnn." i size size;
+ done;
+ pp " intros m y; rewrite <- (spec_cast_l n m x); ";
+ pp " rewrite <- (spec_cast_r n m y); apply Pfnn.";
+ pp " Qed.";
+ pp "";
+
+ pr " (* We level the two arguments before applying *)";
+ pr " (* the functions at each level (special zero case) *)";
+ pr " Definition same_level0 (x y: t_): res :=";
+ pr0 " Eval lazy zeta beta iota delta [";
+ for i = 0 to size do
+ pr0 "extend%i " i;
+ done;
+ pr "";
+ pr " DoubleBase.extend DoubleBase.extend_aux";
+ pr " ] in";
+ pr " match x with";
+ for i = 0 to size do
+ pr " | %s%i wx =>" c i;
+ if i == 0 then
+ pr " if w0_eq0 wx then f0t y else";
+ pr " match y with";
+ for j = 0 to i - 1 do
+ pr " | %s%i wy =>" c j;
+ if j == 0 then
+ pr " if w0_eq0 wy then ft0 x else";
+ pr " f%i wx (extend%i %i wy)" i j (i - j -1);
+ done;
+ pr " | %s%i wy => f%i wx wy" c i i;
+ for j = i + 1 to size do
+ pr " | %s%i wy => f%i (extend%i %i wx) wy" c j j i (j - i - 1);
+ done;
+ if i == size then
+ pr " | %sn m wy => fnn m (extend%i m wx) wy" c size
+ else
+ pr " | %sn m wy => fnn m (extend%i m (extend%i %i wx)) wy" c size i (size - i - 1);
+ pr" end";
+ done;
+ pr " | %sn n wx =>" c;
+ pr " match y with";
+ for i = 0 to size do
+ pr " | %s%i wy =>" c i;
+ if i == 0 then
+ pr " if w0_eq0 wy then ft0 x else";
+ if i == size then
+ pr " fnn n wx (extend%i n wy)" size
+ else
+ pr " fnn n wx (extend%i n (extend%i %i wy))" size i (size - i - 1);
+ done;
+ pr " | %sn m wy =>" c;
+ pr " let mn := Max.max n m in";
+ pr " let d := diff n m in";
+ pr " fnn mn";
+ pr " (castm (diff_r n m) (extend_tr wx (snd d)))";
+ pr " (castm (diff_l n m) (extend_tr wy (fst d)))";
+ pr " end";
+ pr " end.";
+ pr "";
+
+ pp " Lemma spec_same_level0: forall x y, P [x] [y] (same_level0 x y).";
+ pp " Proof.";
+ pp " intros x; case x; clear x; unfold same_level0.";
+ for i = 0 to size do
+ pp " intros x.";
+ if i == 0 then
+ begin
+ pp " generalize (spec_w0_eq0 x); case w0_eq0; intros H.";
+ pp " intros y; rewrite H; apply Pf0t.";
+ pp " clear H.";
+ end;
+ pp " intros y; case y; clear y.";
+ for j = 0 to i - 1 do
+ pp " intros y.";
+ if j == 0 then
+ begin
+ pp " generalize (spec_w0_eq0 y); case w0_eq0; intros H.";
+ pp " rewrite H; apply Pft0.";
+ pp " clear H.";
+ end;
+ pp " rewrite spec_extend%in%i; apply Pf%i." j i i;
+ done;
+ pp " intros y; apply Pf%i." i;
+ for j = i + 1 to size do
+ pp " intros y; rewrite spec_extend%in%i; apply Pf%i." i j j;
+ done;
+ if i == size then
+ pp " intros m y; rewrite (spec_extend%in m); apply Pfnn." size
+ else
+ pp " intros m y; rewrite spec_extend%in%i; rewrite (spec_extend%in m); apply Pfnn." i size size;
+ done;
+ pp " intros n x y; case y; clear y.";
+ for i = 0 to size do
+ pp " intros y.";
+ if i = 0 then
+ begin
+ pp " generalize (spec_w0_eq0 y); case w0_eq0; intros H.";
+ pp " rewrite H; apply Pft0.";
+ pp " clear H.";
+ end;
+ if i == size then
+ pp " rewrite (spec_extend%in n); apply Pfnn." size
+ else
+ pp " rewrite spec_extend%in%i; rewrite (spec_extend%in n); apply Pfnn." i size size;
+ done;
+ pp " intros m y; rewrite <- (spec_cast_l n m x); ";
+ pp " rewrite <- (spec_cast_r n m y); apply Pfnn.";
+ pp " Qed.";
+ pp "";
+
+ pr " (* We iter the smaller argument with the bigger *)";
+ pr " Definition iter (x y: t_): res := ";
+ pr0 " Eval lazy zeta beta iota delta [";
+ for i = 0 to size do
+ pr0 "extend%i " i;
+ done;
+ pr "";
+ pr " DoubleBase.extend DoubleBase.extend_aux";
+ pr " ] in";
+ pr " match x, y with";
+ for i = 0 to size do
+ for j = 0 to i - 1 do
+ pr " | %s%i wx, %s%i wy => fn%i %i wx wy" c i c j j (i - j - 1);
+ done;
+ pr " | %s%i wx, %s%i wy => f%i wx wy" c i c i i;
+ for j = i + 1 to size do
+ pr " | %s%i wx, %s%i wy => f%in %i wx wy" c i c j i (j - i - 1);
+ done;
+ if i == size then
+ pr " | %s%i wx, %sn m wy => f%in m wx wy" c size c size
+ else
+ pr " | %s%i wx, %sn m wy => f%in m (extend%i %i wx) wy" c i c size i (size - i - 1);
+ done;
+ for i = 0 to size do
+ if i == size then
+ pr " | %sn n wx, %s%i wy => fn%i n wx wy" c c size size
+ else
+ pr " | %sn n wx, %s%i wy => fn%i n wx (extend%i %i wy)" c c i size i (size - i - 1);
+ done;
+ pr " | %sn n wx, %sn m wy => fnm n m wx wy" c c;
+ pr " end.";
+ pr "";
+
+ pp " Ltac zg_tac := try";
+ pp " (red; simpl Zcompare; auto;";
+ pp " let t := fresh \"H\" in (intros t; discriminate t)).";
+ pp " Lemma spec_iter: forall x y, P [x] [y] (iter x y).";
+ pp " Proof.";
+ pp " intros x; case x; clear x; unfold iter.";
+ for i = 0 to size do
+ pp " intros x y; case y; clear y.";
+ for j = 0 to i - 1 do
+ pp " intros y; rewrite spec_eval%in%i; apply (Pfn%i %i); zg_tac." j (i - j) j (i - j - 1);
+ done;
+ pp " intros y; apply Pf%i." i;
+ for j = i + 1 to size do
+ pp " intros y; rewrite spec_eval%in%i; apply (Pf%in %i); zg_tac." i (j - i) i (j - i - 1);
+ done;
+ if i == size then
+ pp " intros m y; rewrite spec_eval%in; apply Pf%in." size size
+ else
+ pp " intros m y; rewrite spec_extend%in%i; rewrite spec_eval%in; apply Pf%in." i size size size;
+ done;
+ pp " intros n x y; case y; clear y.";
+ for i = 0 to size do
+ if i == size then
+ pp " intros y; rewrite spec_eval%in; apply Pfn%i." size size
+ else
+ pp " intros y; rewrite spec_extend%in%i; rewrite spec_eval%in; apply Pfn%i." i size size size;
+ done;
+ pp " intros m y; apply Pfnm.";
+ pp " Qed.";
+ pp "";
+
+
+ pr " (* We iter the smaller argument with the bigger (zero case) *)";
+ pr " Definition iter0 (x y: t_): res :=";
+ pr0 " Eval lazy zeta beta iota delta [";
+ for i = 0 to size do
+ pr0 "extend%i " i;
+ done;
+ pr "";
+ pr " DoubleBase.extend DoubleBase.extend_aux";
+ pr " ] in";
+ pr " match x with";
+ for i = 0 to size do
+ pr " | %s%i wx =>" c i;
+ if i == 0 then
+ pr " if w0_eq0 wx then f0t y else";
+ pr " match y with";
+ for j = 0 to i - 1 do
+ pr " | %s%i wy =>" c j;
+ if j == 0 then
+ pr " if w0_eq0 wy then ft0 x else";
+ pr " fn%i %i wx wy" j (i - j - 1);
+ done;
+ pr " | %s%i wy => f%i wx wy" c i i;
+ for j = i + 1 to size do
+ pr " | %s%i wy => f%in %i wx wy" c j i (j - i - 1);
+ done;
+ if i == size then
+ pr " | %sn m wy => f%in m wx wy" c size
+ else
+ pr " | %sn m wy => f%in m (extend%i %i wx) wy" c size i (size - i - 1);
+ pr " end";
+ done;
+ pr " | %sn n wx =>" c;
+ pr " match y with";
+ for i = 0 to size do
+ pr " | %s%i wy =>" c i;
+ if i == 0 then
+ pr " if w0_eq0 wy then ft0 x else";
+ if i == size then
+ pr " fn%i n wx wy" size
+ else
+ pr " fn%i n wx (extend%i %i wy)" size i (size - i - 1);
+ done;
+ pr " | %sn m wy => fnm n m wx wy" c;
+ pr " end";
+ pr " end.";
+ pr "";
+
+ pp " Lemma spec_iter0: forall x y, P [x] [y] (iter0 x y).";
+ pp " Proof.";
+ pp " intros x; case x; clear x; unfold iter0.";
+ for i = 0 to size do
+ pp " intros x.";
+ if i == 0 then
+ begin
+ pp " generalize (spec_w0_eq0 x); case w0_eq0; intros H.";
+ pp " intros y; rewrite H; apply Pf0t.";
+ pp " clear H.";
+ end;
+ pp " intros y; case y; clear y.";
+ for j = 0 to i - 1 do
+ pp " intros y.";
+ if j == 0 then
+ begin
+ pp " generalize (spec_w0_eq0 y); case w0_eq0; intros H.";
+ pp " rewrite H; apply Pft0.";
+ pp " clear H.";
+ end;
+ pp " rewrite spec_eval%in%i; apply (Pfn%i %i); zg_tac." j (i - j) j (i - j - 1);
+ done;
+ pp " intros y; apply Pf%i." i;
+ for j = i + 1 to size do
+ pp " intros y; rewrite spec_eval%in%i; apply (Pf%in %i); zg_tac." i (j - i) i (j - i - 1);
+ done;
+ if i == size then
+ pp " intros m y; rewrite spec_eval%in; apply Pf%in." size size
+ else
+ pp " intros m y; rewrite spec_extend%in%i; rewrite spec_eval%in; apply Pf%in." i size size size;
+ done;
+ pp " intros n x y; case y; clear y.";
+ for i = 0 to size do
+ pp " intros y.";
+ if i = 0 then
+ begin
+ pp " generalize (spec_w0_eq0 y); case w0_eq0; intros H.";
+ pp " rewrite H; apply Pft0.";
+ pp " clear H.";
+ end;
+ if i == size then
+ pp " rewrite spec_eval%in; apply Pfn%i." size size
+ else
+ pp " rewrite spec_extend%in%i; rewrite spec_eval%in; apply Pfn%i." i size size size;
+ done;
+ pp " intros m y; apply Pfnm.";
+ pp " Qed.";
+ pp "";
+
+
+ pr " End LevelAndIter.";
+ pr "";
+
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Reduction *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ pr " Definition reduce_0 (x:w) := %s0 x." c;
+ pr " Definition reduce_1 :=";
+ pr " Eval lazy beta iota delta[reduce_n1] in";
+ pr " reduce_n1 _ _ zero w0_eq0 %s0 %s1." c c;
+ for i = 2 to size do
+ pr " Definition reduce_%i :=" i;
+ pr " Eval lazy beta iota delta[reduce_n1] in";
+ pr " reduce_n1 _ _ zero w%i_eq0 reduce_%i %s%i."
+ (i-1) (i-1) c i
+ done;
+ pr " Definition reduce_%i :=" (size+1);
+ pr " Eval lazy beta iota delta[reduce_n1] in";
+ pr " reduce_n1 _ _ zero w%i_eq0 reduce_%i (%sn 0)."
