summaryrefslogtreecommitdiff
path: root/theories/Numbers/Natural/Abstract
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Natural/Abstract')
-rw-r--r--theories/Numbers/Natural/Abstract/NAdd.v22
-rw-r--r--theories/Numbers/Natural/Abstract/NAddOrder.v10
-rw-r--r--theories/Numbers/Natural/Abstract/NAxioms.v58
-rw-r--r--theories/Numbers/Natural/Abstract/NBase.v59
-rw-r--r--theories/Numbers/Natural/Abstract/NBits.v1463
-rw-r--r--theories/Numbers/Natural/Abstract/NDefOps.v177
-rw-r--r--theories/Numbers/Natural/Abstract/NDiv.v50
-rw-r--r--theories/Numbers/Natural/Abstract/NGcd.v213
-rw-r--r--theories/Numbers/Natural/Abstract/NIso.v21
-rw-r--r--theories/Numbers/Natural/Abstract/NLcm.v290
-rw-r--r--theories/Numbers/Natural/Abstract/NLog.v23
-rw-r--r--theories/Numbers/Natural/Abstract/NMaxMin.v135
-rw-r--r--theories/Numbers/Natural/Abstract/NMulOrder.v22
-rw-r--r--theories/Numbers/Natural/Abstract/NOrder.v43
-rw-r--r--theories/Numbers/Natural/Abstract/NParity.v63
-rw-r--r--theories/Numbers/Natural/Abstract/NPow.v160
-rw-r--r--theories/Numbers/Natural/Abstract/NProperties.v21
-rw-r--r--theories/Numbers/Natural/Abstract/NSqrt.v75
-rw-r--r--theories/Numbers/Natural/Abstract/NStrongRec.v44
-rw-r--r--theories/Numbers/Natural/Abstract/NSub.v44
20 files changed, 2687 insertions, 306 deletions
diff --git a/theories/Numbers/Natural/Abstract/NAdd.v b/theories/Numbers/Natural/Abstract/NAdd.v
index 4185de95..72e09f15 100644
--- a/theories/Numbers/Natural/Abstract/NAdd.v
+++ b/theories/Numbers/Natural/Abstract/NAdd.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,12 +8,10 @@
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
-(*i $Id: NAdd.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
Require Export NBase.
-Module NAddPropFunct (Import N : NAxiomsSig').
-Include NBasePropFunct N.
+Module NAddProp (Import N : NAxiomsMiniSig').
+Include NBaseProp N.
(** For theorems about [add] that are both valid for [N] and [Z], see [NZAdd] *)
(** Now comes theorems valid for natural numbers but not for Z *)
@@ -24,9 +22,9 @@ intros n m; induct n.
nzsimpl; intuition.
intros n IH. nzsimpl.
setoid_replace (S (n + m) == 0) with False by
- (apply -> neg_false; apply neq_succ_0).
+ (apply neg_false; apply neq_succ_0).
setoid_replace (S n == 0) with False by
- (apply -> neg_false; apply neq_succ_0). tauto.
+ (apply neg_false; apply neq_succ_0). tauto.
Qed.
Theorem eq_add_succ :
@@ -47,13 +45,13 @@ Qed.
Theorem eq_add_1 : forall n m,
n + m == 1 -> n == 1 /\ m == 0 \/ n == 0 /\ m == 1.
Proof.
-intros n m H.
+intros n m. rewrite one_succ. intro H.
assert (H1 : exists p, n + m == S p) by now exists 0.
-apply -> eq_add_succ in H1. destruct H1 as [[n' H1] | [m' H1]].
+apply eq_add_succ in H1. destruct H1 as [[n' H1] | [m' H1]].
left. rewrite H1 in H; rewrite add_succ_l in H; apply succ_inj in H.
-apply -> eq_add_0 in H. destruct H as [H2 H3]; rewrite H2 in H1; now split.
+apply eq_add_0 in H. destruct H as [H2 H3]; rewrite H2 in H1; now split.
right. rewrite H1 in H; rewrite add_succ_r in H; apply succ_inj in H.
-apply -> eq_add_0 in H. destruct H as [H2 H3]; rewrite H3 in H1; now split.
+apply eq_add_0 in H. destruct H as [H2 H3]; rewrite H3 in H1; now split.
Qed.
Theorem succ_add_discr : forall n m, m ~= S (n + m).
@@ -77,5 +75,5 @@ intros n m H; rewrite (add_comm n (P m));
rewrite (add_comm n m); now apply add_pred_l.
Qed.
-End NAddPropFunct.
+End NAddProp.
diff --git a/theories/Numbers/Natural/Abstract/NAddOrder.v b/theories/Numbers/Natural/Abstract/NAddOrder.v
index 0282a6b8..da41886f 100644
--- a/theories/Numbers/Natural/Abstract/NAddOrder.v
+++ b/theories/Numbers/Natural/Abstract/NAddOrder.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,12 +8,10 @@
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
-(*i $Id: NAddOrder.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
Require Export NOrder.
-Module NAddOrderPropFunct (Import N : NAxiomsSig').
-Include NOrderPropFunct N.
+Module NAddOrderProp (Import N : NAxiomsMiniSig').
+Include NOrderProp N.
(** Theorems true for natural numbers, not for integers *)
@@ -45,4 +43,4 @@ Proof.
intros; apply add_nonneg_pos. apply le_0_l. assumption.
Qed.
-End NAddOrderPropFunct.
+End NAddOrderProp.
diff --git a/theories/Numbers/Natural/Abstract/NAxioms.v b/theories/Numbers/Natural/Abstract/NAxioms.v
index d1cc9972..ca6ccc1b 100644
--- a/theories/Numbers/Natural/Abstract/NAxioms.v
+++ b/theories/Numbers/Natural/Abstract/NAxioms.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,32 +8,60 @@
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
-(*i $Id: NAxioms.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
+Require Export Bool NZAxioms NZParity NZPow NZSqrt NZLog NZDiv NZGcd NZBits.
-Require Export NZAxioms.
+(** From [NZ], we obtain natural numbers just by stating that [pred 0] == 0 *)
-Set Implicit Arguments.
+Module Type NAxiom (Import NZ : NZDomainSig').
+ Axiom pred_0 : P 0 == 0.
+End NAxiom.
-Module Type NAxioms (Import NZ : NZDomainSig').
+Module Type NAxiomsMiniSig := NZOrdAxiomsSig <+ NAxiom.
+Module Type NAxiomsMiniSig' := NZOrdAxiomsSig' <+ NAxiom.
-Axiom pred_0 : P 0 == 0.
+(** Let's now add some more functions and their specification *)
-Parameter Inline recursion : forall A : Type, A -> (t -> A -> A) -> t -> A.
-Implicit Arguments recursion [A].
+(** Division Function : we reuse NZDiv.DivMod and NZDiv.NZDivCommon,
+ and add to that a N-specific constraint. *)
-Declare Instance recursion_wd (A : Type) (Aeq : relation A) :
- Proper (Aeq ==> (eq==>Aeq==>Aeq) ==> eq ==> Aeq) (@recursion A).
+Module Type NDivSpecific (Import N : NAxiomsMiniSig')(Import DM : DivMod' N).
+ Axiom mod_upper_bound : forall a b, b ~= 0 -> a mod b < b.
+End NDivSpecific.
+
+(** For all other functions, the NZ axiomatizations are enough. *)
+
+(** We now group everything together. *)
+
+Module Type NAxiomsSig := NAxiomsMiniSig <+ OrderFunctions
+ <+ NZParity.NZParity <+ NZPow.NZPow <+ NZSqrt.NZSqrt <+ NZLog.NZLog2
+ <+ NZGcd.NZGcd <+ NZDiv.NZDiv <+ NZBits.NZBits <+ NZSquare.
+
+Module Type NAxiomsSig' := NAxiomsMiniSig' <+ OrderFunctions'
+ <+ NZParity.NZParity <+ NZPow.NZPow' <+ NZSqrt.NZSqrt' <+ NZLog.NZLog2
+ <+ NZGcd.NZGcd' <+ NZDiv.NZDiv' <+ NZBits.NZBits' <+ NZSquare.
+
+
+(** It could also be interesting to have a constructive recursor function. *)
+
+Module Type NAxiomsRec (Import NZ : NZDomainSig').
+
+Parameter Inline recursion : forall {A : Type}, A -> (t -> A -> A) -> t -> A.
+
+Declare Instance recursion_wd {A : Type} (Aeq : relation A) :
+ Proper (Aeq ==> (eq==>Aeq==>Aeq) ==> eq ==> Aeq) recursion.
Axiom recursion_0 :
- forall (A : Type) (a : A) (f : t -> A -> A), recursion a f 0 = a.
+ forall {A} (a : A) (f : t -> A -> A), recursion a f 0 = a.
Axiom recursion_succ :
- forall (A : Type) (Aeq : relation A) (a : A) (f : t -> A -> A),
+ forall {A} (Aeq : relation A) (a : A) (f : t -> A -> A),
Aeq a a -> Proper (eq==>Aeq==>Aeq) f ->
forall n, Aeq (recursion a f (S n)) (f n (recursion a f n)).
-End NAxioms.
+End NAxiomsRec.
-Module Type NAxiomsSig := NZOrdAxiomsSig <+ NAxioms.
-Module Type NAxiomsSig' := NZOrdAxiomsSig' <+ NAxioms.
+Module Type NAxiomsRecSig := NAxiomsMiniSig <+ NAxiomsRec.
+Module Type NAxiomsRecSig' := NAxiomsMiniSig' <+ NAxiomsRec.
+Module Type NAxiomsFullSig := NAxiomsSig <+ NAxiomsRec.
+Module Type NAxiomsFullSig' := NAxiomsSig' <+ NAxiomsRec.
diff --git a/theories/Numbers/Natural/Abstract/NBase.v b/theories/Numbers/Natural/Abstract/NBase.v
index efaba960..ac8a0522 100644
--- a/theories/Numbers/Natural/Abstract/NBase.v
+++ b/theories/Numbers/Natural/Abstract/NBase.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,48 +8,23 @@
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
-(*i $Id: NBase.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
Require Export Decidable.
Require Export NAxioms.
Require Import NZProperties.
-Module NBasePropFunct (Import N : NAxiomsSig').
+Module NBaseProp (Import N : NAxiomsMiniSig').
(** First, we import all known facts about both natural numbers and integers. *)
-Include NZPropFunct N.
-
-(** We prove that the successor of a number is not zero by defining a
-function (by recursion) that maps 0 to false and the successor to true *)
-
-Definition if_zero (A : Type) (a b : A) (n : N.t) : A :=
- recursion a (fun _ _ => b) n.
-
-Implicit Arguments if_zero [A].
-
-Instance if_zero_wd (A : Type) :
- Proper (Logic.eq ==> Logic.eq ==> N.eq ==> Logic.eq) (@if_zero A).
-Proof.
-intros; unfold if_zero.
-repeat red; intros. apply recursion_wd; auto. repeat red; auto.
-Qed.
-
-Theorem if_zero_0 : forall (A : Type) (a b : A), if_zero a b 0 = a.
-Proof.
-unfold if_zero; intros; now rewrite recursion_0.
-Qed.
+Include NZProp N.
-Theorem if_zero_succ :
- forall (A : Type) (a b : A) (n : N.t), if_zero a b (S n) = b.
-Proof.
-intros; unfold if_zero.
-now rewrite recursion_succ.
-Qed.
+(** From [pred_0] and order facts, we can prove that 0 isn't a successor. *)
Theorem neq_succ_0 : forall n, S n ~= 0.
Proof.
-intros n H.
-generalize (Logic.eq_refl (if_zero false true 0)).
-rewrite <- H at 1. rewrite if_zero_0, if_zero_succ; discriminate.
+ intros n EQ.
+ assert (EQ' := pred_succ n).
+ rewrite EQ, pred_0 in EQ'.
+ rewrite <- EQ' in EQ.
+ now apply (neq_succ_diag_l 0).
Qed.
Theorem neq_0_succ : forall n, 0 ~= S n.
@@ -66,7 +41,7 @@ nzinduct n.
now apply eq_le_incl.
intro n; split.
apply le_le_succ_r.
-intro H; apply -> le_succ_r in H; destruct H as [H | H].
+intro H; apply le_succ_r in H; destruct H as [H | H].
assumption.
symmetry in H; false_hyp H neq_succ_0.
Qed.
@@ -119,12 +94,11 @@ Qed.
Theorem eq_pred_0 : forall n, P n == 0 <-> n == 0 \/ n == 1.
Proof.
cases n.
-rewrite pred_0. setoid_replace (0 == 1) with False using relation iff. tauto.
-split; intro H; [symmetry in H; false_hyp H neq_succ_0 | elim H].
+rewrite pred_0. now split; [left|].
intro n. rewrite pred_succ.
-setoid_replace (S n == 0) with False using relation iff by
- (apply -> neg_false; apply neq_succ_0).
-rewrite succ_inj_wd. tauto.
+split. intros H; right. now rewrite H, one_succ.
+intros [H|H]. elim (neq_succ_0 _ H).
+apply succ_inj_wd. now rewrite <- one_succ.
Qed.
Theorem succ_pred : forall n, n ~= 0 -> S (P n) == n.
@@ -155,6 +129,7 @@ Theorem pair_induction :
A 0 -> A 1 ->
(forall n, A n -> A (S n) -> A (S (S n))) -> forall n, A n.
Proof.
+rewrite one_succ.
intros until 3.
assert (D : forall n, A n /\ A (S n)); [ |intro n; exact (proj1 (D n))].
induct n; [ | intros n [IH1 IH2]]; auto.
@@ -204,7 +179,7 @@ Ltac double_induct n m :=
try intros until n;
try intros until m;
pattern n, m; apply double_induction; clear n m;
- [solve_relation_wd | | | ].
+ [solve_proper | | | ].
-End NBasePropFunct.
+End NBaseProp.
diff --git a/theories/Numbers/Natural/Abstract/NBits.v b/theories/Numbers/Natural/Abstract/NBits.v
new file mode 100644
index 00000000..c66f003e
--- /dev/null
+++ b/theories/Numbers/Natural/Abstract/NBits.v
@@ -0,0 +1,1463 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Require Import Bool NAxioms NSub NPow NDiv NParity NLog.
+
+(** Derived properties of bitwise operations *)
+
+Module Type NBitsProp
+ (Import A : NAxiomsSig')
+ (Import B : NSubProp A)
+ (Import C : NParityProp A B)
+ (Import D : NPowProp A B C)
+ (Import E : NDivProp A B)
+ (Import F : NLog2Prop A B C D).
+
+Include BoolEqualityFacts A.
+
+Ltac order_nz := try apply pow_nonzero; order'.
+Hint Rewrite div_0_l mod_0_l div_1_r mod_1_r : nz.
+
+(** Some properties of power and division *)
+
+Lemma pow_sub_r : forall a b c, a~=0 -> c<=b -> a^(b-c) == a^b / a^c.
+Proof.
+ intros a b c Ha H.
+ apply div_unique with 0.
+ generalize (pow_nonzero a c Ha) (le_0_l (a^c)); order'.
+ nzsimpl. now rewrite <- pow_add_r, add_comm, sub_add.
+Qed.
+
+Lemma pow_div_l : forall a b c, b~=0 -> a mod b == 0 ->
+ (a/b)^c == a^c / b^c.
+Proof.
+ intros a b c Hb H.
+ apply div_unique with 0.
+ generalize (pow_nonzero b c Hb) (le_0_l (b^c)); order'.
+ nzsimpl. rewrite <- pow_mul_l. f_equiv. now apply div_exact.
+Qed.
+
+(** An injection from bits [true] and [false] to numbers 1 and 0.
+ We declare it as a (local) coercion for shorter statements. *)
+
+Definition b2n (b:bool) := if b then 1 else 0.
+Local Coercion b2n : bool >-> t.
+
+Instance b2n_proper : Proper (Logic.eq ==> eq) b2n.
+Proof. solve_proper. Qed.
+
+Lemma exists_div2 a : exists a' (b:bool), a == 2*a' + b.
+Proof.
+ elim (Even_or_Odd a); [intros (a',H)| intros (a',H)].
+ exists a'. exists false. now nzsimpl.
+ exists a'. exists true. now simpl.
+Qed.
+
+(** We can compact [testbit_odd_0] [testbit_even_0]
+ [testbit_even_succ] [testbit_odd_succ] in only two lemmas. *)
+
+Lemma testbit_0_r a (b:bool) : testbit (2*a+b) 0 = b.
+Proof.
+ destruct b; simpl; rewrite ?add_0_r.
+ apply testbit_odd_0.
+ apply testbit_even_0.
+Qed.
+
+Lemma testbit_succ_r a (b:bool) n :
+ testbit (2*a+b) (succ n) = testbit a n.
+Proof.
+ destruct b; simpl; rewrite ?add_0_r.
+ apply testbit_odd_succ, le_0_l.
+ apply testbit_even_succ, le_0_l.
+Qed.
+
+(** Alternative caracterisations of [testbit] *)
+
+(** This concise equation could have been taken as specification
+ for testbit in the interface, but it would have been hard to
+ implement with little initial knowledge about div and mod *)
+
+Lemma testbit_spec' a n : a.[n] == (a / 2^n) mod 2.
+Proof.
+ revert a. induct n.
+ intros a. nzsimpl.
+ destruct (exists_div2 a) as (a' & b & H). rewrite H at 1.
+ rewrite testbit_0_r. apply mod_unique with a'; trivial.
+ destruct b; order'.
+ intros n IH a.
+ destruct (exists_div2 a) as (a' & b & H). rewrite H at 1.
+ rewrite testbit_succ_r, IH. f_equiv.
+ rewrite pow_succ_r', <- div_div by order_nz. f_equiv.
+ apply div_unique with b; trivial.
+ destruct b; order'.
+Qed.
+
+(** This caracterisation that uses only basic operations and
+ power was initially taken as specification for testbit.
+ We describe [a] as having a low part and a high part, with
+ the corresponding bit in the middle. This caracterisation
+ is moderatly complex to implement, but also moderately
+ usable... *)
+
+Lemma testbit_spec a n :
+ exists l h, 0<=l<2^n /\ a == l + (a.[n] + 2*h)*2^n.
+Proof.
+ exists (a mod 2^n). exists (a / 2^n / 2). split.
+ split; [apply le_0_l | apply mod_upper_bound; order_nz].
+ rewrite add_comm, mul_comm, (add_comm a.[n]).
+ rewrite (div_mod a (2^n)) at 1 by order_nz. do 2 f_equiv.
+ rewrite testbit_spec'. apply div_mod. order'.
+Qed.
+
+Lemma testbit_true : forall a n,
+ a.[n] = true <-> (a / 2^n) mod 2 == 1.
+Proof.
+ intros a n.
+ rewrite <- testbit_spec'; destruct a.[n]; split; simpl; now try order'.
+Qed.
+
+Lemma testbit_false : forall a n,
+ a.[n] = false <-> (a / 2^n) mod 2 == 0.
+Proof.
+ intros a n.
+ rewrite <- testbit_spec'; destruct a.[n]; split; simpl; now try order'.
+Qed.
+
+Lemma testbit_eqb : forall a n,
+ a.[n] = eqb ((a / 2^n) mod 2) 1.
+Proof.
+ intros a n.
+ apply eq_true_iff_eq. now rewrite testbit_true, eqb_eq.
+Qed.
+
+(** Results about the injection [b2n] *)
+
+Lemma b2n_inj : forall (a0 b0:bool), a0 == b0 -> a0 = b0.
