diff options
Diffstat (limited to 'theories/Numbers/Natural/Abstract/NOrder.v')
-rw-r--r-- | theories/Numbers/Natural/Abstract/NOrder.v | 539 |
1 files changed, 539 insertions, 0 deletions
diff --git a/theories/Numbers/Natural/Abstract/NOrder.v b/theories/Numbers/Natural/Abstract/NOrder.v new file mode 100644 index 00000000..826ffa2c --- /dev/null +++ b/theories/Numbers/Natural/Abstract/NOrder.v @@ -0,0 +1,539 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) +(* Evgeny Makarov, INRIA, 2007 *) +(************************************************************************) + +(*i $Id: NOrder.v 11040 2008-06-03 00:04:16Z letouzey $ i*) + +Require Export NMul. + +Module NOrderPropFunct (Import NAxiomsMod : NAxiomsSig). +Module Export NMulPropMod := NMulPropFunct NAxiomsMod. +Open Local Scope NatScope. + +(* The tactics le_less, le_equal and le_elim are inherited from NZOrder.v *) + +(* Axioms *) + +Theorem lt_wd : + forall n1 n2 : N, n1 == n2 -> forall m1 m2 : N, m1 == m2 -> (n1 < m1 <-> n2 < m2). +Proof NZlt_wd. + +Theorem le_wd : + forall n1 n2 : N, n1 == n2 -> forall m1 m2 : N, m1 == m2 -> (n1 <= m1 <-> n2 <= m2). +Proof NZle_wd. + +Theorem min_wd : + forall n1 n2 : N, n1 == n2 -> forall m1 m2 : N, m1 == m2 -> min n1 m1 == min n2 m2. +Proof NZmin_wd. + +Theorem max_wd : + forall n1 n2 : N, n1 == n2 -> forall m1 m2 : N, m1 == m2 -> max n1 m1 == max n2 m2. +Proof NZmax_wd. + +Theorem lt_eq_cases : forall n m : N, n <= m <-> n < m \/ n == m. +Proof NZlt_eq_cases. + +Theorem lt_irrefl : forall n : N, ~ n < n. +Proof NZlt_irrefl. + +Theorem lt_succ_r : forall n m : N, n < S m <-> n <= m. +Proof NZlt_succ_r. + +Theorem min_l : forall n m : N, n <= m -> min n m == n. +Proof NZmin_l. + +Theorem min_r : forall n m : N, m <= n -> min n m == m. +Proof NZmin_r. + +Theorem max_l : forall n m : N, m <= n -> max n m == n. +Proof NZmax_l. + +Theorem max_r : forall n m : N, n <= m -> max n m == m. +Proof NZmax_r. + +(* Renaming theorems from NZOrder.v *) + +Theorem lt_le_incl : forall n m : N, n < m -> n <= m. +Proof NZlt_le_incl. + +Theorem eq_le_incl : forall n m : N, n == m -> n <= m. +Proof NZeq_le_incl. + +Theorem lt_neq : forall n m : N, n < m -> n ~= m. +Proof NZlt_neq. + +Theorem le_neq : forall n m : N, n < m <-> n <= m /\ n ~= m. +Proof NZle_neq. + +Theorem le_refl : forall n : N, n <= n. +Proof NZle_refl. + +Theorem lt_succ_diag_r : forall n : N, n < S n. +Proof NZlt_succ_diag_r. + +Theorem le_succ_diag_r : forall n : N, n <= S n. +Proof NZle_succ_diag_r. + +Theorem lt_0_1 : 0 < 1. +Proof NZlt_0_1. + +Theorem le_0_1 : 0 <= 1. +Proof NZle_0_1. + +Theorem lt_lt_succ_r : forall n m : N, n < m -> n < S m. +Proof NZlt_lt_succ_r. + +Theorem le_le_succ_r : forall n m : N, n <= m -> n <= S m. +Proof NZle_le_succ_r. + +Theorem le_succ_r : forall n m : N, n <= S m <-> n <= m \/ n == S m. +Proof NZle_succ_r. + +Theorem neq_succ_diag_l : forall n : N, S n ~= n. +Proof NZneq_succ_diag_l. + +Theorem neq_succ_diag_r : forall n : N, n ~= S n. +Proof NZneq_succ_diag_r. + +Theorem nlt_succ_diag_l : forall n : N, ~ S n < n. +Proof NZnlt_succ_diag_l. + +Theorem nle_succ_diag_l : forall n : N, ~ S n <= n. +Proof NZnle_succ_diag_l. + +Theorem le_succ_l : forall n m : N, S n <= m <-> n < m. +Proof NZle_succ_l. + +Theorem lt_succ_l : forall n m : N, S n < m -> n < m. +Proof NZlt_succ_l. + +Theorem succ_lt_mono : forall n m : N, n < m <-> S n < S m. +Proof NZsucc_lt_mono. + +Theorem succ_le_mono : forall n m : N, n <= m <-> S n <= S m. +Proof NZsucc_le_mono. + +Theorem lt_asymm : forall n m : N, n < m -> ~ m < n. +Proof NZlt_asymm. + +Notation lt_ngt := lt_asymm (only parsing). + +Theorem lt_trans : forall n m p : N, n < m -> m < p -> n < p. +Proof NZlt_trans. + +Theorem le_trans : forall n m p : N, n <= m -> m <= p -> n <= p. +Proof NZle_trans. + +Theorem le_lt_trans : forall n m p : N, n <= m -> m < p -> n < p. +Proof NZle_lt_trans. + +Theorem lt_le_trans : forall n m p : N, n < m -> m <= p -> n < p. +Proof NZlt_le_trans. + +Theorem le_antisymm : forall n m : N, n <= m -> m <= n -> n == m. +Proof NZle_antisymm. + +(** Trichotomy, decidability, and double negation elimination *) + +Theorem lt_trichotomy : forall n m : N, n < m \/ n == m \/ m < n. +Proof NZlt_trichotomy. + +Notation lt_eq_gt_cases := lt_trichotomy (only parsing). + +Theorem lt_gt_cases : forall n m : N, n ~= m <-> n < m \/ n > m. +Proof NZlt_gt_cases. + +Theorem le_gt_cases : forall n m : N, n <= m \/ n > m. +Proof NZle_gt_cases. + +Theorem lt_ge_cases : forall n m : N, n < m \/ n >= m. +Proof NZlt_ge_cases. + +Theorem le_ge_cases : forall n m : N, n <= m \/ n >= m. +Proof NZle_ge_cases. + +Theorem le_ngt : forall n m : N, n <= m <-> ~ n > m. +Proof NZle_ngt. + +Theorem nlt_ge : forall n m : N, ~ n < m <-> n >= m. +Proof NZnlt_ge. + +Theorem lt_dec : forall n m : N, decidable (n < m). +Proof NZlt_dec. + +Theorem lt_dne : forall n m : N, ~ ~ n < m <-> n < m. +Proof NZlt_dne. + +Theorem nle_gt : forall n m : N, ~ n <= m <-> n > m. +Proof NZnle_gt. + +Theorem lt_nge : forall n m : N, n < m <-> ~ n >= m. +Proof NZlt_nge. + +Theorem le_dec : forall n m : N, decidable (n <= m). +Proof NZle_dec. + +Theorem le_dne : forall n m : N, ~ ~ n <= m <-> n <= m. +Proof NZle_dne. + +Theorem nlt_succ_r : forall n m : N, ~ m < S n <-> n < m. +Proof NZnlt_succ_r. + +Theorem lt_exists_pred : + forall z n : N, z < n -> exists k : N, n == S k /\ z <= k. +Proof NZlt_exists_pred. + +Theorem lt_succ_iter_r : + forall (n : nat) (m : N), m < NZsucc_iter (Datatypes.S n) m. +Proof NZlt_succ_iter_r. + +Theorem neq_succ_iter_l : + forall (n : nat) (m : N), NZsucc_iter (Datatypes.S n) m ~= m. +Proof NZneq_succ_iter_l. + +(** Stronger variant of induction with assumptions n >= 0 (n < 0) +in the induction step *) + +Theorem right_induction : + forall A : N -> Prop, predicate_wd Neq A -> + forall z : N, A z -> + (forall n : N, z <= n -> A n -> A (S n)) -> + forall n : N, z <= n -> A n. +Proof NZright_induction. + +Theorem left_induction : + forall A : N -> Prop, predicate_wd Neq A -> + forall z : N, A z -> + (forall n : N, n < z -> A (S n) -> A n) -> + forall n : N, n <= z -> A n. +Proof NZleft_induction. + +Theorem right_induction' : + forall A : N -> Prop, predicate_wd Neq A -> + forall z : N, + (forall n : N, n <= z -> A n) -> + (forall n : N, z <= n -> A n -> A (S n)) -> + forall n : N, A n. +Proof NZright_induction'. + +Theorem left_induction' : + forall A : N -> Prop, predicate_wd Neq A -> + forall z : N, + (forall n : N, z <= n -> A n) -> + (forall n : N, n < z -> A (S n) -> A n) -> + forall n : N, A n. +Proof NZleft_induction'. + +Theorem strong_right_induction : + forall A : N -> Prop, predicate_wd Neq A -> + forall z : N, + (forall n : N, z <= n -> (forall m : N, z <= m -> m < n -> A m) -> A n) -> + forall n : N, z <= n -> A n. +Proof NZstrong_right_induction. + +Theorem strong_left_induction : + forall A : N -> Prop, predicate_wd Neq A -> + forall z : N, + (forall n : N, n <= z -> (forall m : N, m <= z -> S n <= m -> A m) -> A n) -> + forall n : N, n <= z -> A n. +Proof NZstrong_left_induction. + +Theorem strong_right_induction' : + forall A : N -> Prop, predicate_wd Neq A -> + forall z : N, + (forall n : N, n <= z -> A n) -> + (forall n : N, z <= n -> (forall m : N, z <= m -> m < n -> A m) -> A n) -> + forall n : N, A n. +Proof NZstrong_right_induction'. + +Theorem strong_left_induction' : + forall A : N -> Prop, predicate_wd Neq A -> + forall z : N, + (forall n : N, z <= n -> A n) -> + (forall n : N, n <= z -> (forall m : N, m <= z -> S n <= m -> A m) -> A n) -> + forall n : N, A n. +Proof NZstrong_left_induction'. + +Theorem order_induction : + forall A : N -> Prop, predicate_wd Neq A -> + forall z : N, A z -> + (forall n : N, z <= n -> A n -> A (S n)) -> + (forall n : N, n < z -> A (S n) -> A n) -> + forall n : N, A n. +Proof NZorder_induction. + +Theorem order_induction' : + forall A : N -> Prop, predicate_wd Neq A -> + forall z : N, A z -> + (forall n : N, z <= n -> A n -> A (S n)) -> + (forall n : N, n <= z -> A n -> A (P n)) -> + forall n : N, A n. +Proof NZorder_induction'. + +(* We don't need order_induction_0 and order_induction'_0 (see NZOrder and +ZOrder) since they boil down to regular induction *) + +(** Elimintation principle for < *) + +Theorem lt_ind : + forall A : N -> Prop, predicate_wd Neq A -> + forall n : N, + A (S n) -> + (forall m : N, n < m -> A m -> A (S m)) -> + forall m : N, n < m -> A m. +Proof NZlt_ind. + +(** Elimintation principle for <= *) + +Theorem le_ind : + forall A : N -> Prop, predicate_wd Neq A -> + forall n : N, + A n -> + (forall m : N, n <= m -> A m -> A (S m)) -> + forall m : N, n <= m -> A m. +Proof NZle_ind. + +(** Well-founded relations *) + +Theorem lt_wf : forall z : N, well_founded (fun n m : N => z <= n /\ n < m). +Proof NZlt_wf. + +Theorem gt_wf : forall z : N, well_founded (fun n m : N => m < n /\ n <= z). +Proof NZgt_wf. + +Theorem lt_wf_0 : well_founded lt. +Proof. +assert (H : relations_eq lt (fun n m : N => 0 <= n /\ n < m)). +intros x y; split. +intro H; split; [apply le_0_l | assumption]. now intros [_ H]. +rewrite H; apply lt_wf. +(* does not work: +setoid_replace lt with (fun n m : N => 0 <= n /\ n < m) using relation relations_eq.