+ size size c;
+
+ pr " Definition reduce_n n := ";
+ pr " Eval lazy beta iota delta[reduce_n] in";
+ pr " reduce_n _ _ zero reduce_%i %sn n." (size + 1) c;
+ pr "";
+
+ pp " Let spec_reduce_0: forall x, [reduce_0 x] = [%s0 x]." c;
+ pp " Proof.";
+ pp " intros x; unfold to_Z, reduce_0.";
+ pp " auto.";
+ pp " Qed.";
+ pp " ";
+
+ for i = 1 to size + 1 do
+ if i == size + 1 then
+ pp " Let spec_reduce_%i: forall x, [reduce_%i x] = [%sn 0 x]." i i c
+ else
+ pp " Let spec_reduce_%i: forall x, [reduce_%i x] = [%s%i x]." i i c i;
+ pp " Proof.";
+ pp " intros x; case x; unfold reduce_%i." i;
+ pp " exact (spec_0 w0_spec).";
+ pp " intros x1 y1.";
+ pp " generalize (spec_w%i_eq0 x1); " (i - 1);
+ pp " case w%i_eq0; intros H1; auto." (i - 1);
+ if i <> 1 then
+ pp " rewrite spec_reduce_%i." (i - 1);
+ pp " unfold to_Z; rewrite znz_to_Z_%i." i;
+ pp " unfold to_Z in H1; rewrite H1; auto.";
+ pp " Qed.";
+ pp " ";
+ done;
+
+ pp " Let spec_reduce_n: forall n x, [reduce_n n x] = [%sn n x]." c;
+ pp " Proof.";
+ pp " intros n; elim n; simpl reduce_n.";
+ pp " intros x; rewrite <- spec_reduce_%i; auto." (size + 1);
+ pp " intros n1 Hrec x; case x.";
+ pp " unfold to_Z; rewrite make_op_S; auto.";
+ pp " exact (spec_0 w0_spec).";
+ pp " intros x1 y1; case x1; auto.";
+ pp " rewrite Hrec.";
+ pp " rewrite spec_extendn0_0; auto.";
+ pp " Qed.";
+ pp " ";
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Successor *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_succ_c := w%i_op.(znz_succ_c)." i i
+ done;
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_succ := w%i_op.(znz_succ)." i i
+ done;
+ pr "";
+
+ pr " Definition succ x :=";
+ pr " match x with";
+ for i = 0 to size-1 do
+ pr " | %s%i wx =>" c i;
+ pr " match w%i_succ_c wx with" i;
+ pr " | C0 r => %s%i r" c i;
+ pr " | C1 r => %s%i (WW one%i r)" c (i+1) i;
+ pr " end";
+ done;
+ pr " | %s%i wx =>" c size;
+ pr " match w%i_succ_c wx with" size;
+ pr " | C0 r => %s%i r" c size;
+ pr " | C1 r => %sn 0 (WW one%i r)" c size ;
+ pr " end";
+ pr " | %sn n wx =>" c;
+ pr " let op := make_op n in";
+ pr " match op.(znz_succ_c) wx with";
+ pr " | C0 r => %sn n r" c;
+ pr " | C1 r => %sn (S n) (WW op.(znz_1) r)" c;
+ pr " end";
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_succ: forall n, [succ n] = [n] + 1.";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros n; case n; unfold succ, to_Z.";
+ for i = 0 to size do
+ pp " intros n1; generalize (spec_succ_c w%i_spec n1);" i;
+ pp " unfold succ, to_Z, w%i_succ_c; case znz_succ_c; auto." i;
+ pp " intros ww H; rewrite <- H.";
+ pp " (rewrite znz_to_Z_%i; unfold interp_carry;" (i + 1);
+ pp " apply f_equal2 with (f := Zplus); auto;";
+ pp " apply f_equal2 with (f := Zmult); auto;";
+ pp " exact (spec_1 w%i_spec))." i;
+ done;
+ pp " intros k n1; generalize (spec_succ_c (wn_spec k) n1).";
+ pp " unfold succ, to_Z; case znz_succ_c; auto.";
+ pp " intros ww H; rewrite <- H.";
+ pp " (rewrite (znz_to_Z_n k); unfold interp_carry;";
+ pp " apply f_equal2 with (f := Zplus); auto;";
+ pp " apply f_equal2 with (f := Zmult); auto;";
+ pp " exact (spec_1 (wn_spec k))).";
+ pp " Qed.";
+ pr "";
+
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Adddition *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_add_c := znz_add_c w%i_op." i i;
+ pr " Definition w%i_add x y :=" i;
+ pr " match w%i_add_c x y with" i;
+ pr " | C0 r => %s%i r" c i;
+ if i == size then
+ pr " | C1 r => %sn 0 (WW one%i r)" c size
+ else
+ pr " | C1 r => %s%i (WW one%i r)" c (i + 1) i;
+ pr " end.";
+ pr "";
+ done ;
+ pr " Definition addn n (x y : word w%i (S n)) :=" size;
+ pr " let op := make_op n in";
+ pr " match op.(znz_add_c) x y with";
+ pr " | C0 r => %sn n r" c;
+ pr " | C1 r => %sn (S n) (WW op.(znz_1) r) end." c;
+ pr "";
+
+
+ for i = 0 to size do
+ pp " Let spec_w%i_add: forall x y, [w%i_add x y] = [%s%i x] + [%s%i y]." i i c i c i;
+ pp " Proof.";
+ pp " intros n m; unfold to_Z, w%i_add, w%i_add_c." i i;
+ pp " generalize (spec_add_c w%i_spec n m); case znz_add_c; auto." i;
+ pp " intros ww H; rewrite <- H.";
+ pp " rewrite znz_to_Z_%i; unfold interp_carry;" (i + 1);
+ pp " apply f_equal2 with (f := Zplus); auto;";
+ pp " apply f_equal2 with (f := Zmult); auto;";
+ pp " exact (spec_1 w%i_spec)." i;
+ pp " Qed.";
+ pp " Hint Rewrite spec_w%i_add: addr." i;
+ pp "";
+ done;
+ pp " Let spec_wn_add: forall n x y, [addn n x y] = [%sn n x] + [%sn n y]." c c;
+ pp " Proof.";
+ pp " intros k n m; unfold to_Z, addn.";
+ pp " generalize (spec_add_c (wn_spec k) n m); case znz_add_c; auto.";
+ pp " intros ww H; rewrite <- H.";
+ pp " rewrite (znz_to_Z_n k); unfold interp_carry;";
+ pp " apply f_equal2 with (f := Zplus); auto;";
+ pp " apply f_equal2 with (f := Zmult); auto;";
+ pp " exact (spec_1 (wn_spec k)).";
+ pp " Qed.";
+ pp " Hint Rewrite spec_wn_add: addr.";
+
+ pr " Definition add := Eval lazy beta delta [same_level] in";
+ pr0 " (same_level t_ ";
+ for i = 0 to size do
+ pr0 "w%i_add " i;
+ done;
+ pr "addn).";
+ pr "";
+
+ pr " Theorem spec_add: forall x y, [add x y] = [x] + [y].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " unfold add.";
+ pp " generalize (spec_same_level t_ (fun x y res => [res] = x + y)).";
+ pp " unfold same_level; intros HH; apply HH; clear HH.";
+ for i = 0 to size do
+ pp " exact spec_w%i_add." i;
+ done;
+ pp " exact spec_wn_add.";
+ pp " Qed.";
+ pr "";
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Predecessor *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_pred_c := w%i_op.(znz_pred_c)." i i
+ done;
+ pr "";
+
+ pr " Definition pred x :=";
+ pr " match x with";
+ for i = 0 to size do
+ pr " | %s%i wx =>" c i;
+ pr " match w%i_pred_c wx with" i;
+ pr " | C0 r => reduce_%i r" i;
+ pr " | C1 r => zero";
+ pr " end";
+ done;
+ pr " | %sn n wx =>" c;
+ pr " let op := make_op n in";
+ pr " match op.(znz_pred_c) wx with";
+ pr " | C0 r => reduce_n n r";
+ pr " | C1 r => zero";
+ pr " end";
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_pred: forall x, 0 < [x] -> [pred x] = [x] - 1.";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; case x; unfold pred.";
+ for i = 0 to size do
+ pp " intros x1 H1; unfold w%i_pred_c; " i;
+ pp " generalize (spec_pred_c w%i_spec x1); case znz_pred_c; intros y1." i;
+ pp " rewrite spec_reduce_%i; auto." i;
+ pp " unfold interp_carry; unfold to_Z.";
+ pp " case (spec_to_Z w%i_spec x1); intros HH1 HH2." i;
+ pp " case (spec_to_Z w%i_spec y1); intros HH3 HH4 HH5." i;
+ pp " assert (znz_to_Z w%i_op x1 - 1 < 0); auto with zarith." i;
+ pp " unfold to_Z in H1; auto with zarith.";
+ done;
+ pp " intros n x1 H1; ";
+ pp " generalize (spec_pred_c (wn_spec n) x1); case znz_pred_c; intros y1.";
+ pp " rewrite spec_reduce_n; auto.";
+ pp " unfold interp_carry; unfold to_Z.";
+ pp " case (spec_to_Z (wn_spec n) x1); intros HH1 HH2.";
+ pp " case (spec_to_Z (wn_spec n) y1); intros HH3 HH4 HH5.";
+ pp " assert (znz_to_Z (make_op n) x1 - 1 < 0); auto with zarith.";
+ pp " unfold to_Z in H1; auto with zarith.";
+ pp " Qed.";
+ pp " ";
+
+ pp " Let spec_pred0: forall x, [x] = 0 -> [pred x] = 0.";
+ pp " Proof.";
+ pp " intros x; case x; unfold pred.";
+ for i = 0 to size do
+ pp " intros x1 H1; unfold w%i_pred_c; " i;
+ pp " generalize (spec_pred_c w%i_spec x1); case znz_pred_c; intros y1." i;
+ pp " unfold interp_carry; unfold to_Z.";
+ pp " unfold to_Z in H1; auto with zarith.";
+ pp " case (spec_to_Z w%i_spec y1); intros HH3 HH4; auto with zarith." i;
+ pp " intros; exact (spec_0 w0_spec).";
+ done;
+ pp " intros n x1 H1; ";
+ pp " generalize (spec_pred_c (wn_spec n) x1); case znz_pred_c; intros y1.";
+ pp " unfold interp_carry; unfold to_Z.";
+ pp " unfold to_Z in H1; auto with zarith.";
+ pp " case (spec_to_Z (wn_spec n) y1); intros HH3 HH4; auto with zarith.";
+ pp " intros; exact (spec_0 w0_spec).";
+ pp " Qed.";
+ pr " ";
+
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Subtraction *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_sub_c := w%i_op.(znz_sub_c)." i i
+ done;
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_sub x y :=" i;
+ pr " match w%i_sub_c x y with" i;
+ pr " | C0 r => reduce_%i r" i;
+ pr " | C1 r => zero";
+ pr " end."
+ done;
+ pr "";
+
+ pr " Definition subn n (x y : word w%i (S n)) :=" size;
+ pr " let op := make_op n in";
+ pr " match op.(znz_sub_c) x y with";
+ pr " | C0 r => %sn n r" c;
+ pr " | C1 r => N0 w_0";
+ pr " end.";
+ pr "";
+
+ for i = 0 to size do
+ pp " Let spec_w%i_sub: forall x y, [%s%i y] <= [%s%i x] -> [w%i_sub x y] = [%s%i x] - [%s%i y]." i c i c i i c i c i;
+ pp " Proof.";
+ pp " intros n m; unfold w%i_sub, w%i_sub_c." i i;
+ pp " generalize (spec_sub_c w%i_spec n m); case znz_sub_c; " i;
+ if i == 0 then
+ pp " intros x; auto."
+ else
+ pp " intros x; try rewrite spec_reduce_%i; auto." i;
+ pp " unfold interp_carry; unfold zero, w_0, to_Z.";
+ pp " rewrite (spec_0 w0_spec).";
+ pp " case (spec_to_Z w%i_spec x); intros; auto with zarith." i;
+ pp " Qed.";
+ pp "";
+ done;
+
+ pp " Let spec_wn_sub: forall n x y, [%sn n y] <= [%sn n x] -> [subn n x y] = [%sn n x] - [%sn n y]." c c c c;
+ pp " Proof.";
+ pp " intros k n m; unfold subn.";
+ pp " generalize (spec_sub_c (wn_spec k) n m); case znz_sub_c; ";
+ pp " intros x; auto.";
+ pp " unfold interp_carry, to_Z.";
+ pp " case (spec_to_Z (wn_spec k) x); intros; auto with zarith.";
+ pp " Qed.";
+ pp "";
+
+ pr " Definition sub := Eval lazy beta delta [same_level] in";
+ pr0 " (same_level t_ ";
+ for i = 0 to size do
+ pr0 "w%i_sub " i;
+ done;
+ pr "subn).";
+ pr "";
+
+ pr " Theorem spec_sub: forall x y, [y] <= [x] -> [sub x y] = [x] - [y].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " unfold sub.";
+ pp " generalize (spec_same_level t_ (fun x y res => y <= x -> [res] = x - y)).";
+ pp " unfold same_level; intros HH; apply HH; clear HH.";
+ for i = 0 to size do
+ pp " exact spec_w%i_sub." i;
+ done;
+ pp " exact spec_wn_sub.";
+ pp " Qed.";
+ pr "";
+
+ for i = 0 to size do
+ pp " Let spec_w%i_sub0: forall x y, [%s%i x] < [%s%i y] -> [w%i_sub x y] = 0." i c i c i i;
+ pp " Proof.";
+ pp " intros n m; unfold w%i_sub, w%i_sub_c." i i;
+ pp " generalize (spec_sub_c w%i_spec n m); case znz_sub_c; " i;
+ pp " intros x; unfold interp_carry.";
+ pp " unfold to_Z; case (spec_to_Z w%i_spec x); intros; auto with zarith." i;
+ pp " intros; unfold to_Z, zero, w_0; rewrite (spec_0 w0_spec); auto.";
+ pp " Qed.";
+ pp "";
+ done;
+
+ pp " Let spec_wn_sub0: forall n x y, [%sn n x] < [%sn n y] -> [subn n x y] = 0." c c;
+ pp " Proof.";
+ pp " intros k n m; unfold subn.";
+ pp " generalize (spec_sub_c (wn_spec k) n m); case znz_sub_c; ";
+ pp " intros x; unfold interp_carry.";
+ pp " unfold to_Z; case (spec_to_Z (wn_spec k) x); intros; auto with zarith.";
+ pp " intros; unfold to_Z, w_0; rewrite (spec_0 (w0_spec)); auto.";
+ pp " Qed.";
+ pp "";
+
+ pr " Theorem spec_sub0: forall x y, [x] < [y] -> [sub x y] = 0.";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " unfold sub.";
+ pp " generalize (spec_same_level t_ (fun x y res => x < y -> [res] = 0)).";
+ pp " unfold same_level; intros HH; apply HH; clear HH.";
+ for i = 0 to size do
+ pp " exact spec_w%i_sub0." i;
+ done;
+ pp " exact spec_wn_sub0.";
+ pp " Qed.";
+ pr "";
+
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Comparison *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition compare_%i := w%i_op.(znz_compare)." i i;