+Proof.
+ intros [|] [|]; simpl; trivial; order'.
+Qed.
+
+Lemma add_b2n_double_div2 : forall (a0:bool) a, (a0+2*a)/2 == a.
+Proof.
+ intros a0 a. rewrite mul_comm, div_add by order'.
+ now rewrite div_small, add_0_l by (destruct a0; order').
+Qed.
+
+Lemma add_b2n_double_bit0 : forall (a0:bool) a, (a0+2*a).[0] = a0.
+Proof.
+ intros a0 a. apply b2n_inj.
+ rewrite testbit_spec'. nzsimpl. rewrite mul_comm, mod_add by order'.
+ now rewrite mod_small by (destruct a0; order').
+Qed.
+
+Lemma b2n_div2 : forall (a0:bool), a0/2 == 0.
+Proof.
+ intros a0. rewrite <- (add_b2n_double_div2 a0 0). now nzsimpl.
+Qed.
+
+Lemma b2n_bit0 : forall (a0:bool), a0.[0] = a0.
+Proof.
+ intros a0. rewrite <- (add_b2n_double_bit0 a0 0) at 2. now nzsimpl.
+Qed.
+
+(** The specification of testbit by low and high parts is complete *)
+
+Lemma testbit_unique : forall a n (a0:bool) l h,
+ l<2^n -> a == l + (a0 + 2*h)*2^n -> a.[n] = a0.
+Proof.
+ intros a n a0 l h Hl EQ.
+ apply b2n_inj. rewrite testbit_spec' by trivial.
+ symmetry. apply mod_unique with h. destruct a0; simpl; order'.
+ symmetry. apply div_unique with l; trivial.
+ now rewrite add_comm, (add_comm _ a0), mul_comm.
+Qed.
+
+(** All bits of number 0 are 0 *)
+
+Lemma bits_0 : forall n, 0.[n] = false.
+Proof.
+ intros n. apply testbit_false. nzsimpl; order_nz.
+Qed.
+
+(** Various ways to refer to the lowest bit of a number *)
+
+Lemma bit0_odd : forall a, a.[0] = odd a.
+Proof.
+ intros. symmetry.
+ destruct (exists_div2 a) as (a' & b & EQ).
+ rewrite EQ, testbit_0_r, add_comm, odd_add_mul_2.
+ destruct b; simpl; apply odd_1 || apply odd_0.
+Qed.
+
+Lemma bit0_eqb : forall a, a.[0] = eqb (a mod 2) 1.
+Proof.
+ intros a. rewrite testbit_eqb. now nzsimpl.
+Qed.
+
+Lemma bit0_mod : forall a, a.[0] == a mod 2.
+Proof.
+ intros a. rewrite testbit_spec'. now nzsimpl.
+Qed.
+
+(** Hence testing a bit is equivalent to shifting and testing parity *)
+
+Lemma testbit_odd : forall a n, a.[n] = odd (a>>n).
+Proof.
+ intros. now rewrite <- bit0_odd, shiftr_spec, add_0_l.
+Qed.
+
+(** [log2] gives the highest nonzero bit *)
+
+Lemma bit_log2 : forall a, a~=0 -> a.[log2 a] = true.
+Proof.
+ intros a Ha.
+ assert (Ha' : 0 < a) by (generalize (le_0_l a); order).
+ destruct (log2_spec_alt a Ha') as (r & EQ & (_,Hr)).
+ rewrite EQ at 1.
+ rewrite testbit_true, add_comm.
+ rewrite <- (mul_1_l (2^log2 a)) at 1.
+ rewrite div_add by order_nz.
+ rewrite div_small by trivial.
+ rewrite add_0_l. apply mod_small. order'.
+Qed.
+
+Lemma bits_above_log2 : forall a n, log2 a < n ->
+ a.[n] = false.
+Proof.
+ intros a n H.
+ rewrite testbit_false.
+ rewrite div_small. nzsimpl; order'.
+ apply log2_lt_cancel. rewrite log2_pow2; trivial using le_0_l.
+Qed.
+
+(** Hence the number of bits of [a] is [1+log2 a]
+ (see [Psize] and [Psize_pos]).
+*)
+
+(** Testing bits after division or multiplication by a power of two *)
+
+Lemma div2_bits : forall a n, (a/2).[n] = a.[S n].
+Proof.
+ intros. apply eq_true_iff_eq.
+ rewrite 2 testbit_true.
+ rewrite pow_succ_r by apply le_0_l.
+ now rewrite div_div by order_nz.
+Qed.
+
+Lemma div_pow2_bits : forall a n m, (a/2^n).[m] = a.[m+n].
+Proof.
+ intros a n. revert a. induct n.
+ intros a m. now nzsimpl.
+ intros n IH a m. nzsimpl; try apply le_0_l.
+ rewrite <- div_div by order_nz.
+ now rewrite IH, div2_bits.
+Qed.
+
+Lemma double_bits_succ : forall a n, (2*a).[S n] = a.[n].
+Proof.
+ intros. rewrite <- div2_bits. now rewrite mul_comm, div_mul by order'.
+Qed.
+
+Lemma mul_pow2_bits_add : forall a n m, (a*2^n).[m+n] = a.[m].
+Proof.
+ intros. rewrite <- div_pow2_bits. now rewrite div_mul by order_nz.
+Qed.
+
+Lemma mul_pow2_bits_high : forall a n m, n<=m -> (a*2^n).[m] = a.[m-n].
+Proof.
+ intros.
+ rewrite <- (sub_add n m) at 1 by order'.
+ now rewrite mul_pow2_bits_add.
+Qed.
+
+Lemma mul_pow2_bits_low : forall a n m, m<n -> (a*2^n).[m] = false.
+Proof.
+ intros. apply testbit_false.
+ rewrite <- (sub_add m n) by order'. rewrite pow_add_r, mul_assoc.
+ rewrite div_mul by order_nz.
+ rewrite <- (succ_pred (n-m)). rewrite pow_succ_r.
+ now rewrite (mul_comm 2), mul_assoc, mod_mul by order'.
+ apply lt_le_pred.
+ apply sub_gt in H. generalize (le_0_l (n-m)); order.
+ now apply sub_gt.
+Qed.
+
+(** Selecting the low part of a number can be done by a modulo *)
+
+Lemma mod_pow2_bits_high : forall a n m, n<=m ->
+ (a mod 2^n).[m] = false.
+Proof.
+ intros a n m H.
+ destruct (eq_0_gt_0_cases (a mod 2^n)) as [EQ|LT].
+ now rewrite EQ, bits_0.
+ apply bits_above_log2.
+ apply lt_le_trans with n; trivial.
+ apply log2_lt_pow2; trivial.
+ apply mod_upper_bound; order_nz.
+Qed.
+
+Lemma mod_pow2_bits_low : forall a n m, m<n ->
+ (a mod 2^n).[m] = a.[m].
+Proof.
+ intros a n m H.
+ rewrite testbit_eqb.
+ rewrite <- (mod_add _ (2^(P (n-m))*(a/2^n))) by order'.
+ rewrite <- div_add by order_nz.
+ rewrite (mul_comm _ 2), mul_assoc, <- pow_succ_r', succ_pred
+ by now apply sub_gt.
+ rewrite mul_comm, mul_assoc, <- pow_add_r, (add_comm m), sub_add
+ by order.
+ rewrite add_comm, <- div_mod by order_nz.
+ symmetry. apply testbit_eqb.
+Qed.
+
+(** We now prove that having the same bits implies equality.
+ For that we use a notion of equality over functional
+ streams of bits. *)
+
+Definition eqf (f g:t -> bool) := forall n:t, f n = g n.
+
+Instance eqf_equiv : Equivalence eqf.
+Proof.
+ split; congruence.
+Qed.
+
+Local Infix "===" := eqf (at level 70, no associativity).
+
+Instance testbit_eqf : Proper (eq==>eqf) testbit.
+Proof.
+ intros a a' Ha n. now rewrite Ha.
+Qed.
+
+(** Only zero corresponds to the always-false stream. *)
+
+Lemma bits_inj_0 :
+ forall a, (forall n, a.[n] = false) -> a == 0.
+Proof.
+ intros a H. destruct (eq_decidable a 0) as [EQ|NEQ]; trivial.
+ apply bit_log2 in NEQ. now rewrite H in NEQ.
+Qed.
+
+(** If two numbers produce the same stream of bits, they are equal. *)
+
+Lemma bits_inj : forall a b, testbit a === testbit b -> a == b.
+Proof.
+ intros a. pattern a.
+ apply strong_right_induction with 0;[solve_proper|clear a|apply le_0_l].
+ intros a _ IH b H.
+ destruct (eq_0_gt_0_cases a) as [EQ|LT].
+ rewrite EQ in H |- *. symmetry. apply bits_inj_0.
+ intros n. now rewrite <- H, bits_0.
+ rewrite (div_mod a 2), (div_mod b 2) by order'.
+ f_equiv; [ | now rewrite <- 2 bit0_mod, H].
+ f_equiv.
+ apply IH; trivial using le_0_l.
+ apply div_lt; order'.
+ intro n. rewrite 2 div2_bits. apply H.
+Qed.
+
+Lemma bits_inj_iff : forall a b, testbit a === testbit b <-> a == b.
+Proof.
+ split. apply bits_inj. intros EQ; now rewrite EQ.
+Qed.
+
+Hint Rewrite lxor_spec lor_spec land_spec ldiff_spec bits_0 : bitwise.
+
+Ltac bitwise := apply bits_inj; intros ?m; autorewrite with bitwise.
+
+(** The streams of bits that correspond to a natural numbers are
+ exactly the ones that are always 0 after some point *)
+
+Lemma are_bits : forall (f:t->bool), Proper (eq==>Logic.eq) f ->
+ ((exists n, f === testbit n) <->
+ (exists k, forall m, k<=m -> f m = false)).
+Proof.
+ intros f Hf. split.
+ intros (a,H).
+ exists (S (log2 a)). intros m Hm. apply le_succ_l in Hm.
+ rewrite H, bits_above_log2; trivial using lt_succ_diag_r.
+ intros (k,Hk).
+ revert f Hf Hk. induct k.
+ intros f Hf H0.
+ exists 0. intros m. rewrite bits_0, H0; trivial. apply le_0_l.
+ intros k IH f Hf Hk.
+ destruct (IH (fun m => f (S m))) as (n, Hn).
+ solve_proper.
+ intros m Hm. apply Hk. now rewrite <- succ_le_mono.
+ exists (f 0 + 2*n). intros m.
+ destruct (zero_or_succ m) as [Hm|(m', Hm)]; rewrite Hm.
+ symmetry. apply add_b2n_double_bit0.
+ rewrite Hn, <- div2_bits.
+ rewrite mul_comm, div_add, b2n_div2, add_0_l; trivial. order'.
+Qed.
+
+(** Properties of shifts *)
+
+Lemma shiftr_spec' : forall a n m, (a >> n).[m] = a.[m+n].
+Proof.
+ intros. apply shiftr_spec. apply le_0_l.
+Qed.
+
+Lemma shiftl_spec_high' : forall a n m, n<=m -> (a << n).[m] = a.[m-n].
+Proof.
+ intros. apply shiftl_spec_high; trivial. apply le_0_l.
+Qed.
+
+Lemma shiftr_div_pow2 : forall a n, a >> n == a / 2^n.
+Proof.
+ intros. bitwise. rewrite shiftr_spec'.
+ symmetry. apply div_pow2_bits.
+Qed.
+
+Lemma shiftl_mul_pow2 : forall a n, a << n == a * 2^n.
+Proof.
+ intros. bitwise.
+ destruct (le_gt_cases n m) as [H|H].
+ now rewrite shiftl_spec_high', mul_pow2_bits_high.
+ now rewrite shiftl_spec_low, mul_pow2_bits_low.
+Qed.
+
+Lemma shiftl_spec_alt : forall a n m, (a << n).[m+n] = a.[m].
+Proof.
+ intros. now rewrite shiftl_mul_pow2, mul_pow2_bits_add.
+Qed.
+
+Instance shiftr_wd : Proper (eq==>eq==>eq) shiftr.
+Proof.
+ intros a a' Ha b b' Hb. now rewrite 2 shiftr_div_pow2, Ha, Hb.
+Qed.
+
+Instance shiftl_wd : Proper (eq==>eq==>eq) shiftl.
+Proof.
+ intros a a' Ha b b' Hb. now rewrite 2 shiftl_mul_pow2, Ha, Hb.
+Qed.
+
+Lemma shiftl_shiftl : forall a n m,
+ (a << n) << m == a << (n+m).
+Proof.
+ intros. now rewrite !shiftl_mul_pow2, pow_add_r, mul_assoc.
+Qed.
+
+Lemma shiftr_shiftr : forall a n m,
+ (a >> n) >> m == a >> (n+m).
+Proof.
+ intros.
+ now rewrite !shiftr_div_pow2, pow_add_r, div_div by order_nz.
+Qed.
+
+Lemma shiftr_shiftl_l : forall a n m, m<=n ->
+ (a << n) >> m == a << (n-m).
+Proof.
+ intros.
+ rewrite shiftr_div_pow2, !shiftl_mul_pow2.
+ rewrite <- (sub_add m n) at 1 by trivial.
+ now rewrite pow_add_r, mul_assoc, div_mul by order_nz.
+Qed.
+
+Lemma shiftr_shiftl_r : forall a n m, n<=m ->
+ (a << n) >> m == a >> (m-n).
+Proof.
+ intros.
+ rewrite !shiftr_div_pow2, shiftl_mul_pow2.
+ rewrite <- (sub_add n m) at 1 by trivial.
+ rewrite pow_add_r, (mul_comm (2^(m-n))).
+ now rewrite <- div_div, div_mul by order_nz.
+Qed.
+
+(** shifts and constants *)
+
+Lemma shiftl_1_l : forall n, 1 << n == 2^n.
+Proof.
+ intros. now rewrite shiftl_mul_pow2, mul_1_l.
+Qed.
+
+Lemma shiftl_0_r : forall a, a << 0 == a.
+Proof.
+ intros. rewrite shiftl_mul_pow2. now nzsimpl.
+Qed.
+
+Lemma shiftr_0_r : forall a, a >> 0 == a.
+Proof.
+ intros. rewrite shiftr_div_pow2. now nzsimpl.
+Qed.
+
+Lemma shiftl_0_l : forall n, 0 << n == 0.
+Proof.
+ intros. rewrite shiftl_mul_pow2. now nzsimpl.
+Qed.
+
+Lemma shiftr_0_l : forall n, 0 >> n == 0.
+Proof.
+ intros. rewrite shiftr_div_pow2. nzsimpl; order_nz.
+Qed.
+
+Lemma shiftl_eq_0_iff : forall a n, a << n == 0 <-> a == 0.
+Proof.
+ intros a n. rewrite shiftl_mul_pow2. rewrite eq_mul_0. split.
+ intros [H | H]; trivial. contradict H; order_nz.
+ intros H. now left.
+Qed.
+
+Lemma shiftr_eq_0_iff : forall a n,
+ a >> n == 0 <-> a==0 \/ (0<a /\ log2 a < n).
+Proof.
+ intros a n.
+ rewrite shiftr_div_pow2, div_small_iff by order_nz.
+ destruct (eq_0_gt_0_cases a) as [EQ|LT].
+ rewrite EQ. split. now left. intros _.
+ assert (H : 2~=0) by order'.
+ generalize (pow_nonzero 2 n H) (le_0_l (2^n)); order.
+ rewrite log2_lt_pow2; trivial.
+ split. right; split; trivial. intros [H|[_ H]]; now order.
+Qed.
+
+Lemma shiftr_eq_0 : forall a n, log2 a < n -> a >> n == 0.
+Proof.
+ intros a n H. rewrite shiftr_eq_0_iff.
+ destruct (eq_0_gt_0_cases a) as [EQ|LT]. now left. right; now split.
+Qed.
+
+(** Properties of [div2]. *)
+
+Lemma div2_div : forall a, div2 a == a/2.
+Proof.
+ intros. rewrite div2_spec, shiftr_div_pow2. now nzsimpl.
+Qed.
+
+Instance div2_wd : Proper (eq==>eq) div2.
+Proof.
+ intros a a' Ha. now rewrite 2 div2_div, Ha.
+Qed.
+
+Lemma div2_odd : forall a, a == 2*(div2 a) + odd a.
+Proof.
+ intros a. rewrite div2_div, <- bit0_odd, bit0_mod.
+ apply div_mod. order'.
+Qed.
+
+(** Properties of [lxor] and others, directly deduced
+ from properties of [xorb] and others. *)
+
+Instance lxor_wd : Proper (eq ==> eq ==> eq) lxor.
+Proof.
+ intros a a' Ha b b' Hb. bitwise. now rewrite Ha, Hb.
+Qed.
+
+Instance land_wd : Proper (eq ==> eq ==> eq) land.
+Proof.
+ intros a a' Ha b b' Hb. bitwise. now rewrite Ha, Hb.
+Qed.
+
+Instance lor_wd : Proper (eq ==> eq ==> eq) lor.
+Proof.
+ intros a a' Ha b b' Hb. bitwise. now rewrite Ha, Hb.
+Qed.
+
+Instance ldiff_wd : Proper (eq ==> eq ==> eq) ldiff.
+Proof.
+ intros a a' Ha b b' Hb. bitwise. now rewrite Ha, Hb.
+Qed.
+
+Lemma lxor_eq : forall a a', lxor a a' == 0 -> a == a'.
+Proof.
+ intros a a' H. bitwise. apply xorb_eq.
+ now rewrite <- lxor_spec, H, bits_0.
+Qed.
+
+Lemma lxor_nilpotent : forall a, lxor a a == 0.
+Proof.
+ intros. bitwise. apply xorb_nilpotent.
+Qed.
+
+Lemma lxor_eq_0_iff : forall a a', lxor a a' == 0 <-> a == a'.
+Proof.
+ split. apply lxor_eq. intros EQ; rewrite EQ; apply lxor_nilpotent.
+Qed.
+
+Lemma lxor_0_l : forall a, lxor 0 a == a.
+Proof.
+ intros. bitwise. apply xorb_false_l.
+Qed.
+
+Lemma lxor_0_r : forall a, lxor a 0 == a.
+Proof.
+ intros. bitwise. apply xorb_false_r.
+Qed.
+
+Lemma lxor_comm : forall a b, lxor a b == lxor b a.
+Proof.
+ intros. bitwise. apply xorb_comm.
+Qed.
+
+Lemma lxor_assoc :
+ forall a b c, lxor (lxor a b) c == lxor a (lxor b c).
+Proof.
+ intros. bitwise. apply xorb_assoc.
+Qed.
+
+Lemma lor_0_l : forall a, lor 0 a == a.
+Proof.
+ intros. bitwise. trivial.
+Qed.
+
+Lemma lor_0_r : forall a, lor a 0 == a.
+Proof.
+ intros. bitwise. apply orb_false_r.
+Qed.
+
+Lemma lor_comm : forall a b, lor a b == lor b a.
+Proof.
+ intros. bitwise. apply orb_comm.
+Qed.
+
+Lemma lor_assoc :
+ forall a b c, lor a (lor b c) == lor (lor a b) c.
+Proof.
+ intros. bitwise. apply orb_assoc.
+Qed.
+
+Lemma lor_diag : forall a, lor a a == a.
+Proof.
+ intros. bitwise. apply orb_diag.