*) +Qed. + +(* Theorems that are true for natural numbers but not for integers *) + +(* "le_0_l : forall n : N, 0 <= n" was proved in NBase.v *) + +Theorem nlt_0_r : forall n : N, ~ n < 0. +Proof. +intro n; apply -> le_ngt. apply le_0_l. +Qed. + +Theorem nle_succ_0 : forall n : N, ~ (S n <= 0). +Proof. +intros n H; apply -> le_succ_l in H; false_hyp H nlt_0_r. +Qed. + +Theorem le_0_r : forall n : N, n <= 0 <-> n == 0. +Proof. +intros n; split; intro H. +le_elim H; [false_hyp H nlt_0_r | assumption]. +now apply eq_le_incl. +Qed. + +Theorem lt_0_succ : forall n : N, 0 < S n. +Proof. +induct n; [apply lt_succ_diag_r | intros n H; now apply lt_lt_succ_r]. +Qed. + +Theorem neq_0_lt_0 : forall n : N, n ~= 0 <-> 0 < n. +Proof. +cases n. +split; intro H; [now elim H | intro; now apply lt_irrefl with 0]. +intro n; split; intro H; [apply lt_0_succ | apply neq_succ_0]. +Qed. + +Theorem eq_0_gt_0_cases : forall n : N, n == 0 \/ 0 < n. +Proof. +cases n. +now left. +intro; right; apply lt_0_succ. +Qed. + +Theorem zero_one : forall n : N, n == 0 \/ n == 1 \/ 1 < n. +Proof. +induct n. now left. +cases n. intros; right; now left. +intros n IH. destruct IH as [H | [H | H]]. +false_hyp H neq_succ_0. +right; right. rewrite H. apply lt_succ_diag_r. +right; right. now apply lt_lt_succ_r. +Qed. + +Theorem lt_1_r : forall n : N, n < 1 <-> n == 0. +Proof. +cases n. +split; intro; [reflexivity | apply lt_succ_diag_r]. +intros n. rewrite <- succ_lt_mono. +split; intro H; [false_hyp H nlt_0_r | false_hyp H neq_succ_0]. +Qed. + +Theorem le_1_r : forall n : N, n <= 1 <-> n == 0 \/ n == 1. +Proof. +cases n. +split; intro; [now left | apply le_succ_diag_r]. +intro n. rewrite <- succ_le_mono, le_0_r, succ_inj_wd. +split; [intro; now right | intros [H | H]; [false_hyp H neq_succ_0 | assumption]]. +Qed. + +Theorem lt_lt_0 : forall n m : N, n < m -> 0 < m. +Proof. +intros n m; induct n. +trivial. +intros n IH H. apply IH; now apply lt_succ_l. +Qed. + +Theorem lt_1_l : forall n m p : N, n < m -> m < p -> 1 < p. +Proof. +intros n m p H1 H2. +apply le_lt_trans with m. apply <- le_succ_l. apply le_lt_trans with n. +apply le_0_l. assumption. assumption. +Qed. + +(** Elimination principlies for < and <= for relations *) + +Section RelElim. + +(* FIXME: Variable R : relation N. -- does not work *) + +Variable R : N -> N -> Prop. +Hypothesis R_wd : relation_wd Neq Neq R. + +Add Morphism R with signature Neq ==> Neq ==> iff as R_morph2. +Proof. apply R_wd. Qed. + +Theorem le_ind_rel : + (forall m : N, R 0 m) -> + (forall n m : N, n <= m -> R n m -> R (S n) (S m)) -> + forall n m : N, n <= m -> R n m. +Proof. +intros Base Step; induct n. +intros; apply Base. +intros n IH m H. elim H using le_ind. +solve_predicate_wd. +apply Step; [| apply IH]; now apply eq_le_incl. +intros k H1 H2. apply -> le_succ_l in H1. apply lt_le_incl in H1. auto. +Qed. + +Theorem lt_ind_rel : + (forall m : N, R 0 (S m)) -> + (forall n m : N, n < m -> R n m -> R (S n) (S m)) -> + forall n m : N, n < m -> R n m. +Proof. +intros Base Step; induct n. +intros m H. apply lt_exists_pred in H; destruct H as [m' [H _]]. +rewrite H; apply Base. +intros n IH m H. elim H using lt_ind. +solve_predicate_wd. +apply Step; [| apply IH]; now apply lt_succ_diag_r. +intros k