+ pr " Definition comparen_%i :=" i;
+ pr " compare_mn_1 w%i w%i %s compare_%i (compare_%i %s) compare_%i." i i (pz i) i i (pz i) i
+ done;
+ pr "";
+
+ pr " Definition comparenm n m wx wy :=";
+ pr " let mn := Max.max n m in";
+ pr " let d := diff n m in";
+ pr " let op := make_op mn in";
+ pr " op.(znz_compare)";
+ pr " (castm (diff_r n m) (extend_tr wx (snd d)))";
+ pr " (castm (diff_l n m) (extend_tr wy (fst d))).";
+ pr "";
+
+ pr " Definition compare := Eval lazy beta delta [iter] in ";
+ pr " (iter _ ";
+ for i = 0 to size do
+ pr " compare_%i" i;
+ pr " (fun n x y => opp_compare (comparen_%i (S n) y x))" i;
+ pr " (fun n => comparen_%i (S n))" i;
+ done;
+ pr " comparenm).";
+ pr "";
+
+ pr " Definition lt n m := compare n m = Lt.";
+ pr " Definition le n m := compare n m <> Gt.";
+ pr " Definition min n m := match compare n m with Gt => m | _ => n end.";
+ pr " Definition max n m := match compare n m with Lt => m | _ => n end.";
+ pr "";
+
+ for i = 0 to size do
+ pp " Let spec_compare_%i: forall x y," i;
+ pp " match compare_%i x y with " i;
+ pp " Eq => [%s%i x] = [%s%i y]" c i c i;
+ pp " | Lt => [%s%i x] < [%s%i y]" c i c i;
+ pp " | Gt => [%s%i x] > [%s%i y]" c i c i;
+ pp " end.";
+ pp " Proof.";
+ pp " unfold compare_%i, to_Z; exact (spec_compare w%i_spec)." i i;
+ pp " Qed.";
+ pp "";
+
+ pp " Let spec_comparen_%i:" i;
+ pp " forall (n : nat) (x : word w%i n) (y : w%i)," i i;
+ pp " match comparen_%i n x y with" i;
+ pp " | Eq => eval%in n x = [%s%i y]" i c i;
+ pp " | Lt => eval%in n x < [%s%i y]" i c i;
+ pp " | Gt => eval%in n x > [%s%i y]" i c i;
+ pp " end.";
+ pp " intros n x y.";
+ pp " unfold comparen_%i, to_Z; rewrite spec_double_eval%in." i i;
+ pp " apply spec_compare_mn_1.";
+ pp " exact (spec_0 w%i_spec)." i;
+ pp " intros x1; exact (spec_compare w%i_spec %s x1)." i (pz i);
+ pp " exact (spec_to_Z w%i_spec)." i;
+ pp " exact (spec_compare w%i_spec)." i;
+ pp " exact (spec_compare w%i_spec)." i;
+ pp " exact (spec_to_Z w%i_spec)." i;
+ pp " Qed.";
+ pp "";
+ done;
+
+ pp " Let spec_opp_compare: forall c (u v: Z),";
+ pp " match c with Eq => u = v | Lt => u < v | Gt => u > v end ->";
+ pp " match opp_compare c with Eq => v = u | Lt => v < u | Gt => v > u end.";
+ pp " Proof.";
+ pp " intros c u v; case c; unfold opp_compare; auto with zarith.";
+ pp " Qed.";
+ pp "";
+
+
+ pr " Theorem spec_compare: forall x y,";
+ pr " match compare x y with ";
+ pr " Eq => [x] = [y]";
+ pr " | Lt => [x] < [y]";
+ pr " | Gt => [x] > [y]";
+ pr " end.";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " refine (spec_iter _ (fun x y res => ";
+ pp " match res with ";
+ pp " Eq => x = y";
+ pp " | Lt => x < y";
+ pp " | Gt => x > y";
+ pp " end)";
+ for i = 0 to size do
+ pp " compare_%i" i;
+ pp " (fun n x y => opp_compare (comparen_%i (S n) y x))" i;
+ pp " (fun n => comparen_%i (S n)) _ _ _" i;
+ done;
+ pp " comparenm _).";
+
+ for i = 0 to size - 1 do
+ pp " exact spec_compare_%i." i;
+ pp " intros n x y H;apply spec_opp_compare; apply spec_comparen_%i." i;
+ pp " intros n x y H; exact (spec_comparen_%i (S n) x y)." i;
+ done;
+ pp " exact spec_compare_%i." size;
+ pp " intros n x y;apply spec_opp_compare; apply spec_comparen_%i." size;
+ pp " intros n; exact (spec_comparen_%i (S n))." size;
+ pp " intros n m x y; unfold comparenm.";
+ pp " rewrite <- (spec_cast_l n m x); rewrite <- (spec_cast_r n m y).";
+ pp " unfold to_Z; apply (spec_compare (wn_spec (Max.max n m))).";
+ pp " Qed.";
+ pr "";
+
+ pr " Definition eq_bool x y :=";
+ pr " match compare x y with";
+ pr " | Eq => true";
+ pr " | _ => false";
+ pr " end.";
+ pr "";
+
+
+ pr " Theorem spec_eq_bool: forall x y,";
+ pr " if eq_bool x y then [x] = [y] else [x] <> [y].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x y; unfold eq_bool.";
+ pp " generalize (spec_compare x y); case compare; auto with zarith.";
+ pp " Qed.";
+ pr "";
+
+
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Multiplication *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_mul_c := w%i_op.(znz_mul_c)." i i
+ done;
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_mul_add :=" i;
+ pr " Eval lazy beta delta [w_mul_add] in";
+ pr " @w_mul_add w%i %s w%i_succ w%i_add_c w%i_mul_c." i (pz i) i i i
+ done;
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_0W := znz_0W w%i_op." i i
+ done;
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_WW := znz_WW w%i_op." i i
+ done;
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_mul_add_n1 :=" i;
+ pr " @double_mul_add_n1 w%i %s w%i_WW w%i_0W w%i_mul_add." i (pz i) i i i
+ done;
+ pr "";
+
+ for i = 0 to size - 1 do
+ pr " Let to_Z%i n :=" i;
+ pr " match n return word w%i (S n) -> t_ with" i;
+ for j = 0 to size - i do
+ if (i + j) == size then
+ begin
+ pr " | %i%s => fun x => %sn 0 x" j "%nat" c;
+ pr " | %i%s => fun x => %sn 1 x" (j + 1) "%nat" c
+ end
+ else
+ pr " | %i%s => fun x => %s%i x" j "%nat" c (i + j + 1)
+ done;
+ pr " | _ => fun _ => N0 w_0";
+ pr " end.";
+ pr "";
+ done;
+
+
+ for i = 0 to size - 1 do
+ pp "Theorem to_Z%i_spec:" i;
+ pp " forall n x, Z_of_nat n <= %i -> [to_Z%i n x] = znz_to_Z (nmake_op _ w%i_op (S n)) x." (size + 1 - i) i i;
+ for j = 1 to size + 2 - i do
+ pp " intros n; case n; clear n.";
+ pp " unfold to_Z%i." i;
+ pp " intros x H; rewrite spec_eval%in%i; auto." i j;
+ done;
+ pp " intros n x.";
+ pp " repeat rewrite inj_S; unfold Zsucc; auto with zarith.";
+ pp " Qed.";
+ pp "";
+ done;
+
+
+ for i = 0 to size do
+ pr " Definition w%i_mul n x y :=" i;
+ pr " let (w,r) := w%i_mul_add_n1 (S n) x y %s in" i (pz i);
+ if i == size then
+ begin
+ pr " if w%i_eq0 w then %sn n r" i c;
+ pr " else %sn (S n) (WW (extend%i n w) r)." c i;
+ end
+ else
+ begin
+ pr " if w%i_eq0 w then to_Z%i n r" i i;
+ pr " else to_Z%i (S n) (WW (extend%i n w) r)." i i;
+ end;
+ pr "";
+ done;
+
+ pr " Definition mulnm n m x y :=";
+ pr " let mn := Max.max n m in";
+ pr " let d := diff n m in";
+ pr " let op := make_op mn in";
+ pr " reduce_n (S mn) (op.(znz_mul_c)";
+ pr " (castm (diff_r n m) (extend_tr x (snd d)))";
+ pr " (castm (diff_l n m) (extend_tr y (fst d)))).";
+ pr "";
+
+ pr " Definition mul := Eval lazy beta delta [iter0] in ";
+ pr " (iter0 t_ ";
+ for i = 0 to size do
+ pr " (fun x y => reduce_%i (w%i_mul_c x y)) " (i + 1) i;
+ pr " (fun n x y => w%i_mul n y x)" i;
+ pr " w%i_mul" i;
+ done;
+ pr " mulnm";
+ pr " (fun _ => N0 w_0)";
+ pr " (fun _ => N0 w_0)";
+ pr " ).";
+ pr "";
+ for i = 0 to size do
+ pp " Let spec_w%i_mul_add: forall x y z," i;
+ pp " let (q,r) := w%i_mul_add x y z in" i;
+ pp " znz_to_Z w%i_op q * (base (znz_digits w%i_op)) + znz_to_Z w%i_op r =" i i i;
+ pp " znz_to_Z w%i_op x * znz_to_Z w%i_op y + znz_to_Z w%i_op z :=" i i i ;
+ pp " (spec_mul_add w%i_spec)." i;
+ pp "";
+ done;
+
+ for i = 0 to size do
+ pp " Theorem spec_w%i_mul_add_n1: forall n x y z," i;
+ pp " let (q,r) := w%i_mul_add_n1 n x y z in" i;
+ pp " znz_to_Z w%i_op q * (base (znz_digits (nmake_op _ w%i_op n))) +" i i;
+ pp " znz_to_Z (nmake_op _ w%i_op n) r =" i;
+ pp " znz_to_Z (nmake_op _ w%i_op n) x * znz_to_Z w%i_op y +" i i;
+ pp " znz_to_Z w%i_op z." i;
+ pp " Proof.";
+ pp " intros n x y z; unfold w%i_mul_add_n1." i;
+ pp " rewrite nmake_double.";
+ pp " rewrite digits_doubled.";
+ pp " change (base (DoubleBase.double_digits (znz_digits w%i_op) n)) with" i;
+ pp " (DoubleBase.double_wB (znz_digits w%i_op) n)." i;
+ pp " apply spec_double_mul_add_n1; auto.";
+ if i == 0 then pp " exact (spec_0 w%i_spec)." i;
+ pp " exact (spec_WW w%i_spec)." i;
+ pp " exact (spec_0W w%i_spec)." i;
+ pp " exact (spec_mul_add w%i_spec)." i;
+ pp " Qed.";
+ pp "";
+ done;
+
+ pp " Lemma nmake_op_WW: forall ww ww1 n x y,";
+ pp " znz_to_Z (nmake_op ww ww1 (S n)) (WW x y) =";
+ pp " znz_to_Z (nmake_op ww ww1 n) x * base (znz_digits (nmake_op ww ww1 n)) +";
+ pp " znz_to_Z (nmake_op ww ww1 n) y.";
+ pp " auto.";
+ pp " Qed.";
+ pp "";
+
+ for i = 0 to size do
+ pp " Lemma extend%in_spec: forall n x1," i;
+ pp " znz_to_Z (nmake_op _ w%i_op (S n)) (extend%i n x1) = " i i;
+ pp " znz_to_Z w%i_op x1." i;
+ pp " Proof.";
+ pp " intros n1 x2; rewrite nmake_double.";
+ pp " unfold extend%i." i;
+ pp " rewrite DoubleBase.spec_extend; auto.";
+ if i == 0 then
+ pp " intros l; simpl; unfold w_0; rewrite (spec_0 w0_spec); ring.";
+ pp " Qed.";
+ pp "";
+ done;
+
+ pp " Lemma spec_muln:";
+ pp " forall n (x: word _ (S n)) y,";
+ pp " [%sn (S n) (znz_mul_c (make_op n) x y)] = [%sn n x] * [%sn n y]." c c c;
+ pp " Proof.";
+ pp " intros n x y; unfold to_Z.";
+ pp " rewrite <- (spec_mul_c (wn_spec n)).";
+ pp " rewrite make_op_S.";
+ pp " case znz_mul_c; auto.";
+ pp " Qed.";
+
+ pr " Theorem spec_mul: forall x y, [mul x y] = [x] * [y].";
+ pa " Admitted.";
+ pp " Proof.";
+ for i = 0 to size do
+ pp " assert(F%i: " i;
+ pp " forall n x y,";
+ if i <> size then
+ pp0 " Z_of_nat n <= %i -> " (size - i);
+ pp " [w%i_mul n x y] = eval%in (S n) x * [%s%i y])." i i c i;
+ if i == size then
+ pp " intros n x y; unfold w%i_mul." i
+ else
+ pp " intros n x y H; unfold w%i_mul." i;
+ pp " generalize (spec_w%i_mul_add_n1 (S n) x y %s)." i (pz i);
+ pp " case w%i_mul_add_n1; intros x1 y1." i;
+ pp " change (znz_to_Z (nmake_op _ w%i_op (S n)) x) with (eval%in (S n) x)." i i;
+ pp " change (znz_to_Z w%i_op y) with ([%s%i y])." i c i;
+ if i == 0 then
+ pp " unfold w_0; rewrite (spec_0 w0_spec); rewrite Zplus_0_r."
+ else
+ pp " change (znz_to_Z w%i_op W0) with 0; rewrite Zplus_0_r." i;
+ pp " intros H1; rewrite <- H1; clear H1.";
+ pp " generalize (spec_w%i_eq0 x1); case w%i_eq0; intros HH." i i;
+ pp " unfold to_Z in HH; rewrite HH.";
+ if i == size then
+ begin
+ pp " rewrite spec_eval%in; unfold eval%in, nmake_op%i; auto." i i i;
+ pp " rewrite spec_eval%in; unfold eval%in, nmake_op%i." i i i
+ end
+ else
+ begin
+ pp " rewrite to_Z%i_spec; auto with zarith." i;
+ pp " rewrite to_Z%i_spec; try (rewrite inj_S; auto with zarith)." i
+ end;
+ pp " rewrite nmake_op_WW; rewrite extend%in_spec; auto." i;
+ done;
+ pp " refine (spec_iter0 t_ (fun x y res => [res] = x * y)";
+ for i = 0 to size do
+ pp " (fun x y => reduce_%i (w%i_mul_c x y)) " (i + 1) i;
+ pp " (fun n x y => w%i_mul n y x)" i;
+ pp " w%i_mul _ _ _" i;
+ done;
+ pp " mulnm _";
+ pp " (fun _ => N0 w_0) _";
+ pp " (fun _ => N0 w_0) _";
+ pp " ).";
+ for i = 0 to size do
+ pp " intros x y; rewrite spec_reduce_%i." (i + 1);
+ pp " unfold w%i_mul_c, to_Z." i;
+ pp " generalize (spec_mul_c w%i_spec x y)." i;
+ pp " intros HH; rewrite <- HH; clear HH; auto.";
+ if i == size then
+ begin
+ pp " intros n x y; rewrite F%i; auto with zarith." i;
+ pp " intros n x y; rewrite F%i; auto with zarith. " i;
+ end
+ else
+ begin
+ pp " intros n x y H; rewrite F%i; auto with zarith." i;
+ pp " intros n x y H; rewrite F%i; auto with zarith. " i;
+ end;
+ done;
+ pp " intros n m x y; unfold mulnm.";
+ pp " rewrite spec_reduce_n.";
+ pp " rewrite <- (spec_cast_l n m x).";
+ pp " rewrite <- (spec_cast_r n m y).";
+ pp " rewrite spec_muln; rewrite spec_cast_l; rewrite spec_cast_r; auto.";
+ pp " intros x; unfold to_Z, w_0; rewrite (spec_0 w0_spec); ring.";
+ pp " intros x; unfold to_Z, w_0; rewrite (spec_0 w0_spec); ring.";
+ pp " Qed.";
+ pr "";
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Square *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_square_c := w%i_op.(znz_square_c)." i i