+Qed.
+
+Lemma lor_eq_0_l : forall a b, lor a b == 0 -> a == 0.
+Proof.
+ intros a b H. bitwise.
+ apply (orb_false_iff a.[m] b.[m]).
+ now rewrite <- lor_spec, H, bits_0.
+Qed.
+
+Lemma lor_eq_0_iff : forall a b, lor a b == 0 <-> a == 0 /\ b == 0.
+Proof.
+ intros a b. split.
+ split. now apply lor_eq_0_l in H.
+ rewrite lor_comm in H. now apply lor_eq_0_l in H.
+ intros (EQ,EQ'). now rewrite EQ, lor_0_l.
+Qed.
+
+Lemma land_0_l : forall a, land 0 a == 0.
+Proof.
+ intros. bitwise. trivial.
+Qed.
+
+Lemma land_0_r : forall a, land a 0 == 0.
+Proof.
+ intros. bitwise. apply andb_false_r.
+Qed.
+
+Lemma land_comm : forall a b, land a b == land b a.
+Proof.
+ intros. bitwise. apply andb_comm.
+Qed.
+
+Lemma land_assoc :
+ forall a b c, land a (land b c) == land (land a b) c.
+Proof.
+ intros. bitwise. apply andb_assoc.
+Qed.
+
+Lemma land_diag : forall a, land a a == a.
+Proof.
+ intros. bitwise. apply andb_diag.
+Qed.
+
+Lemma ldiff_0_l : forall a, ldiff 0 a == 0.
+Proof.
+ intros. bitwise. trivial.
+Qed.
+
+Lemma ldiff_0_r : forall a, ldiff a 0 == a.
+Proof.
+ intros. bitwise. now rewrite andb_true_r.
+Qed.
+
+Lemma ldiff_diag : forall a, ldiff a a == 0.
+Proof.
+ intros. bitwise. apply andb_negb_r.
+Qed.
+
+Lemma lor_land_distr_l : forall a b c,
+ lor (land a b) c == land (lor a c) (lor b c).
+Proof.
+ intros. bitwise. apply orb_andb_distrib_l.
+Qed.
+
+Lemma lor_land_distr_r : forall a b c,
+ lor a (land b c) == land (lor a b) (lor a c).
+Proof.
+ intros. bitwise. apply orb_andb_distrib_r.
+Qed.
+
+Lemma land_lor_distr_l : forall a b c,
+ land (lor a b) c == lor (land a c) (land b c).
+Proof.
+ intros. bitwise. apply andb_orb_distrib_l.
+Qed.
+
+Lemma land_lor_distr_r : forall a b c,
+ land a (lor b c) == lor (land a b) (land a c).
+Proof.
+ intros. bitwise. apply andb_orb_distrib_r.
+Qed.
+
+Lemma ldiff_ldiff_l : forall a b c,
+ ldiff (ldiff a b) c == ldiff a (lor b c).
+Proof.
+ intros. bitwise. now rewrite negb_orb, andb_assoc.
+Qed.
+
+Lemma lor_ldiff_and : forall a b,
+ lor (ldiff a b) (land a b) == a.
+Proof.
+ intros. bitwise.
+ now rewrite <- andb_orb_distrib_r, orb_comm, orb_negb_r, andb_true_r.
+Qed.
+
+Lemma land_ldiff : forall a b,
+ land (ldiff a b) b == 0.
+Proof.
+ intros. bitwise.
+ now rewrite <-andb_assoc, (andb_comm (negb _)), andb_negb_r, andb_false_r.
+Qed.
+
+(** Properties of [setbit] and [clearbit] *)
+
+Definition setbit a n := lor a (1<<n).
+Definition clearbit a n := ldiff a (1<<n).
+
+Lemma setbit_spec' : forall a n, setbit a n == lor a (2^n).
+Proof.
+ intros. unfold setbit. now rewrite shiftl_1_l.
+Qed.
+
+Lemma clearbit_spec' : forall a n, clearbit a n == ldiff a (2^n).
+Proof.
+ intros. unfold clearbit. now rewrite shiftl_1_l.
+Qed.
+
+Instance setbit_wd : Proper (eq==>eq==>eq) setbit.
+Proof. unfold setbit. solve_proper. Qed.
+
+Instance clearbit_wd : Proper (eq==>eq==>eq) clearbit.
+Proof. unfold clearbit. solve_proper. Qed.
+
+Lemma pow2_bits_true : forall n, (2^n).[n] = true.
+Proof.
+ intros. rewrite <- (mul_1_l (2^n)). rewrite <- (add_0_l n) at 2.
+ now rewrite mul_pow2_bits_add, bit0_odd, odd_1.
+Qed.
+
+Lemma pow2_bits_false : forall n m, n~=m -> (2^n).[m] = false.
+Proof.
+ intros.
+ rewrite <- (mul_1_l (2^n)).
+ destruct (le_gt_cases n m).
+ rewrite mul_pow2_bits_high; trivial.
+ rewrite <- (succ_pred (m-n)) by (apply sub_gt; order).
+ now rewrite <- div2_bits, div_small, bits_0 by order'.
+ rewrite mul_pow2_bits_low; trivial.
+Qed.
+
+Lemma pow2_bits_eqb : forall n m, (2^n).[m] = eqb n m.
+Proof.
+ intros. apply eq_true_iff_eq. rewrite eqb_eq. split.
+ destruct (eq_decidable n m) as [H|H]. trivial.
+ now rewrite (pow2_bits_false _ _ H).
+ intros EQ. rewrite EQ. apply pow2_bits_true.
+Qed.
+
+Lemma setbit_eqb : forall a n m,
+ (setbit a n).[m] = eqb n m || a.[m].
+Proof.
+ intros. now rewrite setbit_spec', lor_spec, pow2_bits_eqb, orb_comm.
+Qed.
+
+Lemma setbit_iff : forall a n m,
+ (setbit a n).[m] = true <-> n==m \/ a.[m] = true.
+Proof.
+ intros. now rewrite setbit_eqb, orb_true_iff, eqb_eq.
+Qed.
+
+Lemma setbit_eq : forall a n, (setbit a n).[n] = true.
+Proof.
+ intros. apply setbit_iff. now left.
+Qed.
+
+Lemma setbit_neq : forall a n m, n~=m ->
+ (setbit a n).[m] = a.[m].
+Proof.
+ intros a n m H. rewrite setbit_eqb.
+ rewrite <- eqb_eq in H. apply not_true_is_false in H. now rewrite H.
+Qed.
+
+Lemma clearbit_eqb : forall a n m,
+ (clearbit a n).[m] = a.[m] && negb (eqb n m).
+Proof.
+ intros. now rewrite clearbit_spec', ldiff_spec, pow2_bits_eqb.
+Qed.
+
+Lemma clearbit_iff : forall a n m,
+ (clearbit a n).[m] = true <-> a.[m] = true /\ n~=m.
+Proof.
+ intros. rewrite clearbit_eqb, andb_true_iff, <- eqb_eq.
+ now rewrite negb_true_iff, not_true_iff_false.
+Qed.
+
+Lemma clearbit_eq : forall a n, (clearbit a n).[n] = false.
+Proof.
+ intros. rewrite clearbit_eqb, (proj2 (eqb_eq _ _) (eq_refl n)).
+ apply andb_false_r.
+Qed.
+
+Lemma clearbit_neq : forall a n m, n~=m ->
+ (clearbit a n).[m] = a.[m].
+Proof.
+ intros a n m H. rewrite clearbit_eqb.
+ rewrite <- eqb_eq in H. apply not_true_is_false in H. rewrite H.
+ apply andb_true_r.
+Qed.
+
+(** Shifts of bitwise operations *)
+
+Lemma shiftl_lxor : forall a b n,
+ (lxor a b) << n == lxor (a << n) (b << n).
+Proof.
+ intros. bitwise.
+ destruct (le_gt_cases n m).
+ now rewrite !shiftl_spec_high', lxor_spec.
+ now rewrite !shiftl_spec_low.
+Qed.
+
+Lemma shiftr_lxor : forall a b n,
+ (lxor a b) >> n == lxor (a >> n) (b >> n).
+Proof.
+ intros. bitwise. now rewrite !shiftr_spec', lxor_spec.
+Qed.
+
+Lemma shiftl_land : forall a b n,
+ (land a b) << n == land (a << n) (b << n).
+Proof.
+ intros. bitwise.
+ destruct (le_gt_cases n m).
+ now rewrite !shiftl_spec_high', land_spec.
+ now rewrite !shiftl_spec_low.
+Qed.
+
+Lemma shiftr_land : forall a b n,
+ (land a b) >> n == land (a >> n) (b >> n).
+Proof.
+ intros. bitwise. now rewrite !shiftr_spec', land_spec.
+Qed.
+
+Lemma shiftl_lor : forall a b n,
+ (lor a b) << n == lor (a << n) (b << n).
+Proof.
+ intros. bitwise.
+ destruct (le_gt_cases n m).
+ now rewrite !shiftl_spec_high', lor_spec.
+ now rewrite !shiftl_spec_low.
+Qed.
+
+Lemma shiftr_lor : forall a b n,
+ (lor a b) >> n == lor (a >> n) (b >> n).
+Proof.
+ intros. bitwise. now rewrite !shiftr_spec', lor_spec.
+Qed.
+
+Lemma shiftl_ldiff : forall a b n,
+ (ldiff a b) << n == ldiff (a << n) (b << n).
+Proof.
+ intros. bitwise.
+ destruct (le_gt_cases n m).
+ now rewrite !shiftl_spec_high', ldiff_spec.
+ now rewrite !shiftl_spec_low.
+Qed.
+
+Lemma shiftr_ldiff : forall a b n,
+ (ldiff a b) >> n == ldiff (a >> n) (b >> n).
+Proof.
+ intros. bitwise. now rewrite !shiftr_spec', ldiff_spec.
+Qed.
+
+(** We cannot have a function complementing all bits of a number,
+ otherwise it would have an infinity of bit 1. Nonetheless,
+ we can design a bounded complement *)
+
+Definition ones n := P (1 << n).
+
+Definition lnot a n := lxor a (ones n).
+
+Instance ones_wd : Proper (eq==>eq) ones.
+Proof. unfold ones. solve_proper. Qed.
+
+Instance lnot_wd : Proper (eq==>eq==>eq) lnot.
+Proof. unfold lnot. solve_proper. Qed.
+
+Lemma ones_equiv : forall n, ones n == P (2^n).
+Proof.
+ intros; unfold ones; now rewrite shiftl_1_l.
+Qed.
+
+Lemma ones_add : forall n m, ones (m+n) == 2^m * ones n + ones m.
+Proof.
+ intros n m. rewrite !ones_equiv.
+ rewrite <- !sub_1_r, mul_sub_distr_l, mul_1_r, <- pow_add_r.
+ rewrite add_sub_assoc, sub_add. reflexivity.
+ apply pow_le_mono_r. order'.
+ rewrite <- (add_0_r m) at 1. apply add_le_mono_l, le_0_l.
+ rewrite <- (pow_0_r 2). apply pow_le_mono_r. order'. apply le_0_l.
+Qed.
+
+Lemma ones_div_pow2 : forall n m, m<=n -> ones n / 2^m == ones (n-m).
+Proof.
+ intros n m H. symmetry. apply div_unique with (ones m).
+ rewrite ones_equiv.
+ apply le_succ_l. rewrite succ_pred; order_nz.
+ rewrite <- (sub_add m n H) at 1. rewrite (add_comm _ m).
+ apply ones_add.
+Qed.
+
+Lemma ones_mod_pow2 : forall n m, m<=n -> (ones n) mod (2^m) == ones m.
+Proof.
+ intros n m H. symmetry. apply mod_unique with (ones (n-m)).
+ rewrite ones_equiv.
+ apply le_succ_l. rewrite succ_pred; order_nz.
+ rewrite <- (sub_add m n H) at 1. rewrite (add_comm _ m).
+ apply ones_add.
+Qed.
+
+Lemma ones_spec_low : forall n m, m<n -> (ones n).[m] = true.
+Proof.
+ intros. apply testbit_true. rewrite ones_div_pow2 by order.
+ rewrite <- (pow_1_r 2). rewrite ones_mod_pow2.
+ rewrite ones_equiv. now nzsimpl'.
+ apply le_add_le_sub_r. nzsimpl. now apply le_succ_l.
+Qed.
+
+Lemma ones_spec_high : forall n m, n<=m -> (ones n).[m] = false.
+Proof.
+ intros.
+ destruct (eq_0_gt_0_cases n) as [EQ|LT]; rewrite ones_equiv.
+ now rewrite EQ, pow_0_r, one_succ, pred_succ, bits_0.
+ apply bits_above_log2.
+ rewrite log2_pred_pow2; trivial. rewrite <-le_succ_l, succ_pred; order.
+Qed.
+
+Lemma ones_spec_iff : forall n m, (ones n).[m] = true <-> m<n.
+Proof.
+ intros. split. intros H.
+ apply lt_nge. intro H'. apply ones_spec_high in H'.
+ rewrite H in H'; discriminate.
+ apply ones_spec_low.
+Qed.
+
+Lemma lnot_spec_low : forall a n m, m<n ->
+ (lnot a n).[m] = negb a.[m].
+Proof.
+ intros. unfold lnot. now rewrite lxor_spec, ones_spec_low.
+Qed.
+
+Lemma lnot_spec_high : forall a n m, n<=m ->
+ (lnot a n).[m] = a.[m].
+Proof.
+ intros. unfold lnot. now rewrite lxor_spec, ones_spec_high, xorb_false_r.
+Qed.
+
+Lemma lnot_involutive : forall a n, lnot (lnot a n) n == a.
+Proof.
+ intros a n. bitwise.
+ destruct (le_gt_cases n m).
+ now rewrite 2 lnot_spec_high.
+ now rewrite 2 lnot_spec_low, negb_involutive.
+Qed.
+
+Lemma lnot_0_l : forall n, lnot 0 n == ones n.
+Proof.
+ intros. unfold lnot. apply lxor_0_l.
+Qed.
+
+Lemma lnot_ones : forall n, lnot (ones n) n == 0.
+Proof.
+ intros. unfold lnot. apply lxor_nilpotent.
+Qed.
+
+(** Bounded complement and other operations *)
+
+Lemma lor_ones_low : forall a n, log2 a < n ->
+ lor a (ones n) == ones n.
+Proof.
+ intros a n H. bitwise. destruct (le_gt_cases n m).
+ rewrite ones_spec_high, bits_above_log2; trivial.
+ now apply lt_le_trans with n.
+ now rewrite ones_spec_low, orb_true_r.
+Qed.
+
+Lemma land_ones : forall a n, land a (ones n) == a mod 2^n.
+Proof.
+ intros a n. bitwise. destruct (le_gt_cases n m).
+ now rewrite ones_spec_high, mod_pow2_bits_high, andb_false_r.
+ now rewrite ones_spec_low, mod_pow2_bits_low, andb_true_r.
+Qed.
+
+Lemma land_ones_low : forall a n, log2 a < n ->
+ land a (ones n) == a.
+Proof.
+ intros; rewrite land_ones. apply mod_small.
+ apply log2_lt_cancel. rewrite log2_pow2; trivial using le_0_l.
+Qed.
+
+Lemma ldiff_ones_r : forall a n,
+ ldiff a (ones n) == (a >> n) << n.
+Proof.
+ intros a n. bitwise. destruct (le_gt_cases n m).
+ rewrite ones_spec_high, shiftl_spec_high', shiftr_spec'; trivial.
+ rewrite sub_add; trivial. apply andb_true_r.
+ now rewrite ones_spec_low, shiftl_spec_low, andb_false_r.
+Qed.
+
+Lemma ldiff_ones_r_low : forall a n, log2 a < n ->
+ ldiff a (ones n) == 0.
+Proof.
+ intros a n H. bitwise. destruct (le_gt_cases n m).
+ rewrite ones_spec_high, bits_above_log2; trivial.
+ now apply lt_le_trans with n.
+ now rewrite ones_spec_low, andb_false_r.
+Qed.
+
+Lemma ldiff_ones_l_low : forall a n, log2 a < n ->
+ ldiff (ones n) a == lnot a n.
+Proof.
+ intros a n H. bitwise. destruct (le_gt_cases n m).
+ rewrite ones_spec_high, lnot_spec_high, bits_above_log2; trivial.
+ now apply lt_le_trans with n.
+ now rewrite ones_spec_low, lnot_spec_low.
+Qed.
+
+Lemma lor_lnot_diag : forall a n,
+ lor a (lnot a n) == lor a (ones n).
+Proof.
+ intros a n. bitwise.
+ destruct (le_gt_cases n m).
+ rewrite lnot_spec_high, ones_spec_high; trivial. now destruct a.[m].
+ rewrite lnot_spec_low, ones_spec_low; trivial. now destruct a.[m].
+Qed.
+
+Lemma lor_lnot_diag_low : forall a n, log2 a < n ->
+ lor a (lnot a n) == ones n.
+Proof.
+ intros a n H. now rewrite lor_lnot_diag, lor_ones_low.
+Qed.
+
+Lemma land_lnot_diag : forall a n,
+ land a (lnot a n) == ldiff a (ones n).
+Proof.
+ intros a n. bitwise.
+ destruct (le_gt_cases n m).
+ rewrite lnot_spec_high, ones_spec_high; trivial. now destruct a.[m].
+ rewrite lnot_spec_low, ones_spec_low; trivial. now destruct a.[m].
+Qed.
+
+Lemma land_lnot_diag_low : forall a n, log2 a < n ->
+ land a (lnot a n) == 0.
+Proof.
+ intros. now rewrite land_lnot_diag, ldiff_ones_r_low.
+Qed.
+
+Lemma lnot_lor_low : forall a b n, log2 a < n -> log2 b < n ->
+ lnot (lor a b) n == land (lnot a n) (lnot b n).
+Proof.
+ intros a b n Ha Hb. bitwise. destruct (le_gt_cases n m).
+ rewrite !lnot_spec_high, lor_spec, !bits_above_log2; trivial.
+ now apply lt_le_trans with n.
+ now apply lt_le_trans with n.
+ now rewrite !lnot_spec_low, lor_spec, negb_orb.
+Qed.
+
+Lemma lnot_land_low : forall a b n, log2 a < n -> log2 b < n ->
+ lnot (land a b) n == lor (lnot a n) (lnot b n).
+Proof.
+ intros a b n Ha Hb. bitwise. destruct (le_gt_cases n m).
+ rewrite !lnot_spec_high, land_spec, !bits_above_log2; trivial.
+ now apply lt_le_trans with n.
+ now apply lt_le_trans with n.
+ now rewrite !lnot_spec_low, land_spec, negb_andb.
+Qed.
+
+Lemma ldiff_land_low : forall a b n, log2 a < n ->
+ ldiff a b == land a (lnot b n).
+Proof.
+ intros a b n Ha. bitwise. destruct (le_gt_cases n m).
+ rewrite (bits_above_log2 a m). trivial.
+ now apply lt_le_trans with n.
+ rewrite !lnot_spec_low; trivial.
+Qed.
+
+Lemma lnot_ldiff_low : forall a b n, log2 a < n -> log2 b < n ->
+ lnot (ldiff a b) n == lor (lnot a n) b.
+Proof.
+ intros a b n Ha Hb. bitwise. destruct (le_gt_cases n m).
+ rewrite !lnot_spec_high, ldiff_spec, !bits_above_log2; trivial.
