diff options
Diffstat (limited to 'theories/Numbers/Natural/Abstract/NSub.v')
-rw-r--r-- | theories/Numbers/Natural/Abstract/NSub.v | 180 |
1 files changed, 180 insertions, 0 deletions
diff --git a/theories/Numbers/Natural/Abstract/NSub.v b/theories/Numbers/Natural/Abstract/NSub.v new file mode 100644 index 00000000..f67689dd --- /dev/null +++ b/theories/Numbers/Natural/Abstract/NSub.v @@ -0,0 +1,180 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) +(* Evgeny Makarov, INRIA, 2007 *) +(************************************************************************) + +(*i $Id: NSub.v 11040 2008-06-03 00:04:16Z letouzey $ i*) + +Require Export NMulOrder. + +Module NSubPropFunct (Import NAxiomsMod : NAxiomsSig). +Module Export NMulOrderPropMod := NMulOrderPropFunct NAxiomsMod. +Open Local Scope NatScope. + +Theorem sub_wd : + forall n1 n2 : N, n1 == n2 -> forall m1 m2 : N, m1 == m2 -> n1 - m1 == n2 - m2. +Proof NZsub_wd. + +Theorem sub_0_r : forall n : N, n - 0 == n. +Proof NZsub_0_r. + +Theorem sub_succ_r : forall n m : N, n - (S m) == P (n - m). +Proof NZsub_succ_r. + +Theorem sub_1_r : forall n : N, n - 1 == P n. +Proof. +intro n; rewrite sub_succ_r; now rewrite sub_0_r. +Qed. + +Theorem sub_0_l : forall n : N, 0 - n == 0. +Proof. +induct n. +apply sub_0_r. +intros n IH; rewrite sub_succ_r; rewrite IH. now apply pred_0. +Qed. + +Theorem sub_succ : forall n m : N, S n - S m == n - m. +Proof. +intro n; induct m. +rewrite sub_succ_r. do 2 rewrite sub_0_r. now rewrite pred_succ. +intros m IH. rewrite sub_succ_r. rewrite IH. now rewrite sub_succ_r. +Qed. + +Theorem sub_diag : forall n : N, n - n == 0. +Proof. +induct n. apply sub_0_r. intros n IH; rewrite sub_succ; now rewrite IH. +Qed. + +Theorem sub_gt : forall n m : N, n > m -> n - m ~= 0. +Proof. +intros n m H; elim H using lt_ind_rel; clear n m H. +solve_relation_wd. +intro; rewrite sub_0_r; apply neq_succ_0. +intros; now rewrite sub_succ. +Qed. + +Theorem add_sub_assoc : forall n m p : N, p <= m -> n + (m - p) == (n + m) - p. +Proof. +intros n m p; induct p. +intro; now do 2 rewrite sub_0_r. +intros p IH H. do 2 rewrite sub_succ_r. +rewrite <- IH by (apply lt_le_incl; now apply -> le_succ_l). +rewrite add_pred_r by (apply sub_gt; now apply -> le_succ_l). +reflexivity. +Qed. + +Theorem sub_succ_l : forall n m : N, n <= m -> S m - n == S (m - n). +Proof. +intros n m H. rewrite <- (add_1_l m). rewrite <- (add_1_l (m - n)). +symmetry; now apply add_sub_assoc. +Qed. + +Theorem add_sub : forall n m : N, (n + m) - m == n. +Proof. +intros n m. rewrite <- add_sub_assoc by (apply le_refl). +rewrite sub_diag; now rewrite add_0_r. +Qed. + +Theorem sub_add : forall n m : N, n <= m -> (m - n) + n == m. +Proof. +intros n m H. rewrite add_comm. rewrite add_sub_assoc by assumption. +rewrite add_comm. apply add_sub. +Qed. + +Theorem add_sub_eq_l : forall n m p : N, m + p == n -> n - m == p. +Proof. +intros