+ done;
+ pr "";
+
+ pr " Definition square x :=";
+ pr " match x with";
+ pr " | %s0 wx => reduce_1 (w0_square_c wx)" c;
+ for i = 1 to size - 1 do
+ pr " | %s%i wx => %s%i (w%i_square_c wx)" c i c (i+1) i
+ done;
+ pr " | %s%i wx => %sn 0 (w%i_square_c wx)" c size c size;
+ pr " | %sn n wx =>" c;
+ pr " let op := make_op n in";
+ pr " %sn (S n) (op.(znz_square_c) wx)" c;
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_square: forall x, [square x] = [x] * [x].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; case x; unfold square; clear x.";
+ pp " intros x; rewrite spec_reduce_1; unfold to_Z.";
+ pp " exact (spec_square_c w%i_spec x)." 0;
+ for i = 1 to size do
+ pp " intros x; unfold to_Z.";
+ pp " exact (spec_square_c w%i_spec x)." i;
+ done;
+ pp " intros n x; unfold to_Z.";
+ pp " rewrite make_op_S.";
+ pp " exact (spec_square_c (wn_spec n) x).";
+ pp "Qed.";
+ pr "";
+
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Power *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ pr " Fixpoint power_pos (x:%s) (p:positive) {struct p} : %s :=" t t;
+ pr " match p with";
+ pr " | xH => x";
+ pr " | xO p => square (power_pos x p)";
+ pr " | xI p => mul (square (power_pos x p)) x";
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_power_pos: forall x n, [power_pos x n] = [x] ^ Zpos n.";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x n; generalize x; elim n; clear n x; simpl power_pos.";
+ pp " intros; rewrite spec_mul; rewrite spec_square; rewrite H.";
+ pp " rewrite Zpos_xI; rewrite Zpower_exp; auto with zarith.";
+ pp " rewrite (Zmult_comm 2); rewrite Zpower_mult; auto with zarith.";
+ pp " rewrite Zpower_2; rewrite Zpower_1_r; auto.";
+ pp " intros; rewrite spec_square; rewrite H.";
+ pp " rewrite Zpos_xO; auto with zarith.";
+ pp " rewrite (Zmult_comm 2); rewrite Zpower_mult; auto with zarith.";
+ pp " rewrite Zpower_2; auto.";
+ pp " intros; rewrite Zpower_1_r; auto.";
+ pp " Qed.";
+ pp "";
+ pr "";
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Square root *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_sqrt := w%i_op.(znz_sqrt)." i i
+ done;
+ pr "";
+
+ pr " Definition sqrt x :=";
+ pr " match x with";
+ for i = 0 to size do
+ pr " | %s%i wx => reduce_%i (w%i_sqrt wx)" c i i i;
+ done;
+ pr " | %sn n wx =>" c;
+ pr " let op := make_op n in";
+ pr " reduce_n n (op.(znz_sqrt) wx)";
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_sqrt: forall x, [sqrt x] ^ 2 <= [x] < ([sqrt x] + 1) ^ 2.";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; unfold sqrt; case x; clear x.";
+ for i = 0 to size do
+ pp " intros x; rewrite spec_reduce_%i; exact (spec_sqrt w%i_spec x)." i i;
+ done;
+ pp " intros n x; rewrite spec_reduce_n; exact (spec_sqrt (wn_spec n) x).";
+ pp " Qed.";
+ pr "";
+
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Division *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_div_gt := w%i_op.(znz_div_gt)." i i
+ done;
+ pr "";
+
+ pp " Let spec_divn1 ww (ww_op: znz_op ww) (ww_spec: znz_spec ww_op) := ";
+ pp " (spec_double_divn1 ";
+ pp " ww_op.(znz_zdigits) ww_op.(znz_0)";
+ pp " (znz_WW ww_op) ww_op.(znz_head0)";
+ pp " ww_op.(znz_add_mul_div) ww_op.(znz_div21)";
+ pp " ww_op.(znz_compare) ww_op.(znz_sub) (znz_to_Z ww_op)";
+ pp " (spec_to_Z ww_spec) ";
+ pp " (spec_zdigits ww_spec)";
+ pp " (spec_0 ww_spec) (spec_WW ww_spec) (spec_head0 ww_spec)";
+ pp " (spec_add_mul_div ww_spec) (spec_div21 ww_spec) ";
+ pp " (CyclicAxioms.spec_compare ww_spec) (CyclicAxioms.spec_sub ww_spec)).";
+ pp "";
+
+ for i = 0 to size do
+ pr " Definition w%i_divn1 n x y :=" i;
+ pr " let (u, v) :=";
+ pr " double_divn1 w%i_op.(znz_zdigits) w%i_op.(znz_0)" i i;
+ pr " (znz_WW w%i_op) w%i_op.(znz_head0)" i i;
+ pr " w%i_op.(znz_add_mul_div) w%i_op.(znz_div21)" i i;
+ pr " w%i_op.(znz_compare) w%i_op.(znz_sub) (S n) x y in" i i;
+ if i == size then
+ pr " (%sn _ u, %s%i v)." c c i
+ else
+ pr " (to_Z%i _ u, %s%i v)." i c i;
+ done;
+ pr "";
+
+ for i = 0 to size do
+ pp " Lemma spec_get_end%i: forall n x y," i;
+ pp " eval%in n x <= [%s%i y] -> " i c i;
+ pp " [%s%i (DoubleBase.get_low %s n x)] = eval%in n x." c i (pz i) i;
+ pp " Proof.";
+ pp " intros n x y H.";
+ pp " rewrite spec_double_eval%in; unfold to_Z." i;
+ pp " apply DoubleBase.spec_get_low.";
+ pp " exact (spec_0 w%i_spec)." i;
+ pp " exact (spec_to_Z w%i_spec)." i;
+ pp " apply Zle_lt_trans with [%s%i y]; auto." c i;
+ pp " rewrite <- spec_double_eval%in; auto." i;
+ pp " unfold to_Z; case (spec_to_Z w%i_spec y); auto." i;
+ pp " Qed.";
+ pp "";
+ done;
+
+ for i = 0 to size do
+ pr " Let div_gt%i x y := let (u,v) := (w%i_div_gt x y) in (reduce_%i u, reduce_%i v)." i i i i;
+ done;
+ pr "";
+
+
+ pr " Let div_gtnm n m wx wy :=";
+ pr " let mn := Max.max n m in";
+ pr " let d := diff n m in";
+ pr " let op := make_op mn in";
+ pr " let (q, r):= op.(znz_div_gt)";
+ pr " (castm (diff_r n m) (extend_tr wx (snd d)))";
+ pr " (castm (diff_l n m) (extend_tr wy (fst d))) in";
+ pr " (reduce_n mn q, reduce_n mn r).";
+ pr "";
+
+ pr " Definition div_gt := Eval lazy beta delta [iter] in";
+ pr " (iter _ ";
+ for i = 0 to size do
+ pr " div_gt%i" i;
+ pr " (fun n x y => div_gt%i x (DoubleBase.get_low %s (S n) y))" i (pz i);
+ pr " w%i_divn1" i;
+ done;
+ pr " div_gtnm).";
+ pr "";
+
+ pr " Theorem spec_div_gt: forall x y,";
+ pr " [x] > [y] -> 0 < [y] ->";
+ pr " let (q,r) := div_gt x y in";
+ pr " [q] = [x] / [y] /\\ [r] = [x] mod [y].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " assert (FO:";
+ pp " forall x y, [x] > [y] -> 0 < [y] ->";
+ pp " let (q,r) := div_gt x y in";
+ pp " [x] = [q] * [y] + [r] /\\ 0 <= [r] < [y]).";
+ pp " refine (spec_iter (t_*t_) (fun x y res => x > y -> 0 < y ->";
+ pp " let (q,r) := res in";
+ pp " x = [q] * y + [r] /\\ 0 <= [r] < y)";
+ for i = 0 to size do
+ pp " div_gt%i" i;
+ pp " (fun n x y => div_gt%i x (DoubleBase.get_low %s (S n) y))" i (pz i);
+ pp " w%i_divn1 _ _ _" i;
+ done;
+ pp " div_gtnm _).";
+ for i = 0 to size do
+ pp " intros x y H1 H2; unfold div_gt%i, w%i_div_gt." i i;
+ pp " generalize (spec_div_gt w%i_spec x y H1 H2); case znz_div_gt." i;
+ pp " intros xx yy; repeat rewrite spec_reduce_%i; auto." i;
+ if i == size then
+ pp " intros n x y H2 H3; unfold div_gt%i, w%i_div_gt." i i
+ else
+ pp " intros n x y H1 H2 H3; unfold div_gt%i, w%i_div_gt." i i;
+ pp " generalize (spec_div_gt w%i_spec x " i;
+ pp " (DoubleBase.get_low %s (S n) y))." (pz i);
+ pp0 " ";
+ for j = 0 to i do
+ pp0 "unfold w%i; " (i-j);
+ done;
+ pp "case znz_div_gt.";
+ pp " intros xx yy H4; repeat rewrite spec_reduce_%i." i;
+ pp " generalize (spec_get_end%i (S n) y x); unfold to_Z; intros H5." i;
+ pp " unfold to_Z in H2; rewrite H5 in H4; auto with zarith.";
+ if i == size then
+ pp " intros n x y H2 H3."
+ else
+ pp " intros n x y H1 H2 H3.";
+ pp " generalize";
+ pp " (spec_divn1 w%i w%i_op w%i_spec (S n) x y H3)." i i i;
+ pp0 " unfold w%i_divn1; " i;
+ for j = 0 to i do
+ pp0 "unfold w%i; " (i-j);
+ done;
+ pp "case double_divn1.";
+ pp " intros xx yy H4.";
+ if i == size then
+ begin
+ pp " repeat rewrite <- spec_double_eval%in in H4; auto." i;
+ pp " rewrite spec_eval%in; auto." i;
+ end
+ else
+ begin
+ pp " rewrite to_Z%i_spec; auto with zarith." i;
+ pp " repeat rewrite <- spec_double_eval%in in H4; auto." i;
+ end;
+ done;
+ pp " intros n m x y H1 H2; unfold div_gtnm.";
+ pp " generalize (spec_div_gt (wn_spec (Max.max n m))";
+ pp " (castm (diff_r n m)";
+ pp " (extend_tr x (snd (diff n m))))";
+ pp " (castm (diff_l n m)";
+ pp " (extend_tr y (fst (diff n m))))).";
+ pp " case znz_div_gt.";
+ pp " intros xx yy HH.";
+ pp " repeat rewrite spec_reduce_n.";
+ pp " rewrite <- (spec_cast_l n m x).";
+ pp " rewrite <- (spec_cast_r n m y).";
+ pp " unfold to_Z; apply HH.";
+ pp " rewrite <- (spec_cast_l n m x) in H1; auto.";
+ pp " rewrite <- (spec_cast_r n m y) in H1; auto.";
+ pp " rewrite <- (spec_cast_r n m y) in H2; auto.";
+ pp " intros x y H1 H2; generalize (FO x y H1 H2); case div_gt.";
+ pp " intros q r (H3, H4); split.";
+ pp " apply (Zdiv_unique [x] [y] [q] [r]); auto.";
+ pp " rewrite Zmult_comm; auto.";
+ pp " apply (Zmod_unique [x] [y] [q] [r]); auto.";
+ pp " rewrite Zmult_comm; auto.";
+ pp " Qed.";
+ pr "";
+
+ pr " Definition div_eucl x y :=";
+ pr " match compare x y with";
+ pr " | Eq => (one, zero)";
+ pr " | Lt => (zero, x)";
+ pr " | Gt => div_gt x y";
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_div_eucl: forall x y,";
+ pr " 0 < [y] ->";
+ pr " let (q,r) := div_eucl x y in";
+ pr " ([q], [r]) = Zdiv_eucl [x] [y].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " assert (F0: [zero] = 0).";
+ pp " exact (spec_0 w0_spec).";
+ pp " assert (F1: [one] = 1).";
+ pp " exact (spec_1 w0_spec).";
+ pp " intros x y H; generalize (spec_compare x y);";
+ pp " unfold div_eucl; case compare; try rewrite F0;";
+ pp " try rewrite F1; intros; auto with zarith.";
+ pp " rewrite H0; generalize (Z_div_same [y] (Zlt_gt _ _ H))";
+ pp " (Z_mod_same [y] (Zlt_gt _ _ H));";
+ pp " unfold Zdiv, Zmod; case Zdiv_eucl; intros; subst; auto.";
+ pp " assert (F2: 0 <= [x] < [y]).";
+ pp " generalize (spec_pos x); auto.";
+ pp " generalize (Zdiv_small _ _ F2)";
+ pp " (Zmod_small _ _ F2);";
+ pp " unfold Zdiv, Zmod; case Zdiv_eucl; intros; subst; auto.";
+ pp " generalize (spec_div_gt _ _ H0 H); auto.";
+ pp " unfold Zdiv, Zmod; case Zdiv_eucl; case div_gt.";
+ pp " intros a b c d (H1, H2); subst; auto.";
+ pp " Qed.";
+ pr "";
+
+ pr " Definition div x y := fst (div_eucl x y).";
+ pr "";
+
+ pr " Theorem spec_div:";
+ pr " forall x y, 0 < [y] -> [div x y] = [x] / [y].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x y H1; unfold div; generalize (spec_div_eucl x y H1);";
+ pp " case div_eucl; simpl fst.";
+ pp " intros xx yy; unfold Zdiv; case Zdiv_eucl; intros qq rr H; ";
+ pp " injection H; auto.";
+ pp " Qed.";
+ pr "";
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Modulo *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_mod_gt := w%i_op.(znz_mod_gt)." i i
+ done;
+ pr "";
+
+ for i = 0 to size do
+ pr " Definition w%i_modn1 :=" i;
+ pr " double_modn1 w%i_op.(znz_zdigits) w%i_op.(znz_0)" i i;
+ pr " w%i_op.(znz_head0) w%i_op.(znz_add_mul_div) w%i_op.(znz_div21)" i i i;
+ pr " w%i_op.(znz_compare) w%i_op.(znz_sub)." i i;
+ done;
+ pr "";
+
+ pr " Let mod_gtnm n m wx wy :=";
+ pr " let mn := Max.max n m in";
+ pr " let d := diff n m in";
+ pr " let op := make_op mn in";
+ pr " reduce_n mn (op.(znz_mod_gt)";
+ pr " (castm (diff_r n m) (extend_tr wx (snd d)))";
+ pr " (castm (diff_l n m) (extend_tr wy (fst d)))).";
+ pr "";
+
+ pr " Definition mod_gt := Eval lazy beta delta[iter] in";
+ pr " (iter _ ";
+ for i = 0 to size do
+ pr " (fun x y => reduce_%i (w%i_mod_gt x y))" i i;
+ pr " (fun n x y => reduce_%i (w%i_mod_gt x (DoubleBase.get_low %s (S n) y)))" i i (pz i);
+ pr " (fun n x y => reduce_%i (w%i_modn1 (S n) x y))" i i;
+ done;
+ pr " mod_gtnm).";
+ pr "";
+
+ pp " Let spec_modn1 ww (ww_op: znz_op ww) (ww_spec: znz_spec ww_op) := ";
+ pp " (spec_double_modn1 ";
+ pp " ww_op.(znz_zdigits) ww_op.(znz_0)";
+ pp " (znz_WW ww_op) ww_op.(znz_head0)";
+ pp " ww_op.(znz_add_mul_div) ww_op.(znz_div21)";
+ pp " ww_op.(znz_compare) ww_op.(znz_sub) (znz_to_Z ww_op)";
+ pp " (spec_to_Z ww_spec) ";
+ pp " (spec_zdigits ww_spec)";
+ pp " (spec_0 ww_spec) (spec_WW ww_spec) (spec_head0 ww_spec)";