+ now apply lt_le_trans with n.
+ now apply lt_le_trans with n.
+ now rewrite !lnot_spec_low, ldiff_spec, negb_andb, negb_involutive.
+Qed.
+
+Lemma lxor_lnot_lnot : forall a b n,
+ lxor (lnot a n) (lnot b n) == lxor a b.
+Proof.
+ intros a b n. bitwise. destruct (le_gt_cases n m).
+ rewrite !lnot_spec_high; trivial.
+ rewrite !lnot_spec_low, xorb_negb_negb; trivial.
+Qed.
+
+Lemma lnot_lxor_l : forall a b n,
+ lnot (lxor a b) n == lxor (lnot a n) b.
+Proof.
+ intros a b n. bitwise. destruct (le_gt_cases n m).
+ rewrite !lnot_spec_high, lxor_spec; trivial.
+ rewrite !lnot_spec_low, lxor_spec, negb_xorb_l; trivial.
+Qed.
+
+Lemma lnot_lxor_r : forall a b n,
+ lnot (lxor a b) n == lxor a (lnot b n).
+Proof.
+ intros a b n. bitwise. destruct (le_gt_cases n m).
+ rewrite !lnot_spec_high, lxor_spec; trivial.
+ rewrite !lnot_spec_low, lxor_spec, negb_xorb_r; trivial.
+Qed.
+
+Lemma lxor_lor : forall a b, land a b == 0 ->
+ lxor a b == lor a b.
+Proof.
+ intros a b H. bitwise.
+ assert (a.[m] && b.[m] = false)
+ by now rewrite <- land_spec, H, bits_0.
+ now destruct a.[m], b.[m].
+Qed.
+
+(** Bitwise operations and log2 *)
+
+Lemma log2_bits_unique : forall a n,
+ a.[n] = true ->
+ (forall m, n<m -> a.[m] = false) ->
+ log2 a == n.
+Proof.
+ intros a n H H'.
+ destruct (eq_0_gt_0_cases a) as [Ha|Ha].
+ now rewrite Ha, bits_0 in H.
+ apply le_antisymm; apply le_ngt; intros LT.
+ specialize (H' _ LT). now rewrite bit_log2 in H' by order.
+ now rewrite bits_above_log2 in H by order.
+Qed.
+
+Lemma log2_shiftr : forall a n, log2 (a >> n) == log2 a - n.
+Proof.
+ intros a n.
+ destruct (eq_0_gt_0_cases a) as [Ha|Ha].
+ now rewrite Ha, shiftr_0_l, log2_nonpos, sub_0_l by order.
+ destruct (lt_ge_cases (log2 a) n).
+ rewrite shiftr_eq_0, log2_nonpos by order.
+ symmetry. rewrite sub_0_le; order.
+ apply log2_bits_unique.
+ now rewrite shiftr_spec', sub_add, bit_log2 by order.
+ intros m Hm.
+ rewrite shiftr_spec'; trivial. apply bits_above_log2; try order.
+ now apply lt_sub_lt_add_r.
+Qed.
+
+Lemma log2_shiftl : forall a n, a~=0 -> log2 (a << n) == log2 a + n.
+Proof.
+ intros a n Ha.
+ rewrite shiftl_mul_pow2, add_comm by trivial.
+ apply log2_mul_pow2. generalize (le_0_l a); order. apply le_0_l.
+Qed.
+
+Lemma log2_lor : forall a b,
+ log2 (lor a b) == max (log2 a) (log2 b).
+Proof.
+ assert (AUX : forall a b, a<=b -> log2 (lor a b) == log2 b).
+ intros a b H.
+ destruct (eq_0_gt_0_cases a) as [Ha|Ha]. now rewrite Ha, lor_0_l.
+ apply log2_bits_unique.
+ now rewrite lor_spec, bit_log2, orb_true_r by order.
+ intros m Hm. assert (H' := log2_le_mono _ _ H).
+ now rewrite lor_spec, 2 bits_above_log2 by order.
+ (* main *)
+ intros a b. destruct (le_ge_cases a b) as [H|H].
+ rewrite max_r by now apply log2_le_mono.
+ now apply AUX.
+ rewrite max_l by now apply log2_le_mono.
+ rewrite lor_comm. now apply AUX.
+Qed.
+
+Lemma log2_land : forall a b,
+ log2 (land a b) <= min (log2 a) (log2 b).
+Proof.
+ assert (AUX : forall a b, a<=b -> log2 (land a b) <= log2 a).
+ intros a b H.
+ apply le_ngt. intros H'.
+ destruct (eq_decidable (land a b) 0) as [EQ|NEQ].
+ rewrite EQ in H'. apply log2_lt_cancel in H'. generalize (le_0_l a); order.
+ generalize (bit_log2 (land a b) NEQ).
+ now rewrite land_spec, bits_above_log2.
+ (* main *)
+ intros a b.
+ destruct (le_ge_cases a b) as [H|H].
+ rewrite min_l by now apply log2_le_mono. now apply AUX.
+ rewrite min_r by now apply log2_le_mono. rewrite land_comm. now apply AUX.
+Qed.
+
+Lemma log2_lxor : forall a b,
+ log2 (lxor a b) <= max (log2 a) (log2 b).
+Proof.
+ assert (AUX : forall a b, a<=b -> log2 (lxor a b) <= log2 b).
+ intros a b H.
+ apply le_ngt. intros H'.
+ destruct (eq_decidable (lxor a b) 0) as [EQ|NEQ].
+ rewrite EQ in H'. apply log2_lt_cancel in H'. generalize (le_0_l a); order.
+ generalize (bit_log2 (lxor a b) NEQ).
+ rewrite lxor_spec, 2 bits_above_log2; try order. discriminate.
+ apply le_lt_trans with (log2 b); trivial. now apply log2_le_mono.
+ (* main *)
+ intros a b.
+ destruct (le_ge_cases a b) as [H|H].
+ rewrite max_r by now apply log2_le_mono. now apply AUX.
+ rewrite max_l by now apply log2_le_mono. rewrite lxor_comm. now apply AUX.
+Qed.
+
+(** Bitwise operations and arithmetical operations *)
+
+Local Notation xor3 a b c := (xorb (xorb a b) c).
+Local Notation lxor3 a b c := (lxor (lxor a b) c).
+
+Local Notation nextcarry a b c := ((a&&b) || (c && (a||b))).
+Local Notation lnextcarry a b c := (lor (land a b) (land c (lor a b))).
+
+Lemma add_bit0 : forall a b, (a+b).[0] = xorb a.[0] b.[0].
+Proof.
+ intros. now rewrite !bit0_odd, odd_add.
+Qed.
+
+Lemma add3_bit0 : forall a b c,
+ (a+b+c).[0] = xor3 a.[0] b.[0] c.[0].
+Proof.
+ intros. now rewrite !add_bit0.
+Qed.
+
+Lemma add3_bits_div2 : forall (a0 b0 c0 : bool),
+ (a0 + b0 + c0)/2 == nextcarry a0 b0 c0.
+Proof.
+ assert (H : 1+1 == 2) by now nzsimpl'.
+ intros [|] [|] [|]; simpl; rewrite ?add_0_l, ?add_0_r, ?H;
+ (apply div_same; order') || (apply div_small; order') || idtac.
+ symmetry. apply div_unique with 1. order'. now nzsimpl'.
+Qed.
+
+Lemma add_carry_div2 : forall a b (c0:bool),
+ (a + b + c0)/2 == a/2 + b/2 + nextcarry a.[0] b.[0] c0.
+Proof.
+ intros.
+ rewrite <- add3_bits_div2.
+ rewrite (add_comm ((a/2)+_)).
+ rewrite <- div_add by order'.
+ f_equiv.
+ rewrite <- !div2_div, mul_comm, mul_add_distr_l.
+ rewrite (div2_odd a), <- bit0_odd at 1. fold (b2n a.[0]).
+ rewrite (div2_odd b), <- bit0_odd at 1. fold (b2n b.[0]).
+ rewrite add_shuffle1.
+ rewrite <-(add_assoc _ _ c0). apply add_comm.
+Qed.
+
+(** The main result concerning addition: we express the bits of the sum
+ in term of bits of [a] and [b] and of some carry stream which is also
+ recursively determined by another equation.
+*)
+
+Lemma add_carry_bits : forall a b (c0:bool), exists c,
+ a+b+c0 == lxor3 a b c /\ c/2 == lnextcarry a b c /\ c.[0] = c0.
+Proof.
+ intros a b c0.
+ (* induction over some n such that [a<2^n] and [b<2^n] *)
+ set (n:=max a b).
+ assert (Ha : a<2^n).
+ apply lt_le_trans with (2^a). apply pow_gt_lin_r, lt_1_2.
+ apply pow_le_mono_r. order'. unfold n.
+ destruct (le_ge_cases a b); [rewrite max_r|rewrite max_l]; order'.
+ assert (Hb : b<2^n).
+ apply lt_le_trans with (2^b). apply pow_gt_lin_r, lt_1_2.
+ apply pow_le_mono_r. order'. unfold n.
+ destruct (le_ge_cases a b); [rewrite max_r|rewrite max_l]; order'.
+ clearbody n.
+ revert a b c0 Ha Hb. induct n.
+ (*base*)
+ intros a b c0. rewrite !pow_0_r, !one_succ, !lt_succ_r. intros Ha Hb.
+ exists c0.
+ setoid_replace a with 0 by (generalize (le_0_l a); order').
+ setoid_replace b with 0 by (generalize (le_0_l b); order').
+ rewrite !add_0_l, !lxor_0_l, !lor_0_r, !land_0_r, !lor_0_r.
+ rewrite b2n_div2, b2n_bit0; now repeat split.
+ (*step*)
+ intros n IH a b c0 Ha Hb.
+ set (c1:=nextcarry a.[0] b.[0] c0).
+ destruct (IH (a/2) (b/2) c1) as (c & IH1 & IH2 & Hc); clear IH.
+ apply div_lt_upper_bound; trivial. order'. now rewrite <- pow_succ_r'.
+ apply div_lt_upper_bound; trivial. order'. now rewrite <- pow_succ_r'.
+ exists (c0 + 2*c). repeat split.
+ (* - add *)
+ bitwise.
+ destruct (zero_or_succ m) as [EQ|[m' EQ]]; rewrite EQ; clear EQ.
+ now rewrite add_b2n_double_bit0, add3_bit0, b2n_bit0.
+ rewrite <- !div2_bits, <- 2 lxor_spec.
+ f_equiv.
+ rewrite add_b2n_double_div2, <- IH1. apply add_carry_div2.
+ (* - carry *)
+ rewrite add_b2n_double_div2.
+ bitwise.
+ destruct (zero_or_succ m) as [EQ|[m' EQ]]; rewrite EQ; clear EQ.
+ now rewrite add_b2n_double_bit0.
+ rewrite <- !div2_bits, IH2. autorewrite with bitwise.
+ now rewrite add_b2n_double_div2.
+ (* - carry0 *)
+ apply add_b2n_double_bit0.
+Qed.
+
+(** Particular case : the second bit of an addition *)
+
+Lemma add_bit1 : forall a b,
+ (a+b).[1] = xor3 a.[1] b.[1] (a.[0] && b.[0]).
+Proof.
+ intros a b.
+ destruct (add_carry_bits a b false) as (c & EQ1 & EQ2 & Hc).
+ simpl in EQ1; rewrite add_0_r in EQ1. rewrite EQ1.
+ autorewrite with bitwise. f_equal.
+ rewrite one_succ, <- div2_bits, EQ2.
+ autorewrite with bitwise.
+ rewrite Hc. simpl. apply orb_false_r.
+Qed.
+
+(** In an addition, there will be no carries iff there is
+ no common bits in the numbers to add *)
+
+Lemma nocarry_equiv : forall a b c,
+ c/2 == lnextcarry a b c -> c.[0] = false ->
+ (c == 0 <-> land a b == 0).
+Proof.
+ intros a b c H H'.
+ split. intros EQ; rewrite EQ in *.
+ rewrite div_0_l in H by order'.
+ symmetry in H. now apply lor_eq_0_l in H.
+ intros EQ. rewrite EQ, lor_0_l in H.
+ apply bits_inj_0.
+ induct n. trivial.
+ intros n IH.
+ rewrite <- div2_bits, H.
+ autorewrite with bitwise.
+ now rewrite IH.
+Qed.
+
+(** When there is no common bits, the addition is just a xor *)
+
+Lemma add_nocarry_lxor : forall a b, land a b == 0 ->
+ a+b == lxor a b.
+Proof.
+ intros a b H.
+ destruct (add_carry_bits a b false) as (c & EQ1 & EQ2 & Hc).
+ simpl in EQ1; rewrite add_0_r in EQ1. rewrite EQ1.
+ apply (nocarry_equiv a b c) in H; trivial.
+ rewrite H. now rewrite lxor_0_r.
+Qed.
+
+(** A null [ldiff] implies being smaller *)
+
+Lemma ldiff_le : forall a b, ldiff a b == 0 -> a <= b.
+Proof.
+ cut (forall n a b, a < 2^n -> ldiff a b == 0 -> a <= b).
+ intros H a b. apply (H a), pow_gt_lin_r; order'.
+ induct n.
+ intros a b Ha _. rewrite pow_0_r, one_succ, lt_succ_r in Ha.
+ assert (Ha' : a == 0) by (generalize (le_0_l a); order').
+ rewrite Ha'. apply le_0_l.
+ intros n IH a b Ha H.
+ assert (NEQ : 2 ~= 0) by order'.
+ rewrite (div_mod a 2 NEQ), (div_mod b 2 NEQ).
+ apply add_le_mono.
+ apply mul_le_mono_l.
+ apply IH.
+ apply div_lt_upper_bound; trivial. now rewrite <- pow_succ_r'.
+ rewrite <- (pow_1_r 2), <- 2 shiftr_div_pow2.
+ now rewrite <- shiftr_ldiff, H, shiftr_div_pow2, pow_1_r, div_0_l.
+ rewrite <- 2 bit0_mod.
+ apply bits_inj_iff in H. specialize (H 0).
+ rewrite ldiff_spec, bits_0 in H.
+ destruct a.[0], b.[0]; try discriminate; simpl; order'.
+Qed.
+
+(** Subtraction can be a ldiff when the opposite ldiff is null. *)
+
+Lemma sub_nocarry_ldiff : forall a b, ldiff b a == 0 ->
+ a-b == ldiff a b.
+Proof.
+ intros a b H.
+ apply add_cancel_r with b.
+ rewrite sub_add.
+ symmetry.
+ rewrite add_nocarry_lxor.
+ bitwise.
+ apply bits_inj_iff in H. specialize (H m).
+ rewrite ldiff_spec, bits_0 in H.
+ now destruct a.[m], b.[m].
+ apply land_ldiff.
+ now apply ldiff_le.
+Qed.
+
+(** We can express lnot in term of subtraction *)
+
+Lemma add_lnot_diag_low : forall a n, log2 a < n ->
+ a + lnot a n == ones n.
+Proof.
+ intros a n H.
+ assert (H' := land_lnot_diag_low a n H).
+ rewrite add_nocarry_lxor, lxor_lor by trivial.
+ now apply lor_lnot_diag_low.
+Qed.
+
+Lemma lnot_sub_low : forall a n, log2 a < n ->
+ lnot a n == ones n - a.
+Proof.
+ intros a n H.
+ now rewrite <- (add_lnot_diag_low a n H), add_comm, add_sub.
+Qed.
+
+(** Adding numbers with no common bits cannot lead to a much bigger number *)
+
+Lemma add_nocarry_lt_pow2 : forall a b n, land a b == 0 ->
+ a < 2^n -> b < 2^n -> a+b < 2^n.
+Proof.
+ intros a b n H Ha Hb.
+ rewrite add_nocarry_lxor by trivial.
+ apply div_small_iff. order_nz.
+ rewrite <- shiftr_div_pow2, shiftr_lxor, !shiftr_div_pow2.
+ rewrite 2 div_small by trivial.
+ apply lxor_0_l.
+Qed.
+
+Lemma add_nocarry_mod_lt_pow2 : forall a b n, land a b == 0 ->
+ a mod 2^n + b mod 2^n < 2^n.
+Proof.
+ intros a b n H.
+ apply add_nocarry_lt_pow2.
+ bitwise.
+ destruct (le_gt_cases n m).
+ now rewrite mod_pow2_bits_high.
+ now rewrite !mod_pow2_bits_low, <- land_spec, H, bits_0.
+ apply mod_upper_bound; order_nz.
+ apply mod_upper_bound; order_nz.
+Qed.
+
+End NBitsProp.
diff --git a/theories/Numbers/Natural/Abstract/NDefOps.v b/theories/Numbers/Natural/Abstract/NDefOps.v
index 7b38c148..ad7a9f3a 100644
--- a/theories/Numbers/Natural/Abstract/NDefOps.v
+++ b/theories/Numbers/Natural/Abstract/NDefOps.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,14 +8,41 @@
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
-(*i $Id: NDefOps.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
Require Import Bool. (* To get the orb and negb function *)
Require Import RelationPairs.
Require Export NStrongRec.
-Module NdefOpsPropFunct (Import N : NAxiomsSig').
-Include NStrongRecPropFunct N.
+(** In this module, we derive generic implementations of usual operators
+ just via the use of a [recursion] function. *)
+
+Module NdefOpsProp (Import N : NAxiomsRecSig').
+Include NStrongRecProp N.
+
+(** Nullity Test *)
+
+Definition if_zero (A : Type) (a b : A) (n : N.t) : A :=
+ recursion a (fun _ _ => b) n.
+
+Arguments if_zero [A] a b n.
+
+Instance if_zero_wd (A : Type) :
+ Proper (Logic.eq ==> Logic.eq ==> N.eq ==> Logic.eq) (@if_zero A).
+Proof.
+unfold if_zero. (* TODO : solve_proper : SLOW + BUG *)
+f_equiv'.
+Qed.
+
+Theorem if_zero_0 : forall (A : Type) (a b : A), if_zero a b 0 = a.
+Proof.
+unfold if_zero; intros; now rewrite recursion_0.
+Qed.
+
+Theorem if_zero_succ :
+ forall (A : Type) (a b : A) (n : N.t), if_zero a b (S n) = b.
+Proof.
+intros; unfold if_zero.
+now rewrite recursion_succ.
+Qed.
(*****************************************************)
(** Addition *)
@@ -24,17 +51,9 @@ Definition def_add (x y : N.t) := recursion y (fun _ => S) x.
Local Infix "+++" := def_add (at level 50, left associativity).
-Instance def_add_prewd : Proper (N.eq==>N.eq==>N.eq) (fun _ => S).
-Proof.
-intros _ _ _ p p' Epp'; now rewrite Epp'.
-Qed.
-
Instance def_add_wd : Proper (N.eq ==> N.eq ==> N.eq) def_add.
Proof.
-intros x x' Exx' y y' Eyy'. unfold def_add.
-(* TODO: why rewrite Exx' don't work here (or verrrry slowly) ? *)
-apply recursion_wd with (Aeq := N.eq); auto with *.
-apply def_add_prewd.
+unfold def_add. f_equiv'.
Qed.
Theorem def_add_0_l : forall y, 0 +++ y == y.
@@ -45,7 +64,7 @@ Qed.
Theorem def_add_succ_l : forall x y, S x +++ y == S (x +++ y).
Proof.
intros x y; unfold def_add.
-rewrite recursion_succ; auto with *.