n m p H. symmetry. +assert (H1 : m + p - m == n - m) by now rewrite H. +rewrite add_comm in H1. now rewrite add_sub in H1. +Qed. + +Theorem add_sub_eq_r : forall n m p : N, m + p == n -> n - p == m. +Proof. +intros n m p H; rewrite add_comm in H; now apply add_sub_eq_l. +Qed. + +(* This could be proved by adding m to both sides. Then the proof would +use add_sub_assoc and sub_0_le, which is proven below. *) + +Theorem add_sub_eq_nz : forall n m p : N, p ~= 0 -> n - m == p -> m + p == n. +Proof. +intros n m p H; double_induct n m. +intros m H1; rewrite sub_0_l in H1. symmetry in H1; false_hyp H1 H. +intro n; rewrite sub_0_r; now rewrite add_0_l. +intros n m IH H1. rewrite sub_succ in H1. apply IH in H1. +rewrite add_succ_l; now rewrite H1. +Qed. + +Theorem sub_add_distr : forall n m p : N, n - (m + p) == (n - m) - p. +Proof. +intros n m; induct p. +rewrite add_0_r; now rewrite sub_0_r. +intros p IH. rewrite add_succ_r; do 2 rewrite sub_succ_r. now rewrite IH. +Qed. + +Theorem add_sub_swap : forall n m p : N, p <= n -> n + m - p == n - p + m. +Proof. +intros n m p H. +rewrite (add_comm n m). +rewrite <- add_sub_assoc by assumption. +now rewrite (add_comm m (n - p)). +Qed. + +(** Sub and order *) + +Theorem le_sub_l : forall n m : N, n - m <= n. +Proof. +intro n; induct m. +rewrite sub_0_r; now apply eq_le_incl. +intros m IH. rewrite sub_succ_r. +apply le_trans with (n - m); [apply le_pred_l | assumption]. +Qed. + +Theorem sub_0_le : forall n m : N, n - m == 0 <-> n <= m. +Proof. +double_induct n m. +intro m; split; intro; [apply le_0_l | apply sub_0_l]. +intro m; rewrite sub_0_r; split; intro H; +[false_hyp H neq_succ_0 | false_hyp H nle_succ_0]. +intros n m H. rewrite <- succ_le_mono. now rewrite sub_succ. +Qed. + +(** Sub and mul *) + +Theorem mul_pred_r : forall n m : N, n * (P m) == n * m - n. +Proof. +intros n m; cases m. +now rewrite pred_0, mul_0_r, sub_0_l. +intro m; rewrite pred_succ, mul_succ_r, <- add_sub_assoc. +now rewrite sub_diag, add_0_r. +now apply eq_le_incl. +Qed. + +Theorem mul_sub_distr_r : forall n m p : N, (n - m) * p == n * p - m * p. +Proof. +intros n m p; induct n. +now rewrite sub_0_l, mul_0_l, sub_0_l. +intros n IH. destruct (le_gt_cases m n) as [H | H]. +rewrite sub_succ_l by assumption. do 2 rewrite mul_succ_l. +rewrite (add_comm ((n - m) * p) p), (add_comm (n * p) p). +rewrite <- (add_sub_assoc p (n * p) (m * p)) by now apply mul_le_mono_r. +now apply <- add_cancel_l. +assert (H1 : S n <= m); [now apply <- le_succ_l |]. +setoid_replace (S n - m) with 0 by now apply <- sub_0_le. +setoid_replace ((S n * p) - m * p) with 0 by (apply <- sub_0_le; now apply mul_le_mono_r). +apply mul_0_l. +Qed. + +Theorem mul_sub_distr_l : forall n m p : N, p * (n - m) == p * n - p * m. +Proof. +intros n m p; rewrite (mul_comm p (n - m)), (mul_comm p n), (mul_comm p m). +apply mul_sub_distr_r. +Qed. + +End NSubPropFunct. + |