+ pp " (spec_add_mul_div ww_spec) (spec_div21 ww_spec) ";
+ pp " (CyclicAxioms.spec_compare ww_spec) (CyclicAxioms.spec_sub ww_spec)).";
+ pp "";
+
+ pr " Theorem spec_mod_gt:";
+ pr " forall x y, [x] > [y] -> 0 < [y] -> [mod_gt x y] = [x] mod [y].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " refine (spec_iter _ (fun x y res => x > y -> 0 < y ->";
+ pp " [res] = x mod y)";
+ for i = 0 to size do
+ pp " (fun x y => reduce_%i (w%i_mod_gt x y))" i i;
+ pp " (fun n x y => reduce_%i (w%i_mod_gt x (DoubleBase.get_low %s (S n) y)))" i i (pz i);
+ pp " (fun n x y => reduce_%i (w%i_modn1 (S n) x y)) _ _ _" i i;
+ done;
+ pp " mod_gtnm _).";
+ for i = 0 to size do
+ pp " intros x y H1 H2; rewrite spec_reduce_%i." i;
+ pp " exact (spec_mod_gt w%i_spec x y H1 H2)." i;
+ if i == size then
+ pp " intros n x y H2 H3; rewrite spec_reduce_%i." i
+ else
+ pp " intros n x y H1 H2 H3; rewrite spec_reduce_%i." i;
+ pp " unfold w%i_mod_gt." i;
+ pp " rewrite <- (spec_get_end%i (S n) y x); auto with zarith." i;
+ pp " unfold to_Z; apply (spec_mod_gt w%i_spec); auto." i;
+ pp " rewrite <- (spec_get_end%i (S n) y x) in H2; auto with zarith." i;
+ pp " rewrite <- (spec_get_end%i (S n) y x) in H3; auto with zarith." i;
+ if i == size then
+ pp " intros n x y H2 H3; rewrite spec_reduce_%i." i
+ else
+ pp " intros n x y H1 H2 H3; rewrite spec_reduce_%i." i;
+ pp " unfold w%i_modn1, to_Z; rewrite spec_double_eval%in." i i;
+ pp " apply (spec_modn1 _ _ w%i_spec); auto." i;
+ done;
+ pp " intros n m x y H1 H2; unfold mod_gtnm.";
+ pp " repeat rewrite spec_reduce_n.";
+ pp " rewrite <- (spec_cast_l n m x).";
+ pp " rewrite <- (spec_cast_r n m y).";
+ pp " unfold to_Z; apply (spec_mod_gt (wn_spec (Max.max n m))).";
+ pp " rewrite <- (spec_cast_l n m x) in H1; auto.";
+ pp " rewrite <- (spec_cast_r n m y) in H1; auto.";
+ pp " rewrite <- (spec_cast_r n m y) in H2; auto.";
+ pp " Qed.";
+ pr "";
+
+ pr " Definition modulo x y := ";
+ pr " match compare x y with";
+ pr " | Eq => zero";
+ pr " | Lt => x";
+ pr " | Gt => mod_gt x y";
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_modulo:";
+ pr " forall x y, 0 < [y] -> [modulo x y] = [x] mod [y].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " assert (F0: [zero] = 0).";
+ pp " exact (spec_0 w0_spec).";
+ pp " assert (F1: [one] = 1).";
+ pp " exact (spec_1 w0_spec).";
+ pp " intros x y H; generalize (spec_compare x y);";
+ pp " unfold modulo; case compare; try rewrite F0;";
+ pp " try rewrite F1; intros; try split; auto with zarith.";
+ pp " rewrite H0; apply sym_equal; apply Z_mod_same; auto with zarith.";
+ pp " apply sym_equal; apply Zmod_small; auto with zarith.";
+ pp " generalize (spec_pos x); auto with zarith.";
+ pp " apply spec_mod_gt; auto.";
+ pp " Qed.";
+ pr "";
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Gcd *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ pr " Definition digits x :=";
+ pr " match x with";
+ for i = 0 to size do
+ pr " | %s%i _ => w%i_op.(znz_digits)" c i i;
+ done;
+ pr " | %sn n _ => (make_op n).(znz_digits)" c;
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_digits: forall x, 0 <= [x] < 2 ^ Zpos (digits x).";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; case x; clear x.";
+ for i = 0 to size do
+ pp " intros x; unfold to_Z, digits;";
+ pp " generalize (spec_to_Z w%i_spec x); unfold base; intros H; exact H." i;
+ done;
+ pp " intros n x; unfold to_Z, digits;";
+ pp " generalize (spec_to_Z (wn_spec n) x); unfold base; intros H; exact H.";
+ pp " Qed.";
+ pr "";
+
+ pr " Definition gcd_gt_body a b cont :=";
+ pr " match compare b zero with";
+ pr " | Gt =>";
+ pr " let r := mod_gt a b in";
+ pr " match compare r zero with";
+ pr " | Gt => cont r (mod_gt b r)";
+ pr " | _ => b";
+ pr " end";
+ pr " | _ => a";
+ pr " end.";
+ pr "";
+
+ pp " Theorem Zspec_gcd_gt_body: forall a b cont p,";
+ pp " [a] > [b] -> [a] < 2 ^ p ->";
+ pp " (forall a1 b1, [a1] < 2 ^ (p - 1) -> [a1] > [b1] ->";
+ pp " Zis_gcd [a1] [b1] [cont a1 b1]) -> ";
+ pp " Zis_gcd [a] [b] [gcd_gt_body a b cont].";
+ pp " Proof.";
+ pp " assert (F1: [zero] = 0).";
+ pp " unfold zero, w_0, to_Z; rewrite (spec_0 w0_spec); auto.";
+ pp " intros a b cont p H2 H3 H4; unfold gcd_gt_body.";
+ pp " generalize (spec_compare b zero); case compare; try rewrite F1.";
+ pp " intros HH; rewrite HH; apply Zis_gcd_0.";
+ pp " intros HH; absurd (0 <= [b]); auto with zarith.";
+ pp " case (spec_digits b); auto with zarith.";
+ pp " intros H5; generalize (spec_compare (mod_gt a b) zero); ";
+ pp " case compare; try rewrite F1.";
+ pp " intros H6; rewrite <- (Zmult_1_r [b]).";
+ pp " rewrite (Z_div_mod_eq [a] [b]); auto with zarith.";
+ pp " rewrite <- spec_mod_gt; auto with zarith.";
+ pp " rewrite H6; rewrite Zplus_0_r.";
+ pp " apply Zis_gcd_mult; apply Zis_gcd_1.";
+ pp " intros; apply False_ind.";
+ pp " case (spec_digits (mod_gt a b)); auto with zarith.";
+ pp " intros H6; apply DoubleDiv.Zis_gcd_mod; auto with zarith.";
+ pp " apply DoubleDiv.Zis_gcd_mod; auto with zarith.";
+ pp " rewrite <- spec_mod_gt; auto with zarith.";
+ pp " assert (F2: [b] > [mod_gt a b]).";
+ pp " case (Z_mod_lt [a] [b]); auto with zarith.";
+ pp " repeat rewrite <- spec_mod_gt; auto with zarith.";
+ pp " assert (F3: [mod_gt a b] > [mod_gt b (mod_gt a b)]).";
+ pp " case (Z_mod_lt [b] [mod_gt a b]); auto with zarith.";
+ pp " rewrite <- spec_mod_gt; auto with zarith.";
+ pp " repeat rewrite <- spec_mod_gt; auto with zarith.";
+ pp " apply H4; auto with zarith.";
+ pp " apply Zmult_lt_reg_r with 2; auto with zarith.";
+ pp " apply Zle_lt_trans with ([b] + [mod_gt a b]); auto with zarith.";
+ pp " apply Zle_lt_trans with (([a]/[b]) * [b] + [mod_gt a b]); auto with zarith.";
+ pp " apply Zplus_le_compat_r.";
+ pp " pattern [b] at 1; rewrite <- (Zmult_1_l [b]).";
+ pp " apply Zmult_le_compat_r; auto with zarith.";
+ pp " case (Zle_lt_or_eq 0 ([a]/[b])); auto with zarith.";
+ pp " intros HH; rewrite (Z_div_mod_eq [a] [b]) in H2;";
+ pp " try rewrite <- HH in H2; auto with zarith.";
+ pp " case (Z_mod_lt [a] [b]); auto with zarith.";
+ pp " rewrite Zmult_comm; rewrite spec_mod_gt; auto with zarith.";
+ pp " rewrite <- Z_div_mod_eq; auto with zarith.";
+ pp " pattern 2 at 2; rewrite <- (Zpower_1_r 2).";
+ pp " rewrite <- Zpower_exp; auto with zarith.";
+ pp " ring_simplify (p - 1 + 1); auto.";
+ pp " case (Zle_lt_or_eq 0 p); auto with zarith.";
+ pp " generalize H3; case p; simpl Zpower; auto with zarith.";
+ pp " intros HH; generalize H3; rewrite <- HH; simpl Zpower; auto with zarith.";
+ pp " Qed.";
+ pp "";
+
+ pr " Fixpoint gcd_gt_aux (p:positive) (cont:t->t->t) (a b:t) {struct p} : t :=";
+ pr " gcd_gt_body a b";
+ pr " (fun a b =>";
+ pr " match p with";
+ pr " | xH => cont a b";
+ pr " | xO p => gcd_gt_aux p (gcd_gt_aux p cont) a b";
+ pr " | xI p => gcd_gt_aux p (gcd_gt_aux p cont) a b";
+ pr " end).";
+ pr "";
+
+ pp " Theorem Zspec_gcd_gt_aux: forall p n a b cont,";
+ pp " [a] > [b] -> [a] < 2 ^ (Zpos p + n) ->";
+ pp " (forall a1 b1, [a1] < 2 ^ n -> [a1] > [b1] ->";
+ pp " Zis_gcd [a1] [b1] [cont a1 b1]) ->";
+ pp " Zis_gcd [a] [b] [gcd_gt_aux p cont a b].";
+ pp " intros p; elim p; clear p.";
+ pp " intros p Hrec n a b cont H2 H3 H4.";
+ pp " unfold gcd_gt_aux; apply Zspec_gcd_gt_body with (Zpos (xI p) + n); auto.";
+ pp " intros a1 b1 H6 H7.";
+ pp " apply Hrec with (Zpos p + n); auto.";
+ pp " replace (Zpos p + (Zpos p + n)) with";
+ pp " (Zpos (xI p) + n - 1); auto.";
+ pp " rewrite Zpos_xI; ring.";
+ pp " intros a2 b2 H9 H10.";
+ pp " apply Hrec with n; auto.";
+ pp " intros p Hrec n a b cont H2 H3 H4.";
+ pp " unfold gcd_gt_aux; apply Zspec_gcd_gt_body with (Zpos (xO p) + n); auto.";
+ pp " intros a1 b1 H6 H7.";
+ pp " apply Hrec with (Zpos p + n - 1); auto.";
+ pp " replace (Zpos p + (Zpos p + n - 1)) with";
+ pp " (Zpos (xO p) + n - 1); auto.";
+ pp " rewrite Zpos_xO; ring.";
+ pp " intros a2 b2 H9 H10.";
+ pp " apply Hrec with (n - 1); auto.";
+ pp " replace (Zpos p + (n - 1)) with";
+ pp " (Zpos p + n - 1); auto with zarith.";
+ pp " intros a3 b3 H12 H13; apply H4; auto with zarith.";
+ pp " apply Zlt_le_trans with (1 := H12).";
+ pp " case (Zle_or_lt 1 n); intros HH.";
+ pp " apply Zpower_le_monotone; auto with zarith.";
+ pp " apply Zle_trans with 0; auto with zarith.";
+ pp " assert (HH1: n - 1 < 0); auto with zarith.";
+ pp " generalize HH1; case (n - 1); auto with zarith.";
+ pp " intros p1 HH2; discriminate.";
+ pp " intros n a b cont H H2 H3.";
+ pp " simpl gcd_gt_aux.";
+ pp " apply Zspec_gcd_gt_body with (n + 1); auto with zarith.";
+ pp " rewrite Zplus_comm; auto.";
+ pp " intros a1 b1 H5 H6; apply H3; auto.";
+ pp " replace n with (n + 1 - 1); auto; try ring.";
+ pp " Qed.";
+ pp "";
+
+ pr " Definition gcd_cont a b :=";
+ pr " match compare one b with";
+ pr " | Eq => one";
+ pr " | _ => a";
+ pr " end.";
+ pr "";
+
+ pr " Definition gcd_gt a b := gcd_gt_aux (digits a) gcd_cont a b.";
+ pr "";
+
+ pr " Theorem spec_gcd_gt: forall a b,";
+ pr " [a] > [b] -> [gcd_gt a b] = Zgcd [a] [b].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros a b H2.";
+ pp " case (spec_digits (gcd_gt a b)); intros H3 H4.";
+ pp " case (spec_digits a); intros H5 H6.";
+ pp " apply sym_equal; apply Zis_gcd_gcd; auto with zarith.";
+ pp " unfold gcd_gt; apply Zspec_gcd_gt_aux with 0; auto with zarith.";
+ pp " intros a1 a2; rewrite Zpower_0_r.";
+ pp " case (spec_digits a2); intros H7 H8;";
+ pp " intros; apply False_ind; auto with zarith.";
+ pp " Qed.";
+ pr "";
+
+ pr " Definition gcd a b :=";
+ pr " match compare a b with";
+ pr " | Eq => a";
+ pr " | Lt => gcd_gt b a";
+ pr " | Gt => gcd_gt a b";
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_gcd: forall a b, [gcd a b] = Zgcd [a] [b].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros a b.";
+ pp " case (spec_digits a); intros H1 H2.";
+ pp " case (spec_digits b); intros H3 H4.";
+ pp " unfold gcd; generalize (spec_compare a b); case compare.";
+ pp " intros HH; rewrite HH; apply sym_equal; apply Zis_gcd_gcd; auto.";
+ pp " apply Zis_gcd_refl.";
+ pp " intros; apply trans_equal with (Zgcd [b] [a]).";
+ pp " apply spec_gcd_gt; auto with zarith.";
+ pp " apply Zis_gcd_gcd; auto with zarith.";
+ pp " apply Zgcd_is_pos.";
+ pp " apply Zis_gcd_sym; apply Zgcd_is_gcd.";
+ pp " intros; apply spec_gcd_gt; auto.";
+ pp " Qed.";
+ pr "";
+
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Conversion *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ pr " Definition pheight p := ";
+ pr " Peano.pred (nat_of_P (get_height w0_op.(znz_digits) (plength p))).";
+ pr "";
+
+ pr " Theorem pheight_correct: forall p, ";
+ pr " Zpos p < 2 ^ (Zpos (znz_digits w0_op) * 2 ^ (Z_of_nat (pheight p))).";
+ pr " Proof.";
+ pr " intros p; unfold pheight.";
+ pr " assert (F1: forall x, Z_of_nat (Peano.pred (nat_of_P x)) = Zpos x - 1).";
+ pr " intros x.";
+ pr " assert (Zsucc (Z_of_nat (Peano.pred (nat_of_P x))) = Zpos x); auto with zarith.";
+ pr " rewrite <- inj_S.";
+ pr " rewrite <- (fun x => S_pred x 0); auto with zarith.";
+ pr " rewrite Zpos_eq_Z_of_nat_o_nat_of_P; auto.";
+ pr " apply lt_le_trans with 1%snat; auto with zarith." "%";
+ pr " exact (le_Pmult_nat x 1).";
+ pr " rewrite F1; clear F1.";
+ pr " assert (F2:= (get_height_correct (znz_digits w0_op) (plength p))).";
+ pr " apply Zlt_le_trans with (Zpos (Psucc p)).";