+rewrite recursion_succ; f_equiv'.
Qed.
Theorem def_add_add : forall n m, n +++ m == n + m.
@@ -62,18 +81,10 @@ Definition def_mul (x y : N.t) := recursion 0 (fun _ p => p +++ x) y.
Local Infix "**" := def_mul (at level 40, left associativity).
-Instance def_mul_prewd :
- Proper (N.eq==>N.eq==>N.eq==>N.eq) (fun x _ p => p +++ x).
-Proof.
-repeat red; intros; now apply def_add_wd.
-Qed.
-
Instance def_mul_wd : Proper (N.eq ==> N.eq ==> N.eq) def_mul.
Proof.
-unfold def_mul.
-intros x x' Exx' y y' Eyy'.
-apply recursion_wd; auto with *.
-now apply def_mul_prewd.
+unfold def_mul. (* TODO : solve_proper SLOW + BUG *)
+f_equiv'.
Qed.
Theorem def_mul_0_r : forall x, x ** 0 == 0.
@@ -85,7 +96,7 @@ Theorem def_mul_succ_r : forall x y, x ** S y == x ** y +++ x.
Proof.
intros x y; unfold def_mul.
rewrite recursion_succ; auto with *.
-now apply def_mul_prewd.
+f_equiv'.
Qed.
Theorem def_mul_mul : forall n m, n ** m == n * m.
@@ -106,25 +117,9 @@ recursion
Local Infix "<<" := ltb (at level 70, no associativity).
-Instance ltb_prewd1 : Proper (N.eq==>Logic.eq) (if_zero false true).
-Proof.
-red; intros; apply if_zero_wd; auto.
-Qed.
-
-Instance ltb_prewd2 : Proper (N.eq==>(N.eq==>Logic.eq)==>N.eq==>Logic.eq)
- (fun _ f n => recursion false (fun n' _ => f n') n).
-Proof.
-repeat red; intros; simpl.
-apply recursion_wd; auto with *.
-repeat red; auto.
-Qed.
-
Instance ltb_wd : Proper (N.eq ==> N.eq ==> Logic.eq) ltb.
Proof.
-unfold ltb.
-intros n n' Hn m m' Hm.
-apply f_equiv; auto with *.
-apply recursion_wd; auto; [ apply ltb_prewd1 | apply ltb_prewd2 ].
+unfold ltb. f_equiv'.
Qed.
Theorem ltb_base : forall n, 0 << n = if_zero false true n.
@@ -136,11 +131,9 @@ Theorem ltb_step :
forall m n, S m << n = recursion false (fun n' _ => m << n') n.
Proof.
intros m n; unfold ltb at 1.
-apply f_equiv; auto with *.
-rewrite recursion_succ by (apply ltb_prewd1||apply ltb_prewd2).
-fold (ltb m).
-repeat red; intros. apply recursion_wd; auto.
-repeat red; intros; now apply ltb_wd.
+f_equiv.
+rewrite recursion_succ; f_equiv'.
+reflexivity.
Qed.
(* Above, we rewrite applications of function. Is it possible to rewrite
@@ -162,8 +155,7 @@ Qed.
Theorem succ_ltb_mono : forall n m, (S n << S m) = (n << m).
Proof.
intros n m.
-rewrite ltb_step. rewrite recursion_succ; try reflexivity.
-repeat red; intros; now apply ltb_wd.
+rewrite ltb_step. rewrite recursion_succ; f_equiv'.
Qed.
Theorem ltb_lt : forall n m, n << m = true <-> n < m.
@@ -188,9 +180,7 @@ Definition even (x : N.t) := recursion true (fun _ p => negb p) x.
Instance even_wd : Proper (N.eq==>Logic.eq) even.
Proof.
-intros n n' Hn. unfold even.
-apply recursion_wd; auto.
-congruence.
+unfold even. f_equiv'.
Qed.
Theorem even_0 : even 0 = true.
@@ -202,19 +192,12 @@ Qed.
Theorem even_succ : forall x, even (S x) = negb (even x).
Proof.
unfold even.
-intro x; rewrite recursion_succ; try reflexivity.
-congruence.
+intro x; rewrite recursion_succ; f_equiv'.
Qed.
(*****************************************************)
(** Division by 2 *)
-Local Notation "a <= b <= c" := (a<=b /\ b<=c).
-Local Notation "a <= b < c" := (a<=b /\ b<c).
-Local Notation "a < b <= c" := (a<b /\ b<=c).
-Local Notation "a < b < c" := (a<b /\ b<c).
-Local Notation "2" := (S 1).
-
Definition half_aux (x : N.t) : N.t * N.t :=
recursion (0, 0) (fun _ p => let (x1, x2) := p in (S x2, x1)) x.
@@ -223,14 +206,14 @@ Definition half (x : N.t) := snd (half_aux x).
Instance half_aux_wd : Proper (N.eq ==> N.eq*N.eq) half_aux.
Proof.
intros x x' Hx. unfold half_aux.
-apply recursion_wd; auto with *.
+f_equiv; trivial.
intros y y' Hy (u,v) (u',v') (Hu,Hv). compute in *.
rewrite Hu, Hv; auto with *.
Qed.
Instance half_wd : Proper (N.eq==>N.eq) half.
Proof.
-intros x x' Hx. unfold half. rewrite Hx; auto with *.
+unfold half. f_equiv'.
Qed.
Lemma half_aux_0 : half_aux 0 = (0,0).
@@ -245,8 +228,7 @@ intros.
remember (half_aux x) as h.
destruct h as (f,s); simpl in *.
unfold half_aux in *.
-rewrite recursion_succ, <- Heqh; simpl; auto.
-repeat red; intros; subst; auto.
+rewrite recursion_succ, <- Heqh; simpl; f_equiv'.
Qed.
Theorem half_aux_spec : forall n,
@@ -258,7 +240,7 @@ rewrite half_aux_0; simpl; rewrite add_0_l; auto with *.
intros.
rewrite half_aux_succ. simpl.
rewrite add_succ_l, add_comm; auto.
-apply succ_wd; auto.
+now f_equiv.
Qed.
Theorem half_aux_spec2 : forall n,
@@ -271,7 +253,7 @@ rewrite half_aux_0; simpl. auto with *.
intros.
rewrite half_aux_succ; simpl.
destruct H; auto with *.
-right; apply succ_wd; auto with *.
+right; now f_equiv.
Qed.
Theorem half_0 : half 0 == 0.
@@ -281,14 +263,14 @@ Qed.
Theorem half_1 : half 1 == 0.
Proof.
-unfold half. rewrite half_aux_succ, half_aux_0; simpl; auto with *.
+unfold half. rewrite one_succ, half_aux_succ, half_aux_0; simpl; auto with *.
Qed.
Theorem half_double : forall n,
n == 2 * half n \/ n == 1 + 2 * half n.
Proof.
intros. unfold half.
-nzsimpl.
+nzsimpl'.
destruct (half_aux_spec2 n) as [H|H]; [left|right].
rewrite <- H at 1. apply half_aux_spec.
rewrite <- add_succ_l. rewrite <- H at 1. apply half_aux_spec.
@@ -319,24 +301,23 @@ assert (LE : 0 <= half n) by apply le_0_l.
le_elim LE; auto.
destruct (half_double n) as [E|E];
rewrite <- LE, mul_0_r, ?add_0_r in E; rewrite E in LT.
-destruct (nlt_0_r _ LT).
-rewrite <- succ_lt_mono in LT.
-destruct (nlt_0_r _ LT).
+order'.
+order.
Qed.
Theorem half_decrease : forall n, 0 < n -> half n < n.
Proof.
intros n LT.
-destruct (half_double n) as [E|E]; rewrite E at 2;
- rewrite ?mul_succ_l, ?mul_0_l, ?add_0_l, ?add_assoc.
+destruct (half_double n) as [E|E]; rewrite E at 2; nzsimpl'.
rewrite <- add_0_l at 1.
rewrite <- add_lt_mono_r.
assert (LE : 0 <= half n) by apply le_0_l.
le_elim LE; auto.
rewrite <- LE, mul_0_r in E. rewrite E in LT. destruct (nlt_0_r _ LT).
+rewrite <- add_succ_l.
rewrite <- add_0_l at 1.
rewrite <- add_lt_mono_r.
-rewrite add_succ_l. apply lt_0_succ.
+apply lt_0_succ.
Qed.
@@ -347,17 +328,9 @@ Definition pow (n m : N.t) := recursion 1 (fun _ r => n*r) m.
Local Infix "^^" := pow (at level 30, right associativity).
-Instance pow_prewd :
- Proper (N.eq==>N.eq==>N.eq==>N.eq) (fun n _ r => n*r).
-Proof.
-intros n n' Hn x x' Hx y y' Hy. rewrite Hn, Hy; auto with *.
-Qed.
-
Instance pow_wd : Proper (N.eq==>N.eq==>N.eq) pow.
Proof.
-intros n n' Hn m m' Hm. unfold pow.
-apply recursion_wd; auto with *.
-now apply pow_prewd.
+unfold pow. f_equiv'.
Qed.
Lemma pow_0 : forall n, n^^0 == 1.
@@ -367,8 +340,7 @@ Qed.
Lemma pow_succ : forall n m, n^^(S m) == n*(n^^m).
Proof.
-intros. unfold pow. rewrite recursion_succ; auto with *.
-now apply pow_prewd.
+intros. unfold pow. rewrite recursion_succ; f_equiv'.
Qed.
@@ -389,15 +361,13 @@ Proof.
intros g g' Hg n n' Hn.
rewrite Hn.
destruct (n' << 2); auto with *.
-apply succ_wd.
-apply Hg. rewrite Hn; auto with *.
+f_equiv. apply Hg. now f_equiv.
Qed.
Instance log_wd : Proper (N.eq==>N.eq) log.
Proof.
intros x x' Exx'. unfold log.
-apply strong_rec_wd; auto with *.
-apply log_prewd.
+apply strong_rec_wd; f_equiv'.
Qed.
Lemma log_good_step : forall n h1 h2,
@@ -408,9 +378,9 @@ Proof.
intros n h1 h2 E.
destruct (n<<2) as [ ]_eqn:H.
auto with *.
-apply succ_wd, E, half_decrease.
-rewrite <- not_true_iff_false, ltb_lt, nlt_ge, le_succ_l in H.
-apply lt_succ_l; auto.
+f_equiv. apply E, half_decrease.
+rewrite two_succ, <- not_true_iff_false, ltb_lt, nlt_ge, le_succ_l in H.
+order'.
Qed.
Hint Resolve log_good_step.
@@ -441,14 +411,14 @@ intros n IH k Hk1 Hk2.
destruct (lt_ge_cases k 2) as [LT|LE].
(* base *)
rewrite log_init, pow_0 by auto.
-rewrite <- le_succ_l in Hk2.
+rewrite <- le_succ_l, <- one_succ in Hk2.
le_elim Hk2.
-rewrite <- nle_gt, le_succ_l in LT. destruct LT; auto.
+rewrite two_succ, <- nle_gt, le_succ_l in LT. destruct LT; auto.
rewrite <- Hk2.
rewrite half_1; auto using lt_0_1, le_refl.
(* step *)
rewrite log_step, pow_succ by auto.
-rewrite le_succ_l in LE.
+rewrite two_succ, le_succ_l in LE.
destruct (IH (half k)) as (IH1,IH2).
rewrite <- lt_succ_r. apply lt_le_trans with k; auto.
now apply half_decrease.
@@ -458,22 +428,13 @@ split.
rewrite <- le_succ_l in IH1.
apply mul_le_mono_l with (p:=2) in IH1.
eapply lt_le_trans; eauto.
-nzsimpl.
+nzsimpl'.
rewrite lt_succ_r.
eapply le_trans; [ eapply half_lower_bound | ].
-nzsimpl; apply le_refl.
+nzsimpl'; apply le_refl.
eapply le_trans; [ | eapply half_upper_bound ].
apply mul_le_mono_l; auto.
Qed.
-(** Later:
-
-Theorem log_mul : forall n m, 0 < n -> 0 < m ->
- log (n*m) == log n + log m.
-
-Theorem log_pow2 : forall n, log (2^^n) = n.
-
-*)
-
-End NdefOpsPropFunct.
+End NdefOpsProp.
diff --git a/theories/Numbers/Natural/Abstract/NDiv.v b/theories/Numbers/Natural/Abstract/NDiv.v
index 171530f0..6db8e448 100644
--- a/theories/Numbers/Natural/Abstract/NDiv.v
+++ b/theories/Numbers/Natural/Abstract/NDiv.v
@@ -1,40 +1,36 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(** Euclidean Division *)
+Require Import NAxioms NSub NZDiv.
-Require Import NAxioms NProperties NZDiv.
+(** Properties of Euclidean Division *)
-Module Type NDivSpecific (Import N : NAxiomsSig')(Import DM : DivMod' N).
- Axiom mod_upper_bound : forall a b, b ~= 0 -> a mod b < b.
-End NDivSpecific.
+Module Type NDivProp (Import N : NAxiomsSig')(Import NP : NSubProp N).
-Module Type NDivSig := NAxiomsSig <+ DivMod <+ NZDivCommon <+ NDivSpecific.
-Module Type NDivSig' := NAxiomsSig' <+ DivMod' <+ NZDivCommon <+ NDivSpecific.
+(** We benefit from what already exists for NZ *)
+Module Import Private_NZDiv := Nop <+ NZDivProp N N NP.
-Module NDivPropFunct (Import N : NDivSig')(Import NP : NPropSig N).
+Ltac auto' := try rewrite <- neq_0_lt_0; auto using le_0_l.
-(** We benefit from what already exists for NZ *)
+(** Let's now state again theorems, but without useless hypothesis. *)
- Module ND <: NZDiv N.
- Definition div := div.
- Definition modulo := modulo.
- Definition div_wd := div_wd.
- Definition mod_wd := mod_wd.
- Definition div_mod := div_mod.
- Lemma mod_bound : forall a b, 0<=a -> 0<b -> 0 <= a mod b < b.
- Proof. split. apply le_0_l. apply mod_upper_bound. order. Qed.
- End ND.
- Module Import NZDivP := NZDivPropFunct N NP ND.
+Lemma mod_upper_bound : forall a b, b ~= 0 -> a mod b < b.
+Proof. intros. apply mod_bound_pos; auto'. Qed.
- Ltac auto' := try rewrite <- neq_0_lt_0; auto using le_0_l.
+(** Another formulation of the main equation *)
-(** Let's now state again theorems, but without useless hypothesis. *)
+Lemma mod_eq :
+ forall a b, b~=0 -> a mod b == a - b*(a/b).
+Proof.
+intros.
+symmetry. apply add_sub_eq_l. symmetry.
+now apply div_mod.
+Qed.
(** Uniqueness theorems *)
@@ -51,6 +47,9 @@ Theorem mod_unique:
forall a b q r, r<b -> a == b*q + r -> r == a mod b.
Proof. intros. apply mod_unique with q; auto'. Qed.
+Theorem div_unique_exact: forall a b q, b~=0 -> a == b*q -> q == a/b.
+Proof. intros. apply div_unique_exact; auto'. Qed.
+
(** A division by itself returns 1 *)
Lemma div_same : forall a, a~=0 -> a/a == 1.
@@ -223,6 +222,10 @@ Lemma div_div : forall a b c, b~=0 -> c~=0 ->
(a/b)/c == a/(b*c).
Proof. intros. apply div_div; auto'. Qed.
+Lemma mod_mul_r : forall a b c, b~=0 -> c~=0 ->
+ a mod (b*c) == a mod b + b*((a/b) mod c).
+Proof. intros. apply mod_mul_r; auto'. Qed.
+
(** A last inequality: *)
Theorem div_mul_le:
@@ -235,5 +238,4 @@ Lemma mod_divides : forall a b, b~=0 ->
(a mod b == 0 <-> exists c, a == b*c).
Proof. intros. apply mod_divides; auto'. Qed.
-End NDivPropFunct.
-
+End NDivProp.
diff --git a/theories/Numbers/Natural/Abstract/NGcd.v b/theories/Numbers/Natural/Abstract/NGcd.v
new file mode 100644
index 00000000..ece369d8
--- /dev/null
+++ b/theories/Numbers/Natural/Abstract/NGcd.v
@@ -0,0 +1,213 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(** Properties of the greatest common divisor *)
+
+Require Import NAxioms NSub NZGcd.
+
+Module Type NGcdProp
+ (Import A : NAxiomsSig')
+ (Import B : NSubProp A).
+
+ Include NZGcdProp A A B.
+
+(** Results concerning divisibility*)
+
+Definition divide_1_r n : (n | 1) -> n == 1
+ := divide_1_r_nonneg n (le_0_l n).
+
+Definition divide_antisym n m : (n | m) -> (m | n) -> n == m
+ := divide_antisym_nonneg n m (le_0_l n) (le_0_l m).
+
+Lemma divide_add_cancel_r : forall n m p, (n | m) -> (n | m + p) -> (n | p).
+Proof.
+ intros n m p (q,Hq) (r,Hr).
+ exists (r-q). rewrite mul_sub_distr_r, <- Hq, <- Hr.
+ now rewrite add_comm, add_sub.
+Qed.
+
+Lemma divide_sub_r : forall n m p, (n | m) -> (n | p) -> (n | m - p).
+Proof.
+ intros n m p H H'.
+ destruct (le_ge_cases m p) as [LE|LE].
+ apply sub_0_le in LE. rewrite LE. apply divide_0_r.
+ apply divide_add_cancel_r with p; trivial.
+ now rewrite add_comm, sub_add.
+Qed.
+
+(** Properties of gcd *)
+
+Definition gcd_0_l n : gcd 0 n == n := gcd_0_l_nonneg n (le_0_l n).
+Definition gcd_0_r n : gcd n 0 == n := gcd_0_r_nonneg n (le_0_l n).
+Definition gcd_diag n : gcd n n == n := gcd_diag_nonneg n (le_0_l n).
+Definition gcd_unique' n m p := gcd_unique n m p (le_0_l p).
+Definition gcd_unique_alt' n m p := gcd_unique_alt n m p (le_0_l p).
+Definition divide_gcd_iff' n m := divide_gcd_iff n m (le_0_l n).
+
+Lemma gcd_add_mult_diag_r : forall n m p, gcd n (m+p*n) == gcd n m.
+Proof.
+ intros. apply gcd_unique_alt'.
+ intros. rewrite gcd_divide_iff. split; intros (U,V); split; trivial.
+ apply divide_add_r; trivial. now apply divide_mul_r.
+ apply divide_add_cancel_r with (p*n); trivial.
+ now apply divide_mul_r. now rewrite add_comm.
+Qed.
+
+Lemma gcd_add_diag_r : forall n m, gcd n (m+n) == gcd n m.
+Proof.
+ intros n m. rewrite <- (mul_1_l n) at 2. apply gcd_add_mult_diag_r.
+Qed.
+
+Lemma gcd_sub_diag_r : forall n m, n<=m -> gcd n (m-n) == gcd n m.
+Proof.
+ intros n m H. symmetry.
+ rewrite <- (sub_add n m H) at 1. apply gcd_add_diag_r.
+Qed.
+
+(** On natural numbers, we should use a particular form
+ for the Bezout identity, since we don't have full subtraction. *)
+
+Definition Bezout n m p := exists a b, a*n == p + b*m.
+
+Instance Bezout_wd : Proper (eq==>eq==>eq==>iff) Bezout.
+Proof.
