diff options
Diffstat (limited to 'theories/Numbers/Natural/Abstract/NSqrt.v')
-rw-r--r-- | theories/Numbers/Natural/Abstract/NSqrt.v | 75 |
1 files changed, 75 insertions, 0 deletions
diff --git a/theories/Numbers/Natural/Abstract/NSqrt.v b/theories/Numbers/Natural/Abstract/NSqrt.v new file mode 100644 index 00000000..9cd62ae9 --- /dev/null +++ b/theories/Numbers/Natural/Abstract/NSqrt.v @@ -0,0 +1,75 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(** Properties of Square Root Function *) + +Require Import NAxioms NSub NZSqrt. + +Module NSqrtProp (Import A : NAxiomsSig')(Import B : NSubProp A). + + Module Import Private_NZSqrt := Nop <+ NZSqrtProp A A B. + + Ltac auto' := trivial; try rewrite <- neq_0_lt_0; auto using le_0_l. + Ltac wrap l := intros; apply l; auto'. + + (** We redefine NZSqrt's results, without the non-negative hyps *) + +Lemma sqrt_spec' : forall a, √a*√a <= a < S (√a) * S (√a). +Proof. wrap sqrt_spec. Qed. + +Definition sqrt_unique : forall a b, b*b<=a<(S b)*(S b) -> √a == b + := sqrt_unique. + +Lemma sqrt_square : forall a, √(a*a) == a. +Proof. wrap sqrt_square. Qed. + +Definition sqrt_le_mono : forall a b, a<=b -> √a <= √b + := sqrt_le_mono. + +Definition sqrt_lt_cancel : forall a b, √a < √b -> a < b + := sqrt_lt_cancel. + +Lemma sqrt_le_square : forall a b, b*b<=a <-> b <= √a. +Proof. wrap sqrt_le_square. Qed. + +Lemma sqrt_lt_square : forall a b, a<b*b <-> √a < b. +Proof. wrap sqrt_lt_square. Qed. + +Definition sqrt_0 := sqrt_0. +Definition sqrt_1 := sqrt_1. +Definition sqrt_2 := sqrt_2. + +Definition sqrt_lt_lin : forall a, 1<a -> √a<a + := sqrt_lt_lin. + +Lemma sqrt_le_lin : forall a, √a<=a. +Proof. wrap sqrt_le_lin. Qed. + +Definition sqrt_mul_below : forall a b, √a * √b <= √(a*b) + := sqrt_mul_below. + +Lemma sqrt_mul_above : forall a b, √(a*b) < S (√a) * S (√b). +Proof. wrap sqrt_mul_above. Qed. + +Lemma sqrt_succ_le : forall a, √(S a) <= S (√a). +Proof. wrap sqrt_succ_le. Qed. + +Lemma sqrt_succ_or : forall a, √(S a) == S (√a) \/ √(S a) == √a. +Proof. wrap sqrt_succ_or. Qed. + +Definition sqrt_add_le : forall a b, √(a+b) <= √a + √b + := sqrt_add_le. + +Lemma add_sqrt_le : forall a b, √a + √b <= √(2*(a+b)). +Proof. wrap add_sqrt_le. Qed. + +(** For the moment, we include stuff about [sqrt_up] with patching them. *) + +Include NZSqrtUpProp A A B Private_NZSqrt. + +End NSqrtProp. |