+ pr " rewrite Zpos_succ_morphism; auto with zarith.";
+ pr " apply Zle_trans with (1 := plength_pred_correct (Psucc p)).";
+ pr " rewrite Ppred_succ.";
+ pr " apply Zpower_le_monotone; auto with zarith.";
+ pr " Qed.";
+ pr "";
+
+ pr " Definition of_pos x :=";
+ pr " let h := pheight x in";
+ pr " match h with";
+ for i = 0 to size do
+ pr " | %i%snat => reduce_%i (snd (w%i_op.(znz_of_pos) x))" i "%" i i;
+ done;
+ pr " | _ =>";
+ pr " let n := minus h %i in" (size + 1);
+ pr " reduce_n n (snd ((make_op n).(znz_of_pos) x))";
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_of_pos: forall x,";
+ pr " [of_pos x] = Zpos x.";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " assert (F := spec_more_than_1_digit w0_spec).";
+ pp " intros x; unfold of_pos; case_eq (pheight x).";
+ for i = 0 to size do
+ if i <> 0 then
+ pp " intros n; case n; clear n.";
+ pp " intros H1; rewrite spec_reduce_%i; unfold to_Z." i;
+ pp " apply (znz_of_pos_correct w%i_spec)." i;
+ pp " apply Zlt_le_trans with (1 := pheight_correct x).";
+ pp " rewrite H1; simpl Z_of_nat; change (2^%i) with (%s)." i (gen2 i);
+ pp " unfold base.";
+ pp " apply Zpower_le_monotone; split; auto with zarith.";
+ if i <> 0 then
+ begin
+ pp " rewrite Zmult_comm; repeat rewrite <- Zmult_assoc.";
+ pp " repeat rewrite <- Zpos_xO.";
+ pp " refine (Zle_refl _).";
+ end;
+ done;
+ pp " intros n.";
+ pp " intros H1; rewrite spec_reduce_n; unfold to_Z.";
+ pp " simpl minus; rewrite <- minus_n_O.";
+ pp " apply (znz_of_pos_correct (wn_spec n)).";
+ pp " apply Zlt_le_trans with (1 := pheight_correct x).";
+ pp " unfold base.";
+ pp " apply Zpower_le_monotone; auto with zarith.";
+ pp " split; auto with zarith.";
+ pp " rewrite H1.";
+ pp " elim n; clear n H1.";
+ pp " simpl Z_of_nat; change (2^%i) with (%s)." (size + 1) (gen2 (size + 1));
+ pp " rewrite Zmult_comm; repeat rewrite <- Zmult_assoc.";
+ pp " repeat rewrite <- Zpos_xO.";
+ pp " refine (Zle_refl _).";
+ pp " intros n Hrec.";
+ pp " rewrite make_op_S.";
+ pp " change (@znz_digits (word _ (S (S n))) (mk_zn2z_op_karatsuba (make_op n))) with";
+ pp " (xO (znz_digits (make_op n))).";
+ pp " rewrite (fun x y => (Zpos_xO (@znz_digits x y))).";
+ pp " rewrite inj_S; unfold Zsucc.";
+ pp " rewrite Zplus_comm; rewrite Zpower_exp; auto with zarith.";
+ pp " rewrite Zpower_1_r.";
+ pp " assert (tmp: forall x y z, x * (y * z) = y * (x * z));";
+ pp " [intros; ring | rewrite tmp; clear tmp].";
+ pp " apply Zmult_le_compat_l; auto with zarith.";
+ pp " Qed.";
+ pr "";
+
+ pr " Definition of_N x :=";
+ pr " match x with";
+ pr " | BinNat.N0 => zero";
+ pr " | Npos p => of_pos p";
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_of_N: forall x,";
+ pr " [of_N x] = Z_of_N x.";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; case x.";
+ pp " simpl of_N.";
+ pp " unfold zero, w_0, to_Z; rewrite (spec_0 w0_spec); auto.";
+ pp " intros p; exact (spec_of_pos p).";
+ pp " Qed.";
+ pr "";
+
+ pr " (***************************************************************)";
+ pr " (* *)";
+ pr " (* Shift *)";
+ pr " (* *)";
+ pr " (***************************************************************)";
+ pr "";
+
+ (* Head0 *)
+ pr " Definition head0 w := match w with";
+ for i = 0 to size do
+ pr " | %s%i w=> reduce_%i (w%i_op.(znz_head0) w)" c i i i;
+ done;
+ pr " | %sn n w=> reduce_n n ((make_op n).(znz_head0) w)" c;
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_head00: forall x, [x] = 0 ->[head0 x] = Zpos (digits x).";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; case x; unfold head0; clear x.";
+ for i = 0 to size do
+ pp " intros x; rewrite spec_reduce_%i; exact (spec_head00 w%i_spec x)." i i;
+ done;
+ pp " intros n x; rewrite spec_reduce_n; exact (spec_head00 (wn_spec n) x).";
+ pp " Qed.";
+ pr " ";
+
+ pr " Theorem spec_head0: forall x, 0 < [x] ->";
+ pr " 2 ^ (Zpos (digits x) - 1) <= 2 ^ [head0 x] * [x] < 2 ^ Zpos (digits x).";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " assert (F0: forall x, (x - 1) + 1 = x).";
+ pp " intros; ring. ";
+ pp " intros x; case x; unfold digits, head0; clear x.";
+ for i = 0 to size do
+ pp " intros x Hx; rewrite spec_reduce_%i." i;
+ pp " assert (F1:= spec_more_than_1_digit w%i_spec)." i;
+ pp " generalize (spec_head0 w%i_spec x Hx)." i;
+ pp " unfold base.";
+ pp " pattern (Zpos (znz_digits w%i_op)) at 1; " i;
+ pp " rewrite <- (fun x => (F0 (Zpos x))).";
+ pp " rewrite Zpower_exp; auto with zarith.";
+ pp " rewrite Zpower_1_r; rewrite Z_div_mult; auto with zarith.";
+ done;
+ pp " intros n x Hx; rewrite spec_reduce_n.";
+ pp " assert (F1:= spec_more_than_1_digit (wn_spec n)).";
+ pp " generalize (spec_head0 (wn_spec n) x Hx).";
+ pp " unfold base.";
+ pp " pattern (Zpos (znz_digits (make_op n))) at 1; ";
+ pp " rewrite <- (fun x => (F0 (Zpos x))).";
+ pp " rewrite Zpower_exp; auto with zarith.";
+ pp " rewrite Zpower_1_r; rewrite Z_div_mult; auto with zarith.";
+ pp " Qed.";
+ pr "";
+
+
+ (* Tail0 *)
+ pr " Definition tail0 w := match w with";
+ for i = 0 to size do
+ pr " | %s%i w=> reduce_%i (w%i_op.(znz_tail0) w)" c i i i;
+ done;
+ pr " | %sn n w=> reduce_n n ((make_op n).(znz_tail0) w)" c;
+ pr " end.";
+ pr "";
+
+
+ pr " Theorem spec_tail00: forall x, [x] = 0 ->[tail0 x] = Zpos (digits x).";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; case x; unfold tail0; clear x.";
+ for i = 0 to size do
+ pp " intros x; rewrite spec_reduce_%i; exact (spec_tail00 w%i_spec x)." i i;
+ done;
+ pp " intros n x; rewrite spec_reduce_n; exact (spec_tail00 (wn_spec n) x).";
+ pp " Qed.";
+ pr " ";
+
+
+ pr " Theorem spec_tail0: forall x,";
+ pr " 0 < [x] -> exists y, 0 <= y /\\ [x] = (2 * y + 1) * 2 ^ [tail0 x].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; case x; clear x; unfold tail0.";
+ for i = 0 to size do
+ pp " intros x Hx; rewrite spec_reduce_%i; exact (spec_tail0 w%i_spec x Hx)." i i;
+ done;
+ pp " intros n x Hx; rewrite spec_reduce_n; exact (spec_tail0 (wn_spec n) x Hx).";
+ pp " Qed.";
+ pr "";
+
+
+ (* Number of digits *)
+ pr " Definition %sdigits x :=" c;
+ pr " match x with";
+ pr " | %s0 _ => %s0 w0_op.(znz_zdigits)" c c;
+ for i = 1 to size do
+ pr " | %s%i _ => reduce_%i w%i_op.(znz_zdigits)" c i i i;
+ done;
+ pr " | %sn n _ => reduce_n n (make_op n).(znz_zdigits)" c;
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_Ndigits: forall x, [Ndigits x] = Zpos (digits x).";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; case x; clear x; unfold Ndigits, digits.";
+ for i = 0 to size do
+ pp " intros _; try rewrite spec_reduce_%i; exact (spec_zdigits w%i_spec)." i i;
+ done;
+ pp " intros n _; try rewrite spec_reduce_n; exact (spec_zdigits (wn_spec n)).";
+ pp " Qed.";
+ pr "";
+
+
+ (* Shiftr *)
+ for i = 0 to size do
+ pr " Definition shiftr%i n x := w%i_op.(znz_add_mul_div) (w%i_op.(znz_sub) w%i_op.(znz_zdigits) n) w%i_op.(znz_0) x." i i i i i;
+ done;
+ pr " Definition shiftrn n p x := (make_op n).(znz_add_mul_div) ((make_op n).(znz_sub) (make_op n).(znz_zdigits) p) (make_op n).(znz_0) x.";
+ pr "";
+
+ pr " Definition shiftr := Eval lazy beta delta [same_level] in ";
+ pr " same_level _ (fun n x => %s0 (shiftr0 n x))" c;
+ for i = 1 to size do
+ pr " (fun n x => reduce_%i (shiftr%i n x))" i i;
+ done;
+ pr " (fun n p x => reduce_n n (shiftrn n p x)).";
+ pr "";
+
+
+ pr " Theorem spec_shiftr: forall n x,";
+ pr " [n] <= [Ndigits x] -> [shiftr n x] = [x] / 2 ^ [n].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " assert (F0: forall x y, x - (x - y) = y).";
+ pp " intros; ring.";
+ pp " assert (F2: forall x y z, 0 <= x -> 0 <= y -> x < z -> 0 <= x / 2 ^ y < z).";
+ pp " intros x y z HH HH1 HH2.";
+ pp " split; auto with zarith.";
+ pp " apply Zle_lt_trans with (2 := HH2); auto with zarith.";
+ pp " apply Zdiv_le_upper_bound; auto with zarith.";
+ pp " pattern x at 1; replace x with (x * 2 ^ 0); auto with zarith.";
+ pp " apply Zmult_le_compat_l; auto.";
+ pp " apply Zpower_le_monotone; auto with zarith.";
+ pp " rewrite Zpower_0_r; ring.";
+ pp " assert (F3: forall x y, 0 <= y -> y <= x -> 0 <= x - y < 2 ^ x).";
+ pp " intros xx y HH HH1.";
+ pp " split; auto with zarith.";
+ pp " apply Zle_lt_trans with xx; auto with zarith.";
+ pp " apply Zpower2_lt_lin; auto with zarith.";
+ pp " assert (F4: forall ww ww1 ww2 ";
+ pp " (ww_op: znz_op ww) (ww1_op: znz_op ww1) (ww2_op: znz_op ww2)";
+ pp " xx yy xx1 yy1,";
+ pp " znz_to_Z ww2_op yy <= znz_to_Z ww1_op (znz_zdigits ww1_op) ->";
+ pp " znz_to_Z ww1_op (znz_zdigits ww1_op) <= znz_to_Z ww_op (znz_zdigits ww_op) ->";
+ pp " znz_spec ww_op -> znz_spec ww1_op -> znz_spec ww2_op ->";
+ pp " znz_to_Z ww_op xx1 = znz_to_Z ww1_op xx ->";
+ pp " znz_to_Z ww_op yy1 = znz_to_Z ww2_op yy ->";
+ pp " znz_to_Z ww_op";
+ pp " (znz_add_mul_div ww_op (znz_sub ww_op (znz_zdigits ww_op) yy1)";
+ pp " (znz_0 ww_op) xx1) = znz_to_Z ww1_op xx / 2 ^ znz_to_Z ww2_op yy).";
+ pp " intros ww ww1 ww2 ww_op ww1_op ww2_op xx yy xx1 yy1 Hl Hl1 Hw Hw1 Hw2 Hx Hy.";
+ pp " case (spec_to_Z Hw xx1); auto with zarith; intros HH1 HH2.";
+ pp " case (spec_to_Z Hw yy1); auto with zarith; intros HH3 HH4.";
+ pp " rewrite <- Hx.";
+ pp " rewrite <- Hy.";
+ pp " generalize (spec_add_mul_div Hw";
+ pp " (znz_0 ww_op) xx1";
+ pp " (znz_sub ww_op (znz_zdigits ww_op) ";
+ pp " yy1)";
+ pp " ).";
+ pp " rewrite (spec_0 Hw).";
+ pp " rewrite Zmult_0_l; rewrite Zplus_0_l.";
+ pp " rewrite (CyclicAxioms.spec_sub Hw).";
+ pp " rewrite Zmod_small; auto with zarith.";
+ pp " rewrite (spec_zdigits Hw).";
+ pp " rewrite F0.";
+ pp " rewrite Zmod_small; auto with zarith.";
+ pp " unfold base; rewrite (spec_zdigits Hw) in Hl1 |- *;";
+ pp " auto with zarith.";
+ pp " assert (F5: forall n m, (n <= m)%snat ->" "%";
+ pp " Zpos (znz_digits (make_op n)) <= Zpos (znz_digits (make_op m))).";
+ pp " intros n m HH; elim HH; clear m HH; auto with zarith.";
+ pp " intros m HH Hrec; apply Zle_trans with (1 := Hrec).";
+ pp " rewrite make_op_S.";
+ pp " match goal with |- Zpos ?Y <= ?X => change X with (Zpos (xO Y)) end.";
+ pp " rewrite Zpos_xO.";
+ pp " assert (0 <= Zpos (znz_digits (make_op n))); auto with zarith.";
+ pp " assert (F6: forall n, Zpos (znz_digits w%i_op) <= Zpos (znz_digits (make_op n)))." size;
+ pp " intros n ; apply Zle_trans with (Zpos (znz_digits (make_op 0))).";
+ pp " change (znz_digits (make_op 0)) with (xO (znz_digits w%i_op))." size;
+ pp " rewrite Zpos_xO.";
+ pp " assert (0 <= Zpos (znz_digits w%i_op)); auto with zarith." size;
+ pp " apply F5; auto with arith.";
+ pp " intros x; case x; clear x; unfold shiftr, same_level.";
+ for i = 0 to size do
+ pp " intros x y; case y; clear y.";
+ for j = 0 to i - 1 do
+ pp " intros y; unfold shiftr%i, Ndigits." i;
+ pp " repeat rewrite spec_reduce_%i; repeat rewrite spec_reduce_%i; unfold to_Z; intros H1." i j;
+ pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." i j i;
+ pp " rewrite (spec_zdigits w%i_spec)." i;
+ pp " rewrite (spec_zdigits w%i_spec)." j;
+ pp " change (znz_digits w%i_op) with %s." i (genxO (i - j) (" (znz_digits w"^(string_of_int j)^"_op)"));
+ pp " repeat rewrite (fun x => Zpos_xO (xO x)).";
+ pp " repeat rewrite (fun x y => Zpos_xO (@znz_digits x y)).";
+ pp " assert (0 <= Zpos (znz_digits w%i_op)); auto with zarith." j;
+ pp " try (apply sym_equal; exact (spec_extend%in%i y))." j i;
+
+ done;
+ pp " intros y; unfold shiftr%i, Ndigits." i;