+ unfold Bezout. intros x x' Hx y y' Hy z z' Hz.
+ setoid_rewrite Hx. setoid_rewrite Hy. now setoid_rewrite Hz.
+Qed.
+
+Lemma bezout_1_gcd : forall n m, Bezout n m 1 -> gcd n m == 1.
+Proof.
+ intros n m (q & r & H).
+ apply gcd_unique; trivial using divide_1_l, le_0_1.
+ intros p Hn Hm.
+ apply divide_add_cancel_r with (r*m).
+ now apply divide_mul_r.
+ rewrite add_comm, <- H. now apply divide_mul_r.
+Qed.
+
+(** For strictly positive numbers, we have Bezout in the two directions. *)
+
+Lemma gcd_bezout_pos_pos : forall n, 0<n -> forall m, 0<m ->
+ Bezout n m (gcd n m) /\ Bezout m n (gcd n m).
+Proof.
+ intros n Hn. rewrite <- le_succ_l, <- one_succ in Hn.
+ pattern n. apply strong_right_induction with (z:=1); trivial.
+ unfold Bezout. solve_proper.
+ clear n Hn. intros n Hn IHn.
+ intros m Hm. rewrite <- le_succ_l, <- one_succ in Hm.
+ pattern m. apply strong_right_induction with (z:=1); trivial.
+ unfold Bezout. solve_proper.
+ clear m Hm. intros m Hm IHm.
+ destruct (lt_trichotomy n m) as [LT|[EQ|LT]].
+ (* n < m *)
+ destruct (IHm (m-n)) as ((a & b & EQ), (a' & b' & EQ')).
+ rewrite one_succ, le_succ_l.
+ apply lt_add_lt_sub_l; now nzsimpl.
+ apply sub_lt; order'.
+ split.
+ exists (a+b). exists b.
+ rewrite mul_add_distr_r, EQ, mul_sub_distr_l, <- add_assoc.
+ rewrite gcd_sub_diag_r by order.
+ rewrite sub_add. reflexivity. apply mul_le_mono_l; order.
+ exists a'. exists (a'+b').
+ rewrite gcd_sub_diag_r in EQ' by order.
+ rewrite (add_comm a'), mul_add_distr_r, add_assoc, <- EQ'.
+ rewrite mul_sub_distr_l, sub_add. reflexivity. apply mul_le_mono_l; order.
+ (* n = m *)
+ rewrite EQ. rewrite gcd_diag.
+ split.
+ exists 1. exists 0. now nzsimpl.
+ exists 1. exists 0. now nzsimpl.
+ (* m < n *)
+ rewrite gcd_comm, and_comm.
+ apply IHn; trivial.
+ now rewrite <- le_succ_l, <- one_succ.
+Qed.
+
+Lemma gcd_bezout_pos : forall n m, 0<n -> Bezout n m (gcd n m).
+Proof.
+ intros n m Hn.
+ destruct (eq_0_gt_0_cases m) as [EQ|LT].
+ rewrite EQ, gcd_0_r. exists 1. exists 0. now nzsimpl.
+ now apply gcd_bezout_pos_pos.
+Qed.
+
+(** For arbitrary natural numbers, we could only say that at least
+ one of the Bezout identities holds. *)
+
+Lemma gcd_bezout : forall n m,
+ Bezout n m (gcd n m) \/ Bezout m n (gcd n m).
+Proof.
+ intros n m.
+ destruct (eq_0_gt_0_cases n) as [EQ|LT].
+ right. rewrite EQ, gcd_0_l. exists 1. exists 0. now nzsimpl.
+ left. now apply gcd_bezout_pos.
+Qed.
+
+Lemma gcd_mul_mono_l :
+ forall n m p, gcd (p * n) (p * m) == p * gcd n m.
+Proof.
+ intros n m p.
+ apply gcd_unique'.
+ apply mul_divide_mono_l, gcd_divide_l.
+ apply mul_divide_mono_l, gcd_divide_r.
+ intros q H H'.
+ destruct (eq_0_gt_0_cases n) as [EQ|LT].
+ rewrite EQ in *. now rewrite gcd_0_l.
+ destruct (gcd_bezout_pos n m) as (a & b & EQ); trivial.
+ apply divide_add_cancel_r with (p*m*b).
+ now apply divide_mul_l.
+ rewrite <- mul_assoc, <- mul_add_distr_l, add_comm, (mul_comm m), <- EQ.
+ rewrite (mul_comm a), mul_assoc.
+ now apply divide_mul_l.
+Qed.
+
+Lemma gcd_mul_mono_r :
+ forall n m p, gcd (n*p) (m*p) == gcd n m * p.
+Proof.
+ intros. rewrite !(mul_comm _ p). apply gcd_mul_mono_l.
+Qed.
+
+Lemma gauss : forall n m p, (n | m * p) -> gcd n m == 1 -> (n | p).
+Proof.
+ intros n m p H G.
+ destruct (eq_0_gt_0_cases n) as [EQ|LT].
+ rewrite EQ in *. rewrite gcd_0_l in G. now rewrite <- (mul_1_l p), <- G.
+ destruct (gcd_bezout_pos n m) as (a & b & EQ); trivial.
+ rewrite G in EQ.
+ apply divide_add_cancel_r with (m*p*b).
+ now apply divide_mul_l.
+ rewrite (mul_comm _ b), mul_assoc. rewrite <- (mul_1_l p) at 2.
+ rewrite <- mul_add_distr_r, add_comm, <- EQ.
+ now apply divide_mul_l, divide_factor_r.
+Qed.
+
+Lemma divide_mul_split : forall n m p, n ~= 0 -> (n | m * p) ->
+ exists q r, n == q*r /\ (q | m) /\ (r | p).
+Proof.
+ intros n m p Hn H.
+ assert (G := gcd_nonneg n m). le_elim G.
+ destruct (gcd_divide_l n m) as (q,Hq).
+ exists (gcd n m). exists q.
+ split. now rewrite mul_comm.
+ split. apply gcd_divide_r.
+ destruct (gcd_divide_r n m) as (r,Hr).
+ rewrite Hr in H. rewrite Hq in H at 1.
+ rewrite mul_shuffle0 in H. apply mul_divide_cancel_r in H; [|order].
+ apply gauss with r; trivial.
+ apply mul_cancel_r with (gcd n m); [order|].
+ rewrite mul_1_l.
+ rewrite <- gcd_mul_mono_r, <- Hq, <- Hr; order.
+ symmetry in G. apply gcd_eq_0 in G. destruct G as (Hn',_); order.
+Qed.
+
+(** TODO : relation between gcd and division and modulo *)
+
+(** TODO : more about rel_prime (i.e. gcd == 1), about prime ... *)
+
+End NGcdProp.
diff --git a/theories/Numbers/Natural/Abstract/NIso.v b/theories/Numbers/Natural/Abstract/NIso.v
index d484a625..bcf746a7 100644
--- a/theories/Numbers/Natural/Abstract/NIso.v
+++ b/theories/Numbers/Natural/Abstract/NIso.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,11 +8,9 @@
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
-(*i $Id: NIso.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
Require Import NBase.
-Module Homomorphism (N1 N2 : NAxiomsSig).
+Module Homomorphism (N1 N2 : NAxiomsRecSig).
Local Notation "n == m" := (N2.eq n m) (at level 70, no associativity).
@@ -25,11 +23,8 @@ Definition natural_isomorphism : N1.t -> N2.t :=
Instance natural_isomorphism_wd : Proper (N1.eq ==> N2.eq) natural_isomorphism.
Proof.
unfold natural_isomorphism.
-intros n m Eqxy.
-apply N1.recursion_wd.
-reflexivity.
-intros _ _ _ y' y'' H. now apply N2.succ_wd.
-assumption.
+repeat red; intros. f_equiv; trivial.
+repeat red; intros. now f_equiv.
Qed.
Theorem natural_isomorphism_0 : natural_isomorphism N1.zero == N2.zero.
@@ -42,7 +37,7 @@ Theorem natural_isomorphism_succ :
Proof.
unfold natural_isomorphism.
intro n. rewrite N1.recursion_succ; auto with *.
-repeat red; intros. apply N2.succ_wd; auto.
+repeat red; intros. now f_equiv.
Qed.
Theorem hom_nat_iso : homomorphism natural_isomorphism.
@@ -53,9 +48,9 @@ Qed.
End Homomorphism.
-Module Inverse (N1 N2 : NAxiomsSig).
+Module Inverse (N1 N2 : NAxiomsRecSig).
-Module Import NBasePropMod1 := NBasePropFunct N1.
+Module Import NBasePropMod1 := NBaseProp N1.
(* This makes the tactic induct available. Since it is taken from
(NBasePropFunct NAxiomsMod1), it refers to induction on N1. *)
@@ -76,7 +71,7 @@ Qed.
End Inverse.
-Module Isomorphism (N1 N2 : NAxiomsSig).
+Module Isomorphism (N1 N2 : NAxiomsRecSig).
Module Hom12 := Homomorphism N1 N2.
Module Hom21 := Homomorphism N2 N1.
diff --git a/theories/Numbers/Natural/Abstract/NLcm.v b/theories/Numbers/Natural/Abstract/NLcm.v
new file mode 100644
index 00000000..1e8e678c
--- /dev/null
+++ b/theories/Numbers/Natural/Abstract/NLcm.v
@@ -0,0 +1,290 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Require Import NAxioms NSub NDiv NGcd.
+
+(** * Least Common Multiple *)
+
+(** Unlike other functions around, we will define lcm below instead of
+ axiomatizing it. Indeed, there is no "prior art" about lcm in the
+ standard library to be compliant with, and the generic definition
+ of lcm via gcd is quite reasonable.
+
+ By the way, we also state here some combined properties of div/mod
+ and gcd.
+*)
+
+Module Type NLcmProp
+ (Import A : NAxiomsSig')
+ (Import B : NSubProp A)
+ (Import C : NDivProp A B)
+ (Import D : NGcdProp A B).
+
+(** Divibility and modulo *)
+
+Lemma mod_divide : forall a b, b~=0 -> (a mod b == 0 <-> (b|a)).
+Proof.
+ intros a b Hb. split.
+ intros Hab. exists (a/b). rewrite mul_comm.
+ rewrite (div_mod a b Hb) at 1. rewrite Hab; now nzsimpl.
+ intros (c,Hc). rewrite Hc. now apply mod_mul.
+Qed.
+
+Lemma divide_div_mul_exact : forall a b c, b~=0 -> (b|a) ->
+ (c*a)/b == c*(a/b).
+Proof.
+ intros a b c Hb H.
+ apply mul_cancel_l with b; trivial.
+ rewrite mul_assoc, mul_shuffle0.
+ assert (H':=H). apply mod_divide, div_exact in H'; trivial.
+ rewrite <- H', (mul_comm a c).
+ symmetry. apply div_exact; trivial.
+ apply mod_divide; trivial.
+ now apply divide_mul_r.
+Qed.
+
+(** Gcd of divided elements, for exact divisions *)
+
+Lemma gcd_div_factor : forall a b c, c~=0 -> (c|a) -> (c|b) ->
+ gcd (a/c) (b/c) == (gcd a b)/c.
+Proof.
+ intros a b c Hc Ha Hb.
+ apply mul_cancel_l with c; try order.
+ assert (H:=gcd_greatest _ _ _ Ha Hb).
+ apply mod_divide, div_exact in H; try order.
+ rewrite <- H.
+ rewrite <- gcd_mul_mono_l; try order.
+ f_equiv; symmetry; apply div_exact; try order;
+ apply mod_divide; trivial; try order.
+Qed.
+
+Lemma gcd_div_gcd : forall a b g, g~=0 -> g == gcd a b ->
+ gcd (a/g) (b/g) == 1.
+Proof.
+ intros a b g NZ EQ. rewrite gcd_div_factor.
+ now rewrite <- EQ, div_same.
+ generalize (gcd_nonneg a b); order.
+ rewrite EQ; apply gcd_divide_l.
+ rewrite EQ; apply gcd_divide_r.
+Qed.
+
+(** The following equality is crucial for Euclid algorithm *)
+
+Lemma gcd_mod : forall a b, b~=0 -> gcd (a mod b) b == gcd b a.
+Proof.
+ intros a b Hb. rewrite (gcd_comm _ b).
+ rewrite <- (gcd_add_mult_diag_r b (a mod b) (a/b)).
+ now rewrite add_comm, mul_comm, <- div_mod.
+Qed.
+
+(** We now define lcm thanks to gcd:
+
+ lcm a b = a * (b / gcd a b)
+ = (a / gcd a b) * b
+ = (a*b) / gcd a b
+
+ Nota: [lcm 0 0] should be 0, which isn't garantee with the third
+ equation above.
+*)
+
+Definition lcm a b := a*(b/gcd a b).
+
+Instance lcm_wd : Proper (eq==>eq==>eq) lcm.
+Proof. unfold lcm. solve_proper. Qed.
+
+Lemma lcm_equiv1 : forall a b, gcd a b ~= 0 ->
+ a * (b / gcd a b) == (a*b)/gcd a b.
+Proof.
+ intros a b H. rewrite divide_div_mul_exact; try easy. apply gcd_divide_r.
+Qed.
+
+Lemma lcm_equiv2 : forall a b, gcd a b ~= 0 ->
+ (a / gcd a b) * b == (a*b)/gcd a b.
+Proof.
+ intros a b H. rewrite 2 (mul_comm _ b).
+ rewrite divide_div_mul_exact; try easy. apply gcd_divide_l.
+Qed.
+
+Lemma gcd_div_swap : forall a b,
+ (a / gcd a b) * b == a * (b / gcd a b).
+Proof.
+ intros a b. destruct (eq_decidable (gcd a b) 0) as [EQ|NEQ].
+ apply gcd_eq_0 in EQ. destruct EQ as (EQ,EQ'). rewrite EQ, EQ'. now nzsimpl.
+ now rewrite lcm_equiv1, <-lcm_equiv2.
+Qed.
+
+Lemma divide_lcm_l : forall a b, (a | lcm a b).
+Proof.
+ unfold lcm. intros a b. apply divide_factor_l.
+Qed.
+
+Lemma divide_lcm_r : forall a b, (b | lcm a b).
+Proof.
+ unfold lcm. intros a b. rewrite <- gcd_div_swap.
+ apply divide_factor_r.
+Qed.
+
+Lemma divide_div : forall a b c, a~=0 -> (a|b) -> (b|c) -> (b/a|c/a).
+Proof.
+ intros a b c Ha Hb (c',Hc). exists c'.
+ now rewrite <- divide_div_mul_exact, Hc.
+Qed.
+
+Lemma lcm_least : forall a b c,
+ (a | c) -> (b | c) -> (lcm a b | c).
+Proof.
+ intros a b c Ha Hb. unfold lcm.
+ destruct (eq_decidable (gcd a b) 0) as [EQ|NEQ].
+ apply gcd_eq_0 in EQ. destruct EQ as (EQ,EQ'). rewrite EQ in *. now nzsimpl.
+ assert (Ga := gcd_divide_l a b).
+ assert (Gb := gcd_divide_r a b).
+ set (g:=gcd a b) in *.
+ assert (Ha' := divide_div g a c NEQ Ga Ha).
+ assert (Hb' := divide_div g b c NEQ Gb Hb).
+ destruct Ha' as (a',Ha'). rewrite Ha', mul_comm in Hb'.
+ apply gauss in Hb'; [|apply gcd_div_gcd; unfold g; trivial using gcd_comm].
+ destruct Hb' as (b',Hb').
+ exists b'.
+ rewrite mul_shuffle3, <- Hb'.
+ rewrite (proj2 (div_exact c g NEQ)).
+ rewrite Ha', mul_shuffle3, (mul_comm a a'). f_equiv.
+ symmetry. apply div_exact; trivial.
+ apply mod_divide; trivial.
+ apply mod_divide; trivial. transitivity a; trivial.
+Qed.
+
+Lemma lcm_comm : forall a b, lcm a b == lcm b a.
+Proof.
+ intros a b. unfold lcm. rewrite (gcd_comm b), (mul_comm b).
+ now rewrite <- gcd_div_swap.
+Qed.
+
+Lemma lcm_divide_iff : forall n m p,
+ (lcm n m | p) <-> (n | p) /\ (m | p).
+Proof.
+ intros. split. split.
+ transitivity (lcm n m); trivial using divide_lcm_l.
+ transitivity (lcm n m); trivial using divide_lcm_r.
+ intros (H,H'). now apply lcm_least.
+Qed.
+
+Lemma lcm_unique : forall n m p,
+ 0<=p -> (n|p) -> (m|p) ->
+ (forall q, (n|q) -> (m|q) -> (p|q)) ->
+ lcm n m == p.
+Proof.
+ intros n m p Hp Hn Hm H.
+ apply divide_antisym; trivial.
+ now apply lcm_least.
+ apply H. apply divide_lcm_l. apply divide_lcm_r.
+Qed.
+
+Lemma lcm_unique_alt : forall n m p, 0<=p ->
+ (forall q, (p|q) <-> (n|q) /\ (m|q)) ->
+ lcm n m == p.
+Proof.
+ intros n m p Hp H.
+ apply lcm_unique; trivial.
+ apply H, divide_refl.
+ apply H, divide_refl.
+ intros. apply H. now split.
+Qed.
+
+Lemma lcm_assoc : forall n m p, lcm n (lcm m p) == lcm (lcm n m) p.
+Proof.
+ intros. apply lcm_unique_alt. apply le_0_l.
+ intros. now rewrite !lcm_divide_iff, and_assoc.
+Qed.
+
+Lemma lcm_0_l : forall n, lcm 0 n == 0.
+Proof.
+ intros. apply lcm_unique; trivial. order.
+ apply divide_refl.
+ apply divide_0_r.
+Qed.
+
+Lemma lcm_0_r : forall n, lcm n 0 == 0.
+Proof.
+ intros. now rewrite lcm_comm, lcm_0_l.
+Qed.
+
+Lemma lcm_1_l : forall n, lcm 1 n == n.
+Proof.
+ intros. apply lcm_unique; trivial using divide_1_l, le_0_l, divide_refl.
+Qed.
+
+Lemma lcm_1_r : forall n, lcm n 1 == n.
+Proof.
+ intros. now rewrite lcm_comm, lcm_1_l.
+Qed.
+
+Lemma lcm_diag : forall n, lcm n n == n.
+Proof.
+ intros. apply lcm_unique; trivial using divide_refl, le_0_l.
+Qed.
+
+Lemma lcm_eq_0 : forall n m, lcm n m == 0 <-> n == 0 \/ m == 0.
+Proof.
+ intros. split.
+ intros EQ.
+ apply eq_mul_0.
+ apply divide_0_l. rewrite <- EQ. apply lcm_least.
+ apply divide_factor_l. apply divide_factor_r.
+ destruct 1 as [EQ|EQ]; rewrite EQ. apply lcm_0_l. apply lcm_0_r.
+Qed.
+
+Lemma divide_lcm_eq_r : forall n m, (n|m) -> lcm n m == m.
+Proof.
+ intros n m H. apply lcm_unique_alt; trivial using le_0_l.
+ intros q. split. split; trivial. now transitivity m.
+ now destruct 1.
+Qed.
+
+Lemma divide_lcm_iff : forall n m, (n|m) <-> lcm n m == m.
+Proof.
+ intros n m. split. now apply divide_lcm_eq_r.
+ intros EQ. rewrite <- EQ. apply divide_lcm_l.
+Qed.
