summaryrefslogtreecommitdiff
path: root/theories/Numbers/Natural/Abstract/NOrder.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Natural/Abstract/NOrder.v')
-rw-r--r--theories/Numbers/Natural/Abstract/NOrder.v43
1 files changed, 22 insertions, 21 deletions
diff --git a/theories/Numbers/Natural/Abstract/NOrder.v b/theories/Numbers/Natural/Abstract/NOrder.v
index 17dd3466..8bba7d72 100644
--- a/theories/Numbers/Natural/Abstract/NOrder.v
+++ b/theories/Numbers/Natural/Abstract/NOrder.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,18 +8,16 @@
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
-(*i $Id: NOrder.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
Require Export NAdd.
-Module NOrderPropFunct (Import N : NAxiomsSig').
-Include NAddPropFunct N.
+Module NOrderProp (Import N : NAxiomsMiniSig').
+Include NAddProp N.
(* Theorems that are true for natural numbers but not for integers *)
Theorem lt_wf_0 : well_founded lt.
Proof.
-setoid_replace lt with (fun n m => 0 <= n /\ n < m).
+setoid_replace lt with (fun n m => 0 <= n < m).
apply lt_wf.
intros x y; split.
intro H; split; [apply le_0_l | assumption]. now intros [_ H].
@@ -29,12 +27,12 @@ Defined.
Theorem nlt_0_r : forall n, ~ n < 0.
Proof.
-intro n; apply -> le_ngt. apply le_0_l.
+intro n; apply le_ngt. apply le_0_l.
Qed.
Theorem nle_succ_0 : forall n, ~ (S n <= 0).
Proof.
-intros n H; apply -> le_succ_l in H; false_hyp H nlt_0_r.
+intros n H; apply le_succ_l in H; false_hyp H nlt_0_r.
Qed.
Theorem le_0_r : forall n, n <= 0 <-> n == 0.
@@ -65,6 +63,7 @@ Qed.
Theorem zero_one : forall n, n == 0 \/ n == 1 \/ 1 < n.
Proof.
+setoid_rewrite one_succ.
induct n. now left.
cases n. intros; right; now left.
intros n IH. destruct IH as [H | [H | H]].
@@ -75,6 +74,7 @@ Qed.
Theorem lt_1_r : forall n, n < 1 <-> n == 0.
Proof.
+setoid_rewrite one_succ.
cases n.
split; intro; [reflexivity | apply lt_succ_diag_r].
intros n. rewrite <- succ_lt_mono.
@@ -83,6 +83,7 @@ Qed.
Theorem le_1_r : forall n, n <= 1 <-> n == 0 \/ n == 1.
Proof.
+setoid_rewrite one_succ.
cases n.
split; intro; [now left | apply le_succ_diag_r].
intro n. rewrite <- succ_le_mono, le_0_r, succ_inj_wd.
@@ -117,9 +118,9 @@ Proof.
intros Base Step; induct n.
intros; apply Base.
intros n IH m H. elim H using le_ind.
-solve_predicate_wd.
+solve_proper.
apply Step; [| apply IH]; now apply eq_le_incl.
-intros k H1 H2. apply -> le_succ_l in H1. apply lt_le_incl in H1. auto.
+intros k H1 H2. apply le_succ_l in H1. apply lt_le_incl in H1. auto.
Qed.
Theorem lt_ind_rel :
@@ -131,7 +132,7 @@ intros Base Step; induct n.
intros m H. apply lt_exists_pred in H; destruct H as [m' [H _]].
rewrite H; apply Base.
intros n IH m H. elim H using lt_ind.
-solve_predicate_wd.
+solve_proper.
apply Step; [| apply IH]; now apply lt_succ_diag_r.
intros k H1 H2. apply lt_succ_l in H1. auto.
Qed.
@@ -175,7 +176,7 @@ Theorem lt_le_pred : forall n m, n < m -> n <= P m.
Proof.
intro n; cases m.
intro H; false_hyp H nlt_0_r.
-intros m IH. rewrite pred_succ; now apply -> lt_succ_r.
+intros m IH. rewrite pred_succ; now apply lt_succ_r.
Qed.
Theorem lt_pred_le : forall n m, P n < m -> n <= m.
@@ -183,7 +184,7 @@ Theorem lt_pred_le : forall n m, P n < m -> n <= m.
Proof.
intros n m; cases n.
rewrite pred_0; intro H; now apply lt_le_incl.
-intros n IH. rewrite pred_succ in IH. now apply <- le_succ_l.
+intros n IH. rewrite pred_succ in IH. now apply le_succ_l.
Qed.
Theorem lt_pred_lt : forall n m, n < P m -> n < m.
@@ -200,7 +201,7 @@ Theorem pred_le_mono : forall n m, n <= m -> P n <= P m.
(* Converse is false for n == 1, m == 0 *)
Proof.
intros n m H; elim H using le_ind_rel.
-solve_relation_wd.
+solve_proper.
intro; rewrite pred_0; apply le_0_l.
intros p q H1 _; now do 2 rewrite pred_succ.
Qed.
@@ -208,12 +209,12 @@ Qed.
Theorem pred_lt_mono : forall n m, n ~= 0 -> (n < m <-> P n < P m).
Proof.
intros n m H1; split; intro H2.
-assert (m ~= 0). apply <- neq_0_lt_0. now apply lt_lt_0 with n.
+assert (m ~= 0). apply neq_0_lt_0. now apply lt_lt_0 with n.
now rewrite <- (succ_pred n) in H2; rewrite <- (succ_pred m) in H2 ;
-[apply <- succ_lt_mono | | |].
-assert (m ~= 0). apply <- neq_0_lt_0. apply lt_lt_0 with (P n).
+[apply succ_lt_mono | | |].
+assert (m ~= 0). apply neq_0_lt_0. apply lt_lt_0 with (P n).
apply lt_le_trans with (P m). assumption. apply le_pred_l.
-apply -> succ_lt_mono in H2. now do 2 rewrite succ_pred in H2.
+apply succ_lt_mono in H2. now do 2 rewrite succ_pred in H2.
Qed.
Theorem lt_succ_lt_pred : forall n m, S n < m <-> n < P m.
@@ -224,13 +225,13 @@ Qed.
Theorem le_succ_le_pred : forall n m, S n <= m -> n <= P m.
(* Converse is false for n == m == 0 *)
Proof.
-intros n m H. apply lt_le_pred. now apply -> le_succ_l.
+intros n m H. apply lt_le_pred. now apply le_succ_l.
Qed.
Theorem lt_pred_lt_succ : forall n m, P n < m -> n < S m.
(* Converse is false for n == m == 0 *)
Proof.
-intros n m H. apply <- lt_succ_r. now apply lt_pred_le.
+intros n m H. apply lt_succ_r. now apply lt_pred_le.
Qed.
Theorem le_pred_le_succ : forall n m, P n <= m <-> n <= S m.
@@ -240,5 +241,5 @@ rewrite pred_0. split; intro H; apply le_0_l.
intro n. rewrite pred_succ. apply succ_le_mono.
Qed.
-End NOrderPropFunct.
+End NOrderProp.