+ pp " repeat rewrite spec_reduce_%i; unfold to_Z; intros H1." i;
+ pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." i i i;
+ for j = i + 1 to size do
+ pp " intros y; unfold shiftr%i, Ndigits." j;
+ pp " repeat rewrite spec_reduce_%i; repeat rewrite spec_reduce_%i; unfold to_Z; intros H1." i j;
+ pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." j j i;
+ pp " try (apply sym_equal; exact (spec_extend%in%i x))." i j;
+ done;
+ if i == size then
+ begin
+ pp " intros m y; unfold shiftrn, Ndigits.";
+ pp " repeat rewrite spec_reduce_n; unfold to_Z; intros H1.";
+ pp " apply F4 with (3:=(wn_spec m))(4:=wn_spec m)(5:=w%i_spec); auto with zarith." size;
+ pp " try (apply sym_equal; exact (spec_extend%in m x))." size;
+ end
+ else
+ begin
+ pp " intros m y; unfold shiftrn, Ndigits.";
+ pp " repeat rewrite spec_reduce_n; unfold to_Z; intros H1.";
+ pp " apply F4 with (3:=(wn_spec m))(4:=wn_spec m)(5:=w%i_spec); auto with zarith." i;
+ pp " change ([Nn m (extend%i m (extend%i %i x))] = [N%i x])." size i (size - i - 1) i;
+ pp " rewrite <- (spec_extend%in m); rewrite <- spec_extend%in%i; auto." size i size;
+ end
+ done;
+ pp " intros n x y; case y; clear y;";
+ pp " intros y; unfold shiftrn, Ndigits; try rewrite spec_reduce_n.";
+ for i = 0 to size do
+ pp " try rewrite spec_reduce_%i; unfold to_Z; intros H1." i;
+ pp " apply F4 with (3:=(wn_spec n))(4:=w%i_spec)(5:=wn_spec n); auto with zarith." i;
+ pp " rewrite (spec_zdigits w%i_spec)." i;
+ pp " rewrite (spec_zdigits (wn_spec n)).";
+ pp " apply Zle_trans with (2 := F6 n).";
+ pp " change (znz_digits w%i_op) with %s." size (genxO (size - i) ("(znz_digits w" ^ (string_of_int i) ^ "_op)"));
+ pp " repeat rewrite (fun x => Zpos_xO (xO x)).";
+ pp " repeat rewrite (fun x y => Zpos_xO (@znz_digits x y)).";
+ pp " assert (H: 0 <= Zpos (znz_digits w%i_op)); auto with zarith." i;
+ if i == size then
+ pp " change ([Nn n (extend%i n y)] = [N%i y])." size i
+ else
+ pp " change ([Nn n (extend%i n (extend%i %i y))] = [N%i y])." size i (size - i - 1) i;
+ pp " rewrite <- (spec_extend%in n); auto." size;
+ if i <> size then
+ pp " try (rewrite <- spec_extend%in%i; auto)." i size;
+ done;
+ pp " generalize y; clear y; intros m y.";
+ pp " rewrite spec_reduce_n; unfold to_Z; intros H1.";
+ pp " apply F4 with (3:=(wn_spec (Max.max n m)))(4:=wn_spec m)(5:=wn_spec n); auto with zarith.";
+ pp " rewrite (spec_zdigits (wn_spec m)).";
+ pp " rewrite (spec_zdigits (wn_spec (Max.max n m))).";
+ pp " apply F5; auto with arith.";
+ pp " exact (spec_cast_r n m y).";
+ pp " exact (spec_cast_l n m x).";
+ pp " Qed.";
+ pr "";
+
+ pr " Definition safe_shiftr n x := ";
+ pr " match compare n (Ndigits x) with";
+ pr " | Lt => shiftr n x ";
+ pr " | _ => %s0 w_0" c;
+ pr " end.";
+ pr "";
+
+
+ pr " Theorem spec_safe_shiftr: forall n x,";
+ pr " [safe_shiftr n x] = [x] / 2 ^ [n].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros n x; unfold safe_shiftr;";
+ pp " generalize (spec_compare n (Ndigits x)); case compare; intros H.";
+ pp " apply trans_equal with (1 := spec_0 w0_spec).";
+ pp " apply sym_equal; apply Zdiv_small; rewrite H.";
+ pp " rewrite spec_Ndigits; exact (spec_digits x).";
+ pp " rewrite <- spec_shiftr; auto with zarith.";
+ pp " apply trans_equal with (1 := spec_0 w0_spec).";
+ pp " apply sym_equal; apply Zdiv_small.";
+ pp " rewrite spec_Ndigits in H; case (spec_digits x); intros H1 H2.";
+ pp " split; auto.";
+ pp " apply Zlt_le_trans with (1 := H2).";
+ pp " apply Zpower_le_monotone; auto with zarith.";
+ pp " Qed.";
+ pr "";
+
+ pr "";
+
+ (* Shiftl *)
+ for i = 0 to size do
+ pr " Definition shiftl%i n x := w%i_op.(znz_add_mul_div) n x w%i_op.(znz_0)." i i i
+ done;
+ pr " Definition shiftln n p x := (make_op n).(znz_add_mul_div) p x (make_op n).(znz_0).";
+ pr " Definition shiftl := Eval lazy beta delta [same_level] in";
+ pr " same_level _ (fun n x => %s0 (shiftl0 n x))" c;
+ for i = 1 to size do
+ pr " (fun n x => reduce_%i (shiftl%i n x))" i i;
+ done;
+ pr " (fun n p x => reduce_n n (shiftln n p x)).";
+ pr "";
+ pr "";
+
+
+ pr " Theorem spec_shiftl: forall n x,";
+ pr " [n] <= [head0 x] -> [shiftl n x] = [x] * 2 ^ [n].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " assert (F0: forall x y, x - (x - y) = y).";
+ pp " intros; ring.";
+ pp " assert (F2: forall x y z, 0 <= x -> 0 <= y -> x < z -> 0 <= x / 2 ^ y < z).";
+ pp " intros x y z HH HH1 HH2.";
+ pp " split; auto with zarith.";
+ pp " apply Zle_lt_trans with (2 := HH2); auto with zarith.";
+ pp " apply Zdiv_le_upper_bound; auto with zarith.";
+ pp " pattern x at 1; replace x with (x * 2 ^ 0); auto with zarith.";
+ pp " apply Zmult_le_compat_l; auto.";
+ pp " apply Zpower_le_monotone; auto with zarith.";
+ pp " rewrite Zpower_0_r; ring.";
+ pp " assert (F3: forall x y, 0 <= y -> y <= x -> 0 <= x - y < 2 ^ x).";
+ pp " intros xx y HH HH1.";
+ pp " split; auto with zarith.";
+ pp " apply Zle_lt_trans with xx; auto with zarith.";
+ pp " apply Zpower2_lt_lin; auto with zarith.";
+ pp " assert (F4: forall ww ww1 ww2 ";
+ pp " (ww_op: znz_op ww) (ww1_op: znz_op ww1) (ww2_op: znz_op ww2)";
+ pp " xx yy xx1 yy1,";
+ pp " znz_to_Z ww2_op yy <= znz_to_Z ww1_op (znz_head0 ww1_op xx) ->";
+ pp " znz_to_Z ww1_op (znz_zdigits ww1_op) <= znz_to_Z ww_op (znz_zdigits ww_op) ->";
+ pp " znz_spec ww_op -> znz_spec ww1_op -> znz_spec ww2_op ->";
+ pp " znz_to_Z ww_op xx1 = znz_to_Z ww1_op xx ->";
+ pp " znz_to_Z ww_op yy1 = znz_to_Z ww2_op yy ->";
+ pp " znz_to_Z ww_op";
+ pp " (znz_add_mul_div ww_op yy1";
+ pp " xx1 (znz_0 ww_op)) = znz_to_Z ww1_op xx * 2 ^ znz_to_Z ww2_op yy).";
+ pp " intros ww ww1 ww2 ww_op ww1_op ww2_op xx yy xx1 yy1 Hl Hl1 Hw Hw1 Hw2 Hx Hy.";
+ pp " case (spec_to_Z Hw xx1); auto with zarith; intros HH1 HH2.";
+ pp " case (spec_to_Z Hw yy1); auto with zarith; intros HH3 HH4.";
+ pp " rewrite <- Hx.";
+ pp " rewrite <- Hy.";
+ pp " generalize (spec_add_mul_div Hw xx1 (znz_0 ww_op) yy1).";
+ pp " rewrite (spec_0 Hw).";
+ pp " assert (F1: znz_to_Z ww1_op (znz_head0 ww1_op xx) <= Zpos (znz_digits ww1_op)).";
+ pp " case (Zle_lt_or_eq _ _ HH1); intros HH5.";
+ pp " apply Zlt_le_weak.";
+ pp " case (CyclicAxioms.spec_head0 Hw1 xx).";
+ pp " rewrite <- Hx; auto.";
+ pp " intros _ Hu; unfold base in Hu.";
+ pp " case (Zle_or_lt (Zpos (znz_digits ww1_op))";
+ pp " (znz_to_Z ww1_op (znz_head0 ww1_op xx))); auto; intros H1.";
+ pp " absurd (2 ^ (Zpos (znz_digits ww1_op)) <= 2 ^ (znz_to_Z ww1_op (znz_head0 ww1_op xx))).";
+ pp " apply Zlt_not_le.";
+ pp " case (spec_to_Z Hw1 xx); intros HHx3 HHx4.";
+ pp " rewrite <- (Zmult_1_r (2 ^ znz_to_Z ww1_op (znz_head0 ww1_op xx))).";
+ pp " apply Zle_lt_trans with (2 := Hu).";
+ pp " apply Zmult_le_compat_l; auto with zarith.";
+ pp " apply Zpower_le_monotone; auto with zarith.";
+ pp " rewrite (CyclicAxioms.spec_head00 Hw1 xx); auto with zarith.";
+ pp " rewrite Zdiv_0_l; auto with zarith.";
+ pp " rewrite Zplus_0_r.";
+ pp " case (Zle_lt_or_eq _ _ HH1); intros HH5.";
+ pp " rewrite Zmod_small; auto with zarith.";
+ pp " intros HH; apply HH.";
+ pp " rewrite Hy; apply Zle_trans with (1:= Hl).";
+ pp " rewrite <- (spec_zdigits Hw). ";
+ pp " apply Zle_trans with (2 := Hl1); auto.";
+ pp " rewrite (spec_zdigits Hw1); auto with zarith.";
+ pp " split; auto with zarith .";
+ pp " apply Zlt_le_trans with (base (znz_digits ww1_op)).";
+ pp " rewrite Hx.";
+ pp " case (CyclicAxioms.spec_head0 Hw1 xx); auto.";
+ pp " rewrite <- Hx; auto.";
+ pp " intros _ Hu; rewrite Zmult_comm in Hu.";
+ pp " apply Zle_lt_trans with (2 := Hu).";
+ pp " apply Zmult_le_compat_l; auto with zarith.";
+ pp " apply Zpower_le_monotone; auto with zarith.";
+ pp " unfold base; apply Zpower_le_monotone; auto with zarith.";
+ pp " split; auto with zarith.";
+ pp " rewrite <- (spec_zdigits Hw); auto with zarith.";
+ pp " rewrite <- (spec_zdigits Hw1); auto with zarith.";
+ pp " rewrite <- HH5.";
+ pp " rewrite Zmult_0_l.";
+ pp " rewrite Zmod_small; auto with zarith.";
+ pp " intros HH; apply HH.";
+ pp " rewrite Hy; apply Zle_trans with (1 := Hl).";
+ pp " rewrite (CyclicAxioms.spec_head00 Hw1 xx); auto with zarith.";
+ pp " rewrite <- (spec_zdigits Hw); auto with zarith.";
+ pp " rewrite <- (spec_zdigits Hw1); auto with zarith.";
+ pp " assert (F5: forall n m, (n <= m)%snat ->" "%";
+ pp " Zpos (znz_digits (make_op n)) <= Zpos (znz_digits (make_op m))).";
+ pp " intros n m HH; elim HH; clear m HH; auto with zarith.";
+ pp " intros m HH Hrec; apply Zle_trans with (1 := Hrec).";
+ pp " rewrite make_op_S.";
+ pp " match goal with |- Zpos ?Y <= ?X => change X with (Zpos (xO Y)) end.";
+ pp " rewrite Zpos_xO.";
+ pp " assert (0 <= Zpos (znz_digits (make_op n))); auto with zarith.";
+ pp " assert (F6: forall n, Zpos (znz_digits w%i_op) <= Zpos (znz_digits (make_op n)))." size;
+ pp " intros n ; apply Zle_trans with (Zpos (znz_digits (make_op 0))).";
+ pp " change (znz_digits (make_op 0)) with (xO (znz_digits w%i_op))." size;
+ pp " rewrite Zpos_xO.";
+ pp " assert (0 <= Zpos (znz_digits w%i_op)); auto with zarith." size;
+ pp " apply F5; auto with arith.";
+ pp " intros x; case x; clear x; unfold shiftl, same_level.";
+ for i = 0 to size do
+ pp " intros x y; case y; clear y.";
+ for j = 0 to i - 1 do
+ pp " intros y; unfold shiftl%i, head0." i;
+ pp " repeat rewrite spec_reduce_%i; repeat rewrite spec_reduce_%i; unfold to_Z; intros H1." i j;
+ pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." i j i;
+ pp " rewrite (spec_zdigits w%i_spec)." i;
+ pp " rewrite (spec_zdigits w%i_spec)." j;
+ pp " change (znz_digits w%i_op) with %s." i (genxO (i - j) (" (znz_digits w"^(string_of_int j)^"_op)"));
+ pp " repeat rewrite (fun x => Zpos_xO (xO x)).";
+ pp " repeat rewrite (fun x y => Zpos_xO (@znz_digits x y)).";
+ pp " assert (0 <= Zpos (znz_digits w%i_op)); auto with zarith." j;
+ pp " try (apply sym_equal; exact (spec_extend%in%i y))." j i;
+ done;
+ pp " intros y; unfold shiftl%i, head0." i;
+ pp " repeat rewrite spec_reduce_%i; unfold to_Z; intros H1." i;
+ pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." i i i;
+ for j = i + 1 to size do
+ pp " intros y; unfold shiftl%i, head0." j;
+ pp " repeat rewrite spec_reduce_%i; repeat rewrite spec_reduce_%i; unfold to_Z; intros H1." i j;
+ pp " apply F4 with (3:=w%i_spec)(4:=w%i_spec)(5:=w%i_spec); auto with zarith." j j i;
+ pp " try (apply sym_equal; exact (spec_extend%in%i x))." i j;
+ done;
+ if i == size then
+ begin
+ pp " intros m y; unfold shiftln, head0.";
+ pp " repeat rewrite spec_reduce_n; unfold to_Z; intros H1.";
+ pp " apply F4 with (3:=(wn_spec m))(4:=wn_spec m)(5:=w%i_spec); auto with zarith." size;
+ pp " try (apply sym_equal; exact (spec_extend%in m x))." size;
+ end
+ else
+ begin
+ pp " intros m y; unfold shiftln, head0.";
+ pp " repeat rewrite spec_reduce_n; unfold to_Z; intros H1.";
+ pp " apply F4 with (3:=(wn_spec m))(4:=wn_spec m)(5:=w%i_spec); auto with zarith." i;
+ pp " change ([Nn m (extend%i m (extend%i %i x))] = [N%i x])." size i (size - i - 1) i;
+ pp " rewrite <- (spec_extend%in m); rewrite <- spec_extend%in%i; auto." size i size;
+ end
+ done;
+ pp " intros n x y; case y; clear y;";
+ pp " intros y; unfold shiftln, head0; try rewrite spec_reduce_n.";
+ for i = 0 to size do
+ pp " try rewrite spec_reduce_%i; unfold to_Z; intros H1." i;
+ pp " apply F4 with (3:=(wn_spec n))(4:=w%i_spec)(5:=wn_spec n); auto with zarith." i;
+ pp " rewrite (spec_zdigits w%i_spec)." i;