+
+Lemma lcm_mul_mono_l :
+ forall n m p, lcm (p * n) (p * m) == p * lcm n m.
+Proof.
+ intros n m p.
+ destruct (eq_decidable p 0) as [Hp|Hp].
+ rewrite Hp. nzsimpl. rewrite lcm_0_l. now nzsimpl.
+ destruct (eq_decidable (gcd n m) 0) as [Hg|Hg].
+ apply gcd_eq_0 in Hg. destruct Hg as (Hn,Hm); rewrite Hn, Hm.
+ nzsimpl. rewrite lcm_0_l. now nzsimpl.
+ unfold lcm.
+ rewrite gcd_mul_mono_l.
+ rewrite mul_assoc. f_equiv.
+ now rewrite div_mul_cancel_l.
+Qed.
+
+Lemma lcm_mul_mono_r :
+ forall n m p, lcm (n * p) (m * p) == lcm n m * p.
+Proof.
+ intros n m p. now rewrite !(mul_comm _ p), lcm_mul_mono_l, mul_comm.
+Qed.
+
+Lemma gcd_1_lcm_mul : forall n m, n~=0 -> m~=0 ->
+ (gcd n m == 1 <-> lcm n m == n*m).
+Proof.
+ intros n m Hn Hm. split; intros H.
+ unfold lcm. rewrite H. now rewrite div_1_r.
+ unfold lcm in *.
+ apply mul_cancel_l in H; trivial.
+ assert (Hg : gcd n m ~= 0) by (red; rewrite gcd_eq_0; destruct 1; order).
+ assert (H' := gcd_divide_r n m).
+ apply mod_divide in H'; trivial. apply div_exact in H'; trivial.
+ rewrite H in H'.
+ rewrite <- (mul_1_l m) in H' at 1.
+ now apply mul_cancel_r in H'.
+Qed.
+
+End NLcmProp.
diff --git a/theories/Numbers/Natural/Abstract/NLog.v b/theories/Numbers/Natural/Abstract/NLog.v
new file mode 100644
index 00000000..74827c6e
--- /dev/null
+++ b/theories/Numbers/Natural/Abstract/NLog.v
@@ -0,0 +1,23 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(** Base-2 Logarithm Properties *)
+
+Require Import NAxioms NSub NPow NParity NZLog.
+
+Module Type NLog2Prop
+ (A : NAxiomsSig)
+ (B : NSubProp A)
+ (C : NParityProp A B)
+ (D : NPowProp A B C).
+
+ (** For the moment we simply reuse NZ properties *)
+
+ Include NZLog2Prop A A A B D.Private_NZPow.
+ Include NZLog2UpProp A A A B D.Private_NZPow.
+End NLog2Prop.
diff --git a/theories/Numbers/Natural/Abstract/NMaxMin.v b/theories/Numbers/Natural/Abstract/NMaxMin.v
new file mode 100644
index 00000000..cdff6dbc
--- /dev/null
+++ b/theories/Numbers/Natural/Abstract/NMaxMin.v
@@ -0,0 +1,135 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Require Import NAxioms NSub GenericMinMax.
+
+(** * Properties of minimum and maximum specific to natural numbers *)
+
+Module Type NMaxMinProp (Import N : NAxiomsMiniSig').
+Include NSubProp N.
+
+(** Zero *)
+
+Lemma max_0_l : forall n, max 0 n == n.
+Proof.
+ intros. apply max_r. apply le_0_l.
+Qed.
+
+Lemma max_0_r : forall n, max n 0 == n.
+Proof.
+ intros. apply max_l. apply le_0_l.
+Qed.
+
+Lemma min_0_l : forall n, min 0 n == 0.
+Proof.
+ intros. apply min_l. apply le_0_l.
+Qed.
+
+Lemma min_0_r : forall n, min n 0 == 0.
+Proof.
+ intros. apply min_r. apply le_0_l.
+Qed.
+
+(** The following results are concrete instances of [max_monotone]
+ and similar lemmas. *)
+
+(** Succ *)
+
+Lemma succ_max_distr : forall n m, S (max n m) == max (S n) (S m).
+Proof.
+ intros. destruct (le_ge_cases n m);
+ [rewrite 2 max_r | rewrite 2 max_l]; now rewrite <- ?succ_le_mono.
+Qed.
+
+Lemma succ_min_distr : forall n m, S (min n m) == min (S n) (S m).
+Proof.
+ intros. destruct (le_ge_cases n m);
+ [rewrite 2 min_l | rewrite 2 min_r]; now rewrite <- ?succ_le_mono.
+Qed.
+
+(** Add *)
+
+Lemma add_max_distr_l : forall n m p, max (p + n) (p + m) == p + max n m.
+Proof.
+ intros. destruct (le_ge_cases n m);
+ [rewrite 2 max_r | rewrite 2 max_l]; now rewrite <- ?add_le_mono_l.
+Qed.
+
+Lemma add_max_distr_r : forall n m p, max (n + p) (m + p) == max n m + p.
+Proof.
+ intros. destruct (le_ge_cases n m);
+ [rewrite 2 max_r | rewrite 2 max_l]; now rewrite <- ?add_le_mono_r.
+Qed.
+
+Lemma add_min_distr_l : forall n m p, min (p + n) (p + m) == p + min n m.
+Proof.
+ intros. destruct (le_ge_cases n m);
+ [rewrite 2 min_l | rewrite 2 min_r]; now rewrite <- ?add_le_mono_l.
+Qed.
+
+Lemma add_min_distr_r : forall n m p, min (n + p) (m + p) == min n m + p.
+Proof.
+ intros. destruct (le_ge_cases n m);
+ [rewrite 2 min_l | rewrite 2 min_r]; now rewrite <- ?add_le_mono_r.
+Qed.
+
+(** Mul *)
+
+Lemma mul_max_distr_l : forall n m p, max (p * n) (p * m) == p * max n m.
+Proof.
+ intros. destruct (le_ge_cases n m);
+ [rewrite 2 max_r | rewrite 2 max_l]; try order; now apply mul_le_mono_l.
+Qed.
+
+Lemma mul_max_distr_r : forall n m p, max (n * p) (m * p) == max n m * p.
+Proof.
+ intros. destruct (le_ge_cases n m);
+ [rewrite 2 max_r | rewrite 2 max_l]; try order; now apply mul_le_mono_r.
+Qed.
+
+Lemma mul_min_distr_l : forall n m p, min (p * n) (p * m) == p * min n m.
+Proof.
+ intros. destruct (le_ge_cases n m);
+ [rewrite 2 min_l | rewrite 2 min_r]; try order; now apply mul_le_mono_l.
+Qed.
+
+Lemma mul_min_distr_r : forall n m p, min (n * p) (m * p) == min n m * p.
+Proof.
+ intros. destruct (le_ge_cases n m);
+ [rewrite 2 min_l | rewrite 2 min_r]; try order; now apply mul_le_mono_r.
+Qed.
+
+(** Sub *)
+
+Lemma sub_max_distr_l : forall n m p, max (p - n) (p - m) == p - min n m.
+Proof.
+ intros. destruct (le_ge_cases n m).
+ rewrite min_l by trivial. apply max_l. now apply sub_le_mono_l.
+ rewrite min_r by trivial. apply max_r. now apply sub_le_mono_l.
+Qed.
+
+Lemma sub_max_distr_r : forall n m p, max (n - p) (m - p) == max n m - p.
+Proof.
+ intros. destruct (le_ge_cases n m);
+ [rewrite 2 max_r | rewrite 2 max_l]; try order; now apply sub_le_mono_r.
+Qed.
+
+Lemma sub_min_distr_l : forall n m p, min (p - n) (p - m) == p - max n m.
+Proof.
+ intros. destruct (le_ge_cases n m).
+ rewrite max_r by trivial. apply min_r. now apply sub_le_mono_l.
+ rewrite max_l by trivial. apply min_l. now apply sub_le_mono_l.
+Qed.
+
+Lemma sub_min_distr_r : forall n m p, min (n - p) (m - p) == min n m - p.
+Proof.
+ intros. destruct (le_ge_cases n m);
+ [rewrite 2 min_l | rewrite 2 min_r]; try order; now apply sub_le_mono_r.
+Qed.
+
+End NMaxMinProp.
diff --git a/theories/Numbers/Natural/Abstract/NMulOrder.v b/theories/Numbers/Natural/Abstract/NMulOrder.v
index bdd4b674..1d6e8ba0 100644
--- a/theories/Numbers/Natural/Abstract/NMulOrder.v
+++ b/theories/Numbers/Natural/Abstract/NMulOrder.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,12 +8,10 @@
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
-(*i $Id: NMulOrder.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
Require Export NAddOrder.
-Module NMulOrderPropFunct (Import N : NAxiomsSig').
-Include NAddOrderPropFunct N.
+Module NMulOrderProp (Import N : NAxiomsMiniSig').
+Include NAddOrderProp N.
(** Theorems that are either not valid on Z or have different proofs
on N and Z *)
@@ -55,7 +53,7 @@ Qed.
Theorem lt_0_mul' : forall n m, n * m > 0 <-> n > 0 /\ m > 0.
Proof.
intros n m; split; [intro H | intros [H1 H2]].
-apply -> lt_0_mul in H. destruct H as [[H1 H2] | [H1 H2]]. now split.
+apply lt_0_mul in H. destruct H as [[H1 H2] | [H1 H2]]. now split.
false_hyp H1 nlt_0_r.
now apply mul_pos_pos.
Qed.
@@ -67,14 +65,18 @@ Proof.
intros n m.
split; [| intros [H1 H2]; now rewrite H1, H2, mul_1_l].
intro H; destruct (lt_trichotomy n 1) as [H1 | [H1 | H1]].
-apply -> lt_1_r in H1. rewrite H1, mul_0_l in H. false_hyp H neq_0_succ.
+apply lt_1_r in H1. rewrite H1, mul_0_l in H. order'.
rewrite H1, mul_1_l in H; now split.
destruct (eq_0_gt_0_cases m) as [H2 | H2].
-rewrite H2, mul_0_r in H; false_hyp H neq_0_succ.
-apply -> (mul_lt_mono_pos_r m) in H1; [| assumption]. rewrite mul_1_l in H1.
+rewrite H2, mul_0_r in H. order'.
+apply (mul_lt_mono_pos_r m) in H1; [| assumption]. rewrite mul_1_l in H1.
assert (H3 : 1 < n * m) by now apply (lt_1_l m).
rewrite H in H3; false_hyp H3 lt_irrefl.
Qed.
-End NMulOrderPropFunct.
+(** Alternative name : *)
+
+Definition mul_eq_1 := eq_mul_1.
+
+End NMulOrderProp.
diff --git a/theories/Numbers/Natural/Abstract/NOrder.v b/theories/Numbers/Natural/Abstract/NOrder.v
index 17dd3466..8bba7d72 100644
--- a/theories/Numbers/Natural/Abstract/NOrder.v
+++ b/theories/Numbers/Natural/Abstract/NOrder.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,18 +8,16 @@
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
-(*i $Id: NOrder.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
Require Export NAdd.
-Module NOrderPropFunct (Import N : NAxiomsSig').
-Include NAddPropFunct N.
+Module NOrderProp (Import N : NAxiomsMiniSig').
+Include NAddProp N.
(* Theorems that are true for natural numbers but not for integers *)
Theorem lt_wf_0 : well_founded lt.
Proof.
-setoid_replace lt with (fun n m => 0 <= n /\ n < m).
+setoid_replace lt with (fun n m => 0 <= n < m).
apply lt_wf.
intros x y; split.
intro H; split; [apply le_0_l | assumption]. now intros [_ H].
@@ -29,12 +27,12 @@ Defined.
Theorem nlt_0_r : forall n, ~ n < 0.
Proof.
-intro n; apply -> le_ngt. apply le_0_l.
+intro n; apply le_ngt. apply le_0_l.
Qed.
Theorem nle_succ_0 : forall n, ~ (S n <= 0).
Proof.
-intros n H; apply -> le_succ_l in H; false_hyp H nlt_0_r.
+intros n H; apply le_succ_l in H; false_hyp H nlt_0_r.
Qed.
Theorem le_0_r : forall n, n <= 0 <-> n == 0.
@@ -65,6 +63,7 @@ Qed.
Theorem zero_one : forall n, n == 0 \/ n == 1 \/ 1 < n.
Proof.
+setoid_rewrite one_succ.
induct n. now left.
cases n. intros; right; now left.
intros n IH. destruct IH as [H | [H | H]].
@@ -75,6 +74,7 @@ Qed.
Theorem lt_1_r : forall n, n < 1 <-> n == 0.
Proof.
+setoid_rewrite one_succ.
cases n.
split; intro; [reflexivity | apply lt_succ_diag_r].
intros n. rewrite <- succ_lt_mono.
@@ -83,6 +83,7 @@ Qed.
Theorem le_1_r : forall n, n <= 1 <-> n == 0 \/ n == 1.
Proof.
+setoid_rewrite one_succ.
cases n.
split; intro; [now left | apply le_succ_diag_r].
intro n. rewrite <- succ_le_mono, le_0_r, succ_inj_wd.
@@ -117,9 +118,9 @@ Proof.
intros Base Step; induct n.
intros; apply Base.
intros n IH m H. elim H using le_ind.
-solve_predicate_wd.
+solve_proper.
apply Step; [| apply IH]; now apply eq_le_incl.
-intros k H1 H2. apply -> le_succ_l in H1. apply lt_le_incl in H1. auto.
+intros k H1 H2. apply le_succ_l in H1. apply lt_le_incl in H1. auto.
Qed.
Theorem lt_ind_rel :
@@ -131,7 +132,7 @@ intros Base Step; induct n.
intros m H. apply lt_exists_pred in H; destruct H as [m' [H _]].
rewrite H; apply Base.
intros n IH m H. elim H using lt_ind.
-solve_predicate_wd.
+solve_proper.
apply Step; [| apply IH]; now apply lt_succ_diag_r.
intros k H1 H2. apply lt_succ_l in H1. auto.
Qed.
@@ -175,7 +176,7 @@ Theorem lt_le_pred : forall n m, n < m -> n <= P m.
Proof.
intro n; cases m.
intro H; false_hyp H nlt_0_r.
-intros m IH. rewrite pred_succ; now apply -> lt_succ_r.
+intros m IH. rewrite pred_succ; now apply lt_succ_r.
Qed.
Theorem lt_pred_le : forall n m, P n < m -> n <= m.
@@ -183,7 +184,7 @@ Theorem lt_pred_le : forall n m, P n < m -> n <= m.
Proof.
intros n m; cases n.
rewrite pred_0; intro H; now apply lt_le_incl.
-intros n IH. rewrite pred_succ in IH. now apply <- le_succ_l.
+intros n IH. rewrite pred_succ in IH. now apply le_succ_l.
Qed.
Theorem lt_pred_lt : forall n m, n < P m -> n < m.
@@ -200,7 +201,7 @@ Theorem pred_le_mono : forall n m, n <= m -> P n <= P m.
(* Converse is false for n == 1, m == 0 *)
Proof.
intros n m H; elim H using le_ind_rel.
-solve_relation_wd.
+solve_proper.
intro; rewrite pred_0; apply le_0_l.
intros p q H1 _; now do 2 rewrite pred_succ.
Qed.
@@ -208,12 +209,12 @@ Qed.
Theorem pred_lt_mono : forall n m, n ~= 0 -> (n < m <-> P n < P m).
Proof.
intros n m H1; split; intro H2.
-assert (m ~= 0). apply <- neq_0_lt_0. now apply lt_lt_0 with n.
+assert (m ~= 0). apply neq_0_lt_0. now apply lt_lt_0 with n.
now rewrite <- (succ_pred n) in H2; rewrite <- (succ_pred m) in H2 ;
-[apply <- succ_lt_mono | | |].
-assert (m ~= 0). apply <- neq_0_lt_0. apply lt_lt_0 with (P n).
+[apply succ_lt_mono | | |].
+assert (m ~= 0). apply neq_0_lt_0. apply lt_lt_0 with (P n).
apply lt_le_trans with (P m). assumption. apply le_pred_l.
-apply -> succ_lt_mono in H2. now do 2 rewrite succ_pred in H2.
+apply succ_lt_mono in H2. now do 2 rewrite succ_pred in H2.
Qed.
Theorem lt_succ_lt_pred : forall n m, S n < m <-> n < P m.
@@ -224,13 +225,13 @@ Qed.
Theorem le_succ_le_pred : forall n m, S n <= m -> n <= P m.
(* Converse is false for n == m == 0 *)
Proof.
-intros n m H. apply lt_le_pred. now apply -> le_succ_l.
+intros n m H. apply lt_le_pred. now apply le_succ_l.
Qed.
Theorem lt_pred_lt_succ : forall n m, P n < m -> n < S m.
(* Converse is false for n == m == 0 *)
Proof.
-intros n m H. apply <- lt_succ_r. now apply lt_pred_le.
+intros n m H. apply lt_succ_r. now apply lt_pred_le.
Qed.
Theorem le_pred_le_succ : forall n m, P n <= m <-> n <= S m.
@@ -240,5 +241,5 @@ rewrite pred_0. split; intro H; apply le_0_l.
intro n. rewrite pred_succ. apply succ_le_mono.
Qed.
-End NOrderPropFunct.
+End NOrderProp.
diff --git a/theories/Numbers/Natural/Abstract/NParity.v b/theories/Numbers/Natural/Abstract/NParity.v
new file mode 100644
index 00000000..6a1e20ce
--- /dev/null
+++ b/theories/Numbers/Natural/Abstract/NParity.v
@@ -0,0 +1,63 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Require Import Bool NSub NZParity.
+
+(** Some additionnal properties of [even], [odd]. *)
+
+Module Type NParityProp (Import N : NAxiomsSig')(Import NP : NSubProp N).
+
+Include NZParityProp N N NP.
+
+Lemma odd_pred : forall n, n~=0 -> odd (P n) = even n.
+Proof.
+ intros. rewrite <- (succ_pred n) at 2 by trivial.
+ symmetry. apply even_succ.
+Qed.
+
+Lemma even_pred : forall n, n~=0 -> even (P n) = odd n.
+Proof.
+ intros. rewrite <- (succ_pred n) at 2 by trivial.
+ symmetry. apply odd_succ.
+Qed.
+
+Lemma even_sub : forall n m, m<=n -> even (n-m) = Bool.eqb (even n) (even m).
+Proof.
+ intros.
+ case_eq (even n); case_eq (even m);
+ rewrite <- ?negb_true_iff, ?negb_even, ?odd_spec, ?even_spec;
+ intros (m',Hm) (n',Hn).
+ exists (n'-m'). now rewrite mul_sub_distr_l, Hn, Hm.
+ exists (n'-m'-1).
+ rewrite !mul_sub_distr_l, Hn, Hm, sub_add_distr, mul_1_r.
+ rewrite two_succ at 5. rewrite <- (add_1_l 1). rewrite sub_add_distr.
+ symmetry. apply sub_add.
+ apply le_add_le_sub_l.
+ rewrite add_1_l, <- two_succ, <- (mul_1_r 2) at 1.
+ rewrite <- mul_sub_distr_l. rewrite <- mul_le_mono_pos_l by order'.
+ rewrite one_succ, le_succ_l. rewrite <- lt_add_lt_sub_l, add_0_r.
+ destruct (le_gt_cases n' m') as [LE|GT]; trivial.
+ generalize (double_below _ _ LE). order.