H1 H2. apply lt_succ_l in H1. auto. +Qed. + +End RelElim. + +(** Predecessor and order *) + +Theorem succ_pred_pos : forall n : N, 0 < n -> S (P n) == n. +Proof. +intros n H; apply succ_pred; intro H1; rewrite H1 in H. +false_hyp H lt_irrefl. +Qed. + +Theorem le_pred_l : forall n : N, P n <= n. +Proof. +cases n. +rewrite pred_0; now apply eq_le_incl. +intros; rewrite pred_succ; apply le_succ_diag_r. +Qed. + +Theorem lt_pred_l : forall n : N, n ~= 0 -> P n < n. +Proof. +cases n. +intro H; elimtype False; now apply H. +intros; rewrite pred_succ; apply lt_succ_diag_r. +Qed. + +Theorem le_le_pred : forall n m : N, n <= m -> P n <= m. +Proof. +intros n m H; apply le_trans with n. apply le_pred_l. assumption. +Qed. + +Theorem lt_lt_pred : forall n m : N, n < m -> P n < m. +Proof. +intros n m H; apply le_lt_trans with n. apply le_pred_l. assumption. +Qed. + +Theorem lt_le_pred : forall n m : N, n < m -> n <= P m. (* Converse is false for n == m == 0 *) +Proof. +intro n; cases m. +intro H; false_hyp H nlt_0_r. +intros m IH. rewrite pred_succ; now apply -> lt_succ_r. +Qed. + +Theorem lt_pred_le : forall n m : N, P n < m -> n <= m. (* Converse is false for n == m == 0 *) +Proof. +intros n m; cases n. +rewrite pred_0; intro H; now apply lt_le_incl. +intros n IH. rewrite pred_succ in IH. now apply <- le_succ_l. +Qed. + +Theorem lt_pred_lt : forall n m : N, n < P m -> n < m. +Proof. +intros n m H; apply lt_le_trans with (P m); [assumption | apply le_pred_l]. +Qed. + +Theorem le_pred_le : forall n m : N, n <= P m -> n <= m. +Proof. +intros n m H; apply le_trans with (P m); [assumption | apply le_pred_l]. +Qed. + +Theorem pred_le_mono : forall n m : N, n <= m -> P n <= P m. (* Converse is false for n == 1, m == 0 *) +Proof. +intros n m H; elim H using le_ind_rel. +solve_relation_wd. +intro; rewrite pred_0; apply le_0_l. +intros p q H1 _; now do 2 rewrite pred_succ. +Qed. + +Theorem pred_lt_mono : forall n m : N, n ~= 0 -> (n < m <-> P n < P m). +Proof. +intros n m H1; split; intro H2. +assert (m ~= 0). apply <- neq_0_lt_0. now apply lt_lt_0 with n. +now rewrite <- (succ_pred n) in H2; rewrite <- (succ_pred m) in H2 ; +[apply <- succ_lt_mono | | |]. +assert (m ~= 0). apply <- neq_0_lt_0. apply lt_lt_0 with (P n). +apply lt_le_trans with (P m). assumption. apply le_pred_l. +apply -> succ_lt_mono in H2. now do 2 rewrite succ_pred in H2. +Qed. + +Theorem lt_succ_lt_pred : forall n m : N, S n < m <-> n < P m. +Proof. +intros n m. rewrite pred_lt_mono by apply neq_succ_0. now rewrite pred_succ. +Qed. + +Theorem le_succ_le_pred : forall n m : N, S n <= m -> n <= P m. (* Converse is false for n == m == 0 *) +Proof. +intros n m H. apply lt_le_pred. now apply -> le_succ_l. +Qed. + +Theorem lt_pred_lt_succ : forall n m : N, P n < m -> n < S m. (* Converse is false for n == m == 0 *) +Proof. +intros n m H. apply <- lt_succ_r. now apply lt_pred_le. +Qed. + +Theorem le_pred_le_succ : forall n m : N, P n <= m <-> n <= S m. +Proof. +intros n m; cases n. +rewrite pred_0. split; intro H; apply le_0_l. +intro n. rewrite pred_succ. apply succ_le_mono. +Qed. + +End NOrderPropFunct. + |