+ pp " rewrite (spec_zdigits (wn_spec n)).";
+ pp " apply Zle_trans with (2 := F6 n).";
+ pp " change (znz_digits w%i_op) with %s." size (genxO (size - i) ("(znz_digits w" ^ (string_of_int i) ^ "_op)"));
+ pp " repeat rewrite (fun x => Zpos_xO (xO x)).";
+ pp " repeat rewrite (fun x y => Zpos_xO (@znz_digits x y)).";
+ pp " assert (H: 0 <= Zpos (znz_digits w%i_op)); auto with zarith." i;
+ if i == size then
+ pp " change ([Nn n (extend%i n y)] = [N%i y])." size i
+ else
+ pp " change ([Nn n (extend%i n (extend%i %i y))] = [N%i y])." size i (size - i - 1) i;
+ pp " rewrite <- (spec_extend%in n); auto." size;
+ if i <> size then
+ pp " try (rewrite <- spec_extend%in%i; auto)." i size;
+ done;
+ pp " generalize y; clear y; intros m y.";
+ pp " repeat rewrite spec_reduce_n; unfold to_Z; intros H1.";
+ pp " apply F4 with (3:=(wn_spec (Max.max n m)))(4:=wn_spec m)(5:=wn_spec n); auto with zarith.";
+ pp " rewrite (spec_zdigits (wn_spec m)).";
+ pp " rewrite (spec_zdigits (wn_spec (Max.max n m))).";
+ pp " apply F5; auto with arith.";
+ pp " exact (spec_cast_r n m y).";
+ pp " exact (spec_cast_l n m x).";
+ pp " Qed.";
+ pr "";
+
+ (* Double size *)
+ pr " Definition double_size w := match w with";
+ for i = 0 to size-1 do
+ pr " | %s%i x => %s%i (WW (znz_0 w%i_op) x)" c i c (i + 1) i;
+ done;
+ pr " | %s%i x => %sn 0 (WW (znz_0 w%i_op) x)" c size c size;
+ pr " | %sn n x => %sn (S n) (WW (znz_0 (make_op n)) x)" c c;
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_double_size_digits: ";
+ pr " forall x, digits (double_size x) = xO (digits x).";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; case x; unfold double_size, digits; clear x; auto.";
+ pp " intros n x; rewrite make_op_S; auto.";
+ pp " Qed.";
+ pr "";
+
+
+ pr " Theorem spec_double_size: forall x, [double_size x] = [x].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; case x; unfold double_size; clear x.";
+ for i = 0 to size do
+ pp " intros x; unfold to_Z, make_op; ";
+ pp " rewrite znz_to_Z_%i; rewrite (spec_0 w%i_spec); auto with zarith." (i + 1) i;
+ done;
+ pp " intros n x; unfold to_Z;";
+ pp " generalize (znz_to_Z_n n); simpl word.";
+ pp " intros HH; rewrite HH; clear HH.";
+ pp " generalize (spec_0 (wn_spec n)); simpl word.";
+ pp " intros HH; rewrite HH; clear HH; auto with zarith.";
+ pp " Qed.";
+ pr "";
+
+
+ pr " Theorem spec_double_size_head0: ";
+ pr " forall x, 2 * [head0 x] <= [head0 (double_size x)].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x.";
+ pp " assert (F1:= spec_pos (head0 x)).";
+ pp " assert (F2: 0 < Zpos (digits x)).";
+ pp " red; auto.";
+ pp " case (Zle_lt_or_eq _ _ (spec_pos x)); intros HH.";
+ pp " generalize HH; rewrite <- (spec_double_size x); intros HH1.";
+ pp " case (spec_head0 x HH); intros _ HH2.";
+ pp " case (spec_head0 _ HH1).";
+ pp " rewrite (spec_double_size x); rewrite (spec_double_size_digits x).";
+ pp " intros HH3 _.";
+ pp " case (Zle_or_lt ([head0 (double_size x)]) (2 * [head0 x])); auto; intros HH4.";
+ pp " absurd (2 ^ (2 * [head0 x] )* [x] < 2 ^ [head0 (double_size x)] * [x]); auto.";
+ pp " apply Zle_not_lt.";
+ pp " apply Zmult_le_compat_r; auto with zarith.";
+ pp " apply Zpower_le_monotone; auto; auto with zarith.";
+ pp " generalize (spec_pos (head0 (double_size x))); auto with zarith.";
+ pp " assert (HH5: 2 ^[head0 x] <= 2 ^(Zpos (digits x) - 1)).";
+ pp " case (Zle_lt_or_eq 1 [x]); auto with zarith; intros HH5.";
+ pp " apply Zmult_le_reg_r with (2 ^ 1); auto with zarith.";
+ pp " rewrite <- (fun x y z => Zpower_exp x (y - z)); auto with zarith.";
+ pp " assert (tmp: forall x, x - 1 + 1 = x); [intros; ring | rewrite tmp; clear tmp].";
+ pp " apply Zle_trans with (2 := Zlt_le_weak _ _ HH2).";
+ pp " apply Zmult_le_compat_l; auto with zarith.";
+ pp " rewrite Zpower_1_r; auto with zarith.";
+ pp " apply Zpower_le_monotone; auto with zarith.";
+ pp " split; auto with zarith. ";
+ pp " case (Zle_or_lt (Zpos (digits x)) [head0 x]); auto with zarith; intros HH6.";
+ pp " absurd (2 ^ Zpos (digits x) <= 2 ^ [head0 x] * [x]); auto with zarith.";
+ pp " rewrite <- HH5; rewrite Zmult_1_r.";
+ pp " apply Zpower_le_monotone; auto with zarith.";
+ pp " rewrite (Zmult_comm 2).";
+ pp " rewrite Zpower_mult; auto with zarith.";
+ pp " rewrite Zpower_2.";
+ pp " apply Zlt_le_trans with (2 := HH3).";
+ pp " rewrite <- Zmult_assoc.";
+ pp " replace (Zpos (xO (digits x)) - 1) with";
+ pp " ((Zpos (digits x) - 1) + (Zpos (digits x))).";
+ pp " rewrite Zpower_exp; auto with zarith.";
+ pp " apply Zmult_lt_compat2; auto with zarith.";
+ pp " split; auto with zarith.";
+ pp " apply Zmult_lt_0_compat; auto with zarith.";
+ pp " rewrite Zpos_xO; ring.";
+ pp " apply Zlt_le_weak; auto.";
+ pp " repeat rewrite spec_head00; auto.";
+ pp " rewrite spec_double_size_digits.";
+ pp " rewrite Zpos_xO; auto with zarith.";
+ pp " rewrite spec_double_size; auto.";
+ pp " Qed.";
+ pr "";
+
+ pr " Theorem spec_double_size_head0_pos: ";
+ pr " forall x, 0 < [head0 (double_size x)].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x.";
+ pp " assert (F: 0 < Zpos (digits x)).";
+ pp " red; auto.";
+ pp " case (Zle_lt_or_eq _ _ (spec_pos (head0 (double_size x)))); auto; intros F0.";
+ pp " case (Zle_lt_or_eq _ _ (spec_pos (head0 x))); intros F1.";
+ pp " apply Zlt_le_trans with (2 := (spec_double_size_head0 x)); auto with zarith.";
+ pp " case (Zle_lt_or_eq _ _ (spec_pos x)); intros F3.";
+ pp " generalize F3; rewrite <- (spec_double_size x); intros F4.";
+ pp " absurd (2 ^ (Zpos (xO (digits x)) - 1) < 2 ^ (Zpos (digits x))).";
+ pp " apply Zle_not_lt.";
+ pp " apply Zpower_le_monotone; auto with zarith.";
+ pp " split; auto with zarith.";
+ pp " rewrite Zpos_xO; auto with zarith.";
+ pp " case (spec_head0 x F3).";
+ pp " rewrite <- F1; rewrite Zpower_0_r; rewrite Zmult_1_l; intros _ HH.";
+ pp " apply Zle_lt_trans with (2 := HH).";
+ pp " case (spec_head0 _ F4).";
+ pp " rewrite (spec_double_size x); rewrite (spec_double_size_digits x).";
+ pp " rewrite <- F0; rewrite Zpower_0_r; rewrite Zmult_1_l; auto.";
+ pp " generalize F1; rewrite (spec_head00 _ (sym_equal F3)); auto with zarith.";
+ pp " Qed.";
+ pr "";
+
+
+ (* Safe shiftl *)
+
+ pr " Definition safe_shiftl_aux_body cont n x :=";
+ pr " match compare n (head0 x) with";
+ pr " Gt => cont n (double_size x)";
+ pr " | _ => shiftl n x";
+ pr " end.";
+ pr "";
+
+ pr " Theorem spec_safe_shift_aux_body: forall n p x cont,";
+ pr " 2^ Zpos p <= [head0 x] ->";
+ pr " (forall x, 2 ^ (Zpos p + 1) <= [head0 x]->";
+ pr " [cont n x] = [x] * 2 ^ [n]) ->";
+ pr " [safe_shiftl_aux_body cont n x] = [x] * 2 ^ [n].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros n p x cont H1 H2; unfold safe_shiftl_aux_body.";
+ pp " generalize (spec_compare n (head0 x)); case compare; intros H.";
+ pp " apply spec_shiftl; auto with zarith.";
+ pp " apply spec_shiftl; auto with zarith.";
+ pp " rewrite H2.";
+ pp " rewrite spec_double_size; auto.";
+ pp " rewrite Zplus_comm; rewrite Zpower_exp; auto with zarith.";
+ pp " apply Zle_trans with (2 := spec_double_size_head0 x).";
+ pp " rewrite Zpower_1_r; apply Zmult_le_compat_l; auto with zarith.";
+ pp " Qed.";
+ pr "";
+
+ pr " Fixpoint safe_shiftl_aux p cont n x {struct p} :=";
+ pr " safe_shiftl_aux_body ";
+ pr " (fun n x => match p with";
+ pr " | xH => cont n x";
+ pr " | xO p => safe_shiftl_aux p (safe_shiftl_aux p cont) n x";
+ pr " | xI p => safe_shiftl_aux p (safe_shiftl_aux p cont) n x";
+ pr " end) n x.";
+ pr "";
+
+ pr " Theorem spec_safe_shift_aux: forall p q n x cont,";
+ pr " 2 ^ (Zpos q) <= [head0 x] ->";
+ pr " (forall x, 2 ^ (Zpos p + Zpos q) <= [head0 x] ->";
+ pr " [cont n x] = [x] * 2 ^ [n]) -> ";
+ pr " [safe_shiftl_aux p cont n x] = [x] * 2 ^ [n].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros p; elim p; unfold safe_shiftl_aux; fold safe_shiftl_aux; clear p.";
+ pp " intros p Hrec q n x cont H1 H2.";
+ pp " apply spec_safe_shift_aux_body with (q); auto.";
+ pp " intros x1 H3; apply Hrec with (q + 1)%spositive; auto." "%";
+ pp " intros x2 H4; apply Hrec with (p + q + 1)%spositive; auto." "%";
+ pp " rewrite <- Pplus_assoc.";
+ pp " rewrite Zpos_plus_distr; auto.";
+ pp " intros x3 H5; apply H2.";
+ pp " rewrite Zpos_xI.";
+ pp " replace (2 * Zpos p + 1 + Zpos q) with (Zpos p + Zpos (p + q + 1));";
+ pp " auto.";
+ pp " repeat rewrite Zpos_plus_distr; ring.";
+ pp " intros p Hrec q n x cont H1 H2.";
+ pp " apply spec_safe_shift_aux_body with (q); auto.";
+ pp " intros x1 H3; apply Hrec with (q); auto.";
+ pp " apply Zle_trans with (2 := H3); auto with zarith.";
+ pp " apply Zpower_le_monotone; auto with zarith.";
+ pp " intros x2 H4; apply Hrec with (p + q)%spositive; auto." "%";
+ pp " intros x3 H5; apply H2.";
+ pp " rewrite (Zpos_xO p).";
+ pp " replace (2 * Zpos p + Zpos q) with (Zpos p + Zpos (p + q));";
+ pp " auto.";
+ pp " repeat rewrite Zpos_plus_distr; ring.";
+ pp " intros q n x cont H1 H2.";
+ pp " apply spec_safe_shift_aux_body with (q); auto.";
+ pp " rewrite Zplus_comm; auto.";
+ pp " Qed.";
+ pr "";
+
+
+ pr " Definition safe_shiftl n x :=";
+ pr " safe_shiftl_aux_body";
+ pr " (safe_shiftl_aux_body";
+ pr " (safe_shiftl_aux (digits n) shiftl)) n x.";
+ pr "";
+
+ pr " Theorem spec_safe_shift: forall n x,";
+ pr " [safe_shiftl n x] = [x] * 2 ^ [n].";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros n x; unfold safe_shiftl, safe_shiftl_aux_body.";
+ pp " generalize (spec_compare n (head0 x)); case compare; intros H.";
+ pp " apply spec_shiftl; auto with zarith.";
+ pp " apply spec_shiftl; auto with zarith.";
+ pp " rewrite <- (spec_double_size x).";
+ pp " generalize (spec_compare n (head0 (double_size x))); case compare; intros H1.";
+ pp " apply spec_shiftl; auto with zarith.";
+ pp " apply spec_shiftl; auto with zarith.";
+ pp " rewrite <- (spec_double_size (double_size x)).";
+ pp " apply spec_safe_shift_aux with 1%spositive." "%";
+ pp " apply Zle_trans with (2 := spec_double_size_head0 (double_size x)).";
+ pp " replace (2 ^ 1) with (2 * 1).";
+ pp " apply Zmult_le_compat_l; auto with zarith.";
+ pp " generalize (spec_double_size_head0_pos x); auto with zarith.";
+ pp " rewrite Zpower_1_r; ring.";
+ pp " intros x1 H2; apply spec_shiftl.";
+ pp " apply Zle_trans with (2 := H2).";
+ pp " apply Zle_trans with (2 ^ Zpos (digits n)); auto with zarith.";
+ pp " case (spec_digits n); auto with zarith.";
+ pp " apply Zpower_le_monotone; auto with zarith.";
+ pp " Qed.";
+ pr "";
+
+ (* even *)
+ pr " Definition is_even x :=";
+ pr " match x with";
+ for i = 0 to size do
+ pr " | %s%i wx => w%i_op.(znz_is_even) wx" c i i
+ done;
+ pr " | %sn n wx => (make_op n).(znz_is_even) wx" c;
+ pr " end.";
+ pr "";
+
+
+ pr " Theorem spec_is_even: forall x,";
+ pr " if is_even x then [x] mod 2 = 0 else [x] mod 2 = 1.";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " intros x; case x; unfold is_even, to_Z; clear x.";
+ for i = 0 to size do
+ pp " intros x; exact (spec_is_even w%i_spec x)." i;
+ done;
+ pp " intros n x; exact (spec_is_even (wn_spec n) x).";
+ pp " Qed.";
+ pr "";
+
+ pr " Theorem spec_0: [zero] = 0.";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " exact (spec_0 w0_spec).";
+ pp " Qed.";
+ pr "";
+
+ pr " Theorem spec_1: [one] = 1.";
+ pa " Admitted.";
+ pp " Proof.";
+ pp " exact (spec_1 w0_spec).";
+ pp " Qed.";
+ pr "";
+
+ pr "End Make.";
+ pr "";
+