+ exists (n'-m'). rewrite mul_sub_distr_l, Hn, Hm.
+ apply add_sub_swap.
+ apply mul_le_mono_pos_l; try order'.
+ destruct (le_gt_cases m' n') as [LE|GT]; trivial.
+ generalize (double_above _ _ GT). order.
+ exists (n'-m'). rewrite Hm,Hn, mul_sub_distr_l.
+ rewrite sub_add_distr. rewrite add_sub_swap. apply add_sub.
+ apply succ_le_mono.
+ rewrite add_1_r in Hm,Hn. order.
+Qed.
+
+Lemma odd_sub : forall n m, m<=n -> odd (n-m) = xorb (odd n) (odd m).
+Proof.
+ intros. rewrite <- !negb_even. rewrite even_sub by trivial.
+ now destruct (even n), (even m).
+Qed.
+
+End NParityProp.
diff --git a/theories/Numbers/Natural/Abstract/NPow.v b/theories/Numbers/Natural/Abstract/NPow.v
new file mode 100644
index 00000000..07aee9c6
--- /dev/null
+++ b/theories/Numbers/Natural/Abstract/NPow.v
@@ -0,0 +1,160 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(** Properties of the power function *)
+
+Require Import Bool NAxioms NSub NParity NZPow.
+
+(** Derived properties of power, specialized on natural numbers *)
+
+Module Type NPowProp
+ (Import A : NAxiomsSig')
+ (Import B : NSubProp A)
+ (Import C : NParityProp A B).
+
+ Module Import Private_NZPow := Nop <+ NZPowProp A A B.
+
+Ltac auto' := trivial; try rewrite <- neq_0_lt_0; auto using le_0_l.
+Ltac wrap l := intros; apply l; auto'.
+
+Lemma pow_succ_r' : forall a b, a^(S b) == a * a^b.
+Proof. wrap pow_succ_r. Qed.
+
+(** Power and basic constants *)
+
+Lemma pow_0_l : forall a, a~=0 -> 0^a == 0.
+Proof. wrap pow_0_l. Qed.
+
+Definition pow_1_r : forall a, a^1 == a
+ := pow_1_r.
+
+Lemma pow_1_l : forall a, 1^a == 1.
+Proof. wrap pow_1_l. Qed.
+
+Definition pow_2_r : forall a, a^2 == a*a
+ := pow_2_r.
+
+(** Power and addition, multiplication *)
+
+Lemma pow_add_r : forall a b c, a^(b+c) == a^b * a^c.
+Proof. wrap pow_add_r. Qed.
+
+Lemma pow_mul_l : forall a b c, (a*b)^c == a^c * b^c.
+Proof. wrap pow_mul_l. Qed.
+
+Lemma pow_mul_r : forall a b c, a^(b*c) == (a^b)^c.
+Proof. wrap pow_mul_r. Qed.
+
+(** Power and nullity *)
+
+Lemma pow_eq_0 : forall a b, b~=0 -> a^b == 0 -> a == 0.
+Proof. intros. apply (pow_eq_0 a b); trivial. auto'. Qed.
+
+Lemma pow_nonzero : forall a b, a~=0 -> a^b ~= 0.
+Proof. wrap pow_nonzero. Qed.
+
+Lemma pow_eq_0_iff : forall a b, a^b == 0 <-> b~=0 /\ a==0.
+Proof.
+ intros a b. split.
+ rewrite pow_eq_0_iff. intros [H |[H H']].
+ generalize (le_0_l b); order. split; order.
+ intros (Hb,Ha). rewrite Ha. now apply pow_0_l'.
+Qed.
+
+(** Monotonicity *)
+
+Lemma pow_lt_mono_l : forall a b c, c~=0 -> a<b -> a^c < b^c.
+Proof. wrap pow_lt_mono_l. Qed.
+
+Lemma pow_le_mono_l : forall a b c, a<=b -> a^c <= b^c.
+Proof. wrap pow_le_mono_l. Qed.
+
+Lemma pow_gt_1 : forall a b, 1<a -> b~=0 -> 1<a^b.
+Proof. wrap pow_gt_1. Qed.
+
+Lemma pow_lt_mono_r : forall a b c, 1<a -> b<c -> a^b < a^c.
+Proof. wrap pow_lt_mono_r. Qed.
+
+(** NB: since 0^0 > 0^1, the following result isn't valid with a=0 *)
+
+Lemma pow_le_mono_r : forall a b c, a~=0 -> b<=c -> a^b <= a^c.
+Proof. wrap pow_le_mono_r. Qed.
+
+Lemma pow_le_mono : forall a b c d, a~=0 -> a<=c -> b<=d ->
+ a^b <= c^d.
+Proof. wrap pow_le_mono. Qed.
+
+Definition pow_lt_mono : forall a b c d, 0<a<c -> 0<b<d ->
+ a^b < c^d
+ := pow_lt_mono.
+
+(** Injectivity *)
+
+Lemma pow_inj_l : forall a b c, c~=0 -> a^c == b^c -> a == b.
+Proof. intros; eapply pow_inj_l; eauto; auto'. Qed.
+
+Lemma pow_inj_r : forall a b c, 1<a -> a^b == a^c -> b == c.
+Proof. intros; eapply pow_inj_r; eauto; auto'. Qed.
+
+(** Monotonicity results, both ways *)
+
+Lemma pow_lt_mono_l_iff : forall a b c, c~=0 ->
+ (a<b <-> a^c < b^c).
+Proof. wrap pow_lt_mono_l_iff. Qed.
+
+Lemma pow_le_mono_l_iff : forall a b c, c~=0 ->
+ (a<=b <-> a^c <= b^c).
+Proof. wrap pow_le_mono_l_iff. Qed.
+
+Lemma pow_lt_mono_r_iff : forall a b c, 1<a ->
+ (b<c <-> a^b < a^c).
+Proof. wrap pow_lt_mono_r_iff. Qed.
+
+Lemma pow_le_mono_r_iff : forall a b c, 1<a ->
+ (b<=c <-> a^b <= a^c).
+Proof. wrap pow_le_mono_r_iff. Qed.
+
+(** For any a>1, the a^x function is above the identity function *)
+
+Lemma pow_gt_lin_r : forall a b, 1<a -> b < a^b.
+Proof. wrap pow_gt_lin_r. Qed.
+
+(** Someday, we should say something about the full Newton formula.
+ In the meantime, we can at least provide some inequalities about
+ (a+b)^c.
+*)
+
+Lemma pow_add_lower : forall a b c, c~=0 ->
+ a^c + b^c <= (a+b)^c.
+Proof. wrap pow_add_lower. Qed.
+
+(** This upper bound can also be seen as a convexity proof for x^c :
+ image of (a+b)/2 is below the middle of the images of a and b
+*)
+
+Lemma pow_add_upper : forall a b c, c~=0 ->
+ (a+b)^c <= 2^(pred c) * (a^c + b^c).
+Proof. wrap pow_add_upper. Qed.
+
+(** Power and parity *)
+
+Lemma even_pow : forall a b, b~=0 -> even (a^b) = even a.
+Proof.
+ intros a b Hb. rewrite neq_0_lt_0 in Hb.
+ apply lt_ind with (4:=Hb). solve_proper.
+ now nzsimpl.
+ clear b Hb. intros b Hb IH.
+ rewrite pow_succ_r', even_mul, IH. now destruct (even a).
+Qed.
+
+Lemma odd_pow : forall a b, b~=0 -> odd (a^b) = odd a.
+Proof.
+ intros. now rewrite <- !negb_even, even_pow.
+Qed.
+
+End NPowProp.
diff --git a/theories/Numbers/Natural/Abstract/NProperties.v b/theories/Numbers/Natural/Abstract/NProperties.v
index c9e05113..1edb6b51 100644
--- a/theories/Numbers/Natural/Abstract/NProperties.v
+++ b/theories/Numbers/Natural/Abstract/NProperties.v
@@ -1,22 +1,17 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: NProperties.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
+Require Export NAxioms.
+Require Import NMaxMin NParity NPow NSqrt NLog NDiv NGcd NLcm NBits.
-Require Export NAxioms NSub.
+(** This functor summarizes all known facts about N. *)
-(** This functor summarizes all known facts about N.
- For the moment it is only an alias to [NSubPropFunct], which
- subsumes all others.
-*)
-
-Module Type NPropSig := NSubPropFunct.
-
-Module NPropFunct (N:NAxiomsSig) <: NPropSig N.
- Include NPropSig N.
-End NPropFunct.
+Module Type NProp (N:NAxiomsSig) :=
+ NMaxMinProp N <+ NParityProp N <+ NPowProp N <+ NSqrtProp N
+ <+ NLog2Prop N <+ NDivProp N <+ NGcdProp N <+ NLcmProp N
+ <+ NBitsProp N.
diff --git a/theories/Numbers/Natural/Abstract/NSqrt.v b/theories/Numbers/Natural/Abstract/NSqrt.v
new file mode 100644
index 00000000..34b7d011
--- /dev/null
+++ b/theories/Numbers/Natural/Abstract/NSqrt.v
@@ -0,0 +1,75 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(** Properties of Square Root Function *)
+
+Require Import NAxioms NSub NZSqrt.
+
+Module NSqrtProp (Import A : NAxiomsSig')(Import B : NSubProp A).
+
+ Module Import Private_NZSqrt := Nop <+ NZSqrtProp A A B.
+
+ Ltac auto' := trivial; try rewrite <- neq_0_lt_0; auto using le_0_l.
+ Ltac wrap l := intros; apply l; auto'.
+
+ (** We redefine NZSqrt's results, without the non-negative hyps *)
+
+Lemma sqrt_spec' : forall a, √a*√a <= a < S (√a) * S (√a).
+Proof. wrap sqrt_spec. Qed.
+
+Definition sqrt_unique : forall a b, b*b<=a<(S b)*(S b) -> √a == b
+ := sqrt_unique.
+
+Lemma sqrt_square : forall a, √(a*a) == a.
+Proof. wrap sqrt_square. Qed.
+
+Definition sqrt_le_mono : forall a b, a<=b -> √a <= √b
+ := sqrt_le_mono.
+
+Definition sqrt_lt_cancel : forall a b, √a < √b -> a < b
+ := sqrt_lt_cancel.
+
+Lemma sqrt_le_square : forall a b, b*b<=a <-> b <= √a.
+Proof. wrap sqrt_le_square. Qed.
+
+Lemma sqrt_lt_square : forall a b, a<b*b <-> √a < b.
+Proof. wrap sqrt_lt_square. Qed.
+
+Definition sqrt_0 := sqrt_0.
+Definition sqrt_1 := sqrt_1.
+Definition sqrt_2 := sqrt_2.
+
+Definition sqrt_lt_lin : forall a, 1<a -> √a<a
+ := sqrt_lt_lin.
+
+Lemma sqrt_le_lin : forall a, √a<=a.
+Proof. wrap sqrt_le_lin. Qed.
+
+Definition sqrt_mul_below : forall a b, √a * √b <= √(a*b)
+ := sqrt_mul_below.
+
+Lemma sqrt_mul_above : forall a b, √(a*b) < S (√a) * S (√b).
+Proof. wrap sqrt_mul_above. Qed.
+
+Lemma sqrt_succ_le : forall a, √(S a) <= S (√a).
+Proof. wrap sqrt_succ_le. Qed.
+
+Lemma sqrt_succ_or : forall a, √(S a) == S (√a) \/ √(S a) == √a.
+Proof. wrap sqrt_succ_or. Qed.
+
+Definition sqrt_add_le : forall a b, √(a+b) <= √a + √b
+ := sqrt_add_le.
+
+Lemma add_sqrt_le : forall a b, √a + √b <= √(2*(a+b)).
+Proof. wrap add_sqrt_le. Qed.
+
+(** For the moment, we include stuff about [sqrt_up] with patching them. *)
+
+Include NZSqrtUpProp A A B Private_NZSqrt.
+
+End NSqrtProp.
diff --git a/theories/Numbers/Natural/Abstract/NStrongRec.v b/theories/Numbers/Natural/Abstract/NStrongRec.v
index d9a2427d..607746d5 100644
--- a/theories/Numbers/Natural/Abstract/NStrongRec.v
+++ b/theories/Numbers/Natural/Abstract/NStrongRec.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,15 +8,15 @@
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
-(*i $Id: NStrongRec.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
(** This file defined the strong (course-of-value, well-founded) recursion
and proves its properties *)
Require Export NSub.
-Module NStrongRecPropFunct (Import N : NAxiomsSig').
-Include NSubPropFunct N.
+Ltac f_equiv' := repeat progress (f_equiv; try intros ? ? ?; auto).
+
+Module NStrongRecProp (Import N : NAxiomsRecSig').
+Include NSubProp N.
Section StrongRecursion.
@@ -51,30 +51,18 @@ Proof.
reflexivity.
Qed.
-(** We need a result similar to [f_equal], but for setoid equalities. *)
-Lemma f_equiv : forall f g x y,
- (N.eq==>Aeq)%signature f g -> N.eq x y -> Aeq (f x) (g y).
-Proof.
-auto.
-Qed.
-
Instance strong_rec0_wd :
Proper (Aeq ==> ((N.eq ==> Aeq) ==> N.eq ==> Aeq) ==> N.eq ==> N.eq ==> Aeq)
strong_rec0.
Proof.
-unfold strong_rec0.
-repeat red; intros.
-apply f_equiv; auto.
-apply recursion_wd; try red; auto.
+unfold strong_rec0; f_equiv'.
Qed.
Instance strong_rec_wd :
Proper (Aeq ==> ((N.eq ==> Aeq) ==> N.eq ==> Aeq) ==> N.eq ==> Aeq) strong_rec.
Proof.
intros a a' Eaa' f f' Eff' n n' Enn'.
-rewrite !strong_rec_alt.
-apply strong_rec0_wd; auto.
-now rewrite Enn'.
+rewrite !strong_rec_alt; f_equiv'.
Qed.
Section FixPoint.
@@ -92,18 +80,16 @@ Lemma strong_rec0_succ : forall a n m,
Aeq (strong_rec0 a f (S n) m) (f (strong_rec0 a f n) m).
Proof.
intros. unfold strong_rec0.
-apply f_equiv; auto with *.
-rewrite recursion_succ; try (repeat red; auto with *; fail).
-apply f_wd.
-apply recursion_wd; try red; auto with *.
+f_equiv.
+rewrite recursion_succ; f_equiv'.
+reflexivity.
Qed.
Lemma strong_rec_0 : forall a,
Aeq (strong_rec a f 0) (f (fun _ => a) 0).
Proof.
-intros. rewrite strong_rec_alt, strong_rec0_succ.
-apply f_wd; auto with *.
-red; intros; rewrite strong_rec0_0; auto with *.
+intros. rewrite strong_rec_alt, strong_rec0_succ; f_equiv'.
+rewrite strong_rec0_0. reflexivity.
Qed.
(* We need an assumption saying that for every n, the step function (f h n)
@@ -158,7 +144,7 @@ intros.
transitivity (f (fun n => strong_rec0 a f (S n) n) n).
rewrite strong_rec_alt.
apply strong_rec0_fixpoint.
-apply f_wd; auto with *.
+f_equiv.
intros x x' Hx; rewrite strong_rec_alt, Hx; auto with *.
Qed.
@@ -204,7 +190,7 @@ Qed.
End FixPoint.
End StrongRecursion.
-Implicit Arguments strong_rec [A].
+Arguments strong_rec [A] a f n.
-End NStrongRecPropFunct.
+End NStrongRecProp.
diff --git a/theories/Numbers/Natural/Abstract/NSub.v b/theories/Numbers/Natural/Abstract/NSub.v
index c0be3114..d7143c67 100644
--- a/theories/Numbers/Natural/Abstract/NSub.v
+++ b/theories/Numbers/Natural/Abstract/NSub.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,12 +8,10 @@
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
-(*i $Id: NSub.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
Require Export NMulOrder.
-Module Type NSubPropFunct (Import N : NAxiomsSig').
-Include NMulOrderPropFunct N.
+Module Type NSubProp (Import N : NAxiomsMiniSig').
+Include NMulOrderProp N.
Theorem sub_0_l : forall n, 0 - n == 0.
Proof.
@@ -37,7 +35,7 @@ Qed.
Theorem sub_gt : forall n m, n > m -> n - m ~= 0.
Proof.
intros n m H; elim H using lt_ind_rel; clear n m H.
-solve_relation_wd.
+solve_proper.
intro; rewrite sub_0_r; apply neq_succ_0.
intros; now rewrite sub_succ.
Qed.
@@ -47,8 +45,8 @@ Proof.
intros n m p; induct p.
intro; now do 2 rewrite sub_0_r.
intros p IH H. do 2 rewrite sub_succ_r.
-rewrite <- IH by (apply lt_le_incl; now apply -> le_succ_l).
-rewrite add_pred_r by (apply sub_gt; now apply -> le_succ_l).
+rewrite <- IH by (apply lt_le_incl; now apply le_succ_l).
+rewrite add_pred_r by (apply sub_gt; now apply le_succ_l).
reflexivity.
Qed.
@@ -205,6 +203,26 @@ Proof.
intros n m p. rewrite add_comm; apply lt_add_lt_sub_r.
Qed.
+Theorem sub_lt : forall n m, m <= n -> 0 < m -> n - m < n.
+Proof.
+intros n m LE LT.
+assert (LE' := le_sub_l n m). rewrite lt_eq_cases in LE'.
+destruct LE' as [LT'|EQ]. assumption.
+apply add_sub_eq_nz in EQ; [|order].
+rewrite (add_lt_mono_r _ _ n), add_0_l in LT. order.
+Qed.
+
+Lemma sub_le_mono_r : forall n m p, n <= m -> n-p <= m-p.
+Proof.
+ intros. rewrite le_sub_le_add_r. transitivity m. assumption. apply sub_add_le.
+Qed.
+
+Lemma sub_le_mono_l : forall n m p, n <= m -> p-m <= p-n.
+Proof.
+ intros. rewrite le_sub_le_add_r.
+ transitivity (p-n+n); [ apply sub_add_le | now apply add_le_mono_l].
+Qed.
+
(** Sub and mul *)
Theorem mul_pred_r : forall n m, n * (P m) == n * m - n.
@@ -224,10 +242,10 @@ intros n IH. destruct (le_gt_cases m n) as [H | H].
rewrite sub_succ_l by assumption. do 2 rewrite mul_succ_l.
rewrite (add_comm ((n - m) * p) p), (add_comm (n * p) p).
rewrite <- (add_sub_assoc p (n * p) (m * p)) by now apply mul_le_mono_r.
-now apply <- add_cancel_l.
-assert (H1 : S n <= m); [now apply <- le_succ_l |].
-setoid_replace (S n - m) with 0 by now apply <- sub_0_le.
-setoid_replace ((S n * p) - m * p) with 0 by (apply <- sub_0_le; now apply mul_le_mono_r).
+now apply add_cancel_l.
+assert (H1 : S n <= m); [now apply le_succ_l |].
+setoid_replace (S n - m) with 0 by now apply sub_0_le.
+setoid_replace ((S n * p) - m * p) with 0 by (apply sub_0_le; now apply mul_le_mono_r).
apply mul_0_l.
Qed.
@@ -298,5 +316,5 @@ Theorem add_dichotomy :
forall n m, (exists p, p + n == m) \/ (exists p, p + m == n).
Proof. exact le_alt_dichotomy. Qed.
-End NSubPropFunct.
+End NSubProp.