diff options
Diffstat (limited to 'theories/Numbers/NatInt/NZSqrt.v')
-rw-r--r-- | theories/Numbers/NatInt/NZSqrt.v | 734 |
1 files changed, 734 insertions, 0 deletions
diff --git a/theories/Numbers/NatInt/NZSqrt.v b/theories/Numbers/NatInt/NZSqrt.v new file mode 100644 index 00000000..8146fd01 --- /dev/null +++ b/theories/Numbers/NatInt/NZSqrt.v @@ -0,0 +1,734 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(** Square Root Function *) + +Require Import NZAxioms NZMulOrder. + +(** Interface of a sqrt function, then its specification on naturals *) + +Module Type Sqrt (Import A : Typ). + Parameter Inline sqrt : t -> t. +End Sqrt. + +Module Type SqrtNotation (A : Typ)(Import B : Sqrt A). + Notation "√ x" := (sqrt x) (at level 6). +End SqrtNotation. + +Module Type Sqrt' (A : Typ) := Sqrt A <+ SqrtNotation A. + +Module Type NZSqrtSpec (Import A : NZOrdAxiomsSig')(Import B : Sqrt' A). + Axiom sqrt_spec : forall a, 0<=a -> √a * √a <= a < S (√a) * S (√a). + Axiom sqrt_neg : forall a, a<0 -> √a == 0. +End NZSqrtSpec. + +Module Type NZSqrt (A : NZOrdAxiomsSig) := Sqrt A <+ NZSqrtSpec A. +Module Type NZSqrt' (A : NZOrdAxiomsSig) := Sqrt' A <+ NZSqrtSpec A. + +(** Derived properties of power *) + +Module Type NZSqrtProp + (Import A : NZOrdAxiomsSig') + (Import B : NZSqrt' A) + (Import C : NZMulOrderProp A). + +Local Notation "a ²" := (a*a) (at level 5, no associativity, format "a ²"). + +(** First, sqrt is non-negative *) + +Lemma sqrt_spec_nonneg : forall b, + b² < (S b)² -> 0 <= b. +Proof. + intros b LT. + destruct (le_gt_cases 0 b) as [Hb|Hb]; trivial. exfalso. + assert ((S b)² < b²). + rewrite mul_succ_l, <- (add_0_r b²). + apply add_lt_le_mono. + apply mul_lt_mono_neg_l; trivial. apply lt_succ_diag_r. + now apply le_succ_l. + order. +Qed. + +Lemma sqrt_nonneg : forall a, 0<=√a. +Proof. + intros. destruct (lt_ge_cases a 0) as [Ha|Ha]. + now rewrite (sqrt_neg _ Ha). + apply sqrt_spec_nonneg. destruct (sqrt_spec a Ha). order. +Qed. + +(** The spec of sqrt indeed determines it *) + +Lemma sqrt_unique : forall a b, b² <= a < (S b)² -> √a == b. +Proof. + intros a b (LEb,LTb). + assert (Ha : 0<=a) by (transitivity b²; trivial using square_nonneg). + assert (Hb : 0<=b) by (apply sqrt_spec_nonneg; order). + assert (Ha': 0<=√a) by now apply sqrt_nonneg. + destruct (sqrt_spec a Ha) as (LEa,LTa). + assert (b <= √a). + apply lt_succ_r, square_lt_simpl_nonneg; [|order]. + now apply lt_le_incl, lt_succ_r. + assert (√a <= b). + apply lt_succ_r, square_lt_simpl_nonneg; [|order]. + now apply lt_le_incl, lt_succ_r. + order. +Qed. + +(** Hence sqrt is a morphism *) + +Instance sqrt_wd : Proper (eq==>eq) sqrt. +Proof. + intros x x' Hx. + destruct (lt_ge_cases x 0) as [H|H]. + rewrite 2 sqrt_neg; trivial. reflexivity. + now rewrite <- Hx. + apply sqrt_unique. rewrite Hx in *. now apply sqrt_spec. +Qed. + +(** An alternate specification *) + +Lemma sqrt_spec_alt : forall a, 0<=a -> exists r, + a == (√a)² + r /\ 0 <= r <= 2*√a. +Proof. + intros a Ha. + destruct (sqrt_spec _ Ha) as (LE,LT). + destruct (le_exists_sub _ _ LE) as (r & Hr & Hr'). + exists r. + split. now rewrite add_comm. + split. trivial. + apply (add_le_mono_r _ _ (√a)²). + rewrite <- Hr, add_comm. + generalize LT. nzsimpl'. now rewrite lt_succ_r, add_assoc. +Qed. + +Lemma sqrt_unique' : forall a b c, 0<=c<=2*b -> + a == b² + c -> √a == b. +Proof. + intros a b c (Hc,H) EQ. + apply sqrt_unique. + rewrite EQ. + split. + rewrite <- add_0_r at 1. now apply add_le_mono_l. + nzsimpl. apply lt_succ_r. + rewrite <- add_assoc. apply add_le_mono_l. + generalize H; now nzsimpl'. +Qed. + +(** Sqrt is exact on squares *) + +Lemma sqrt_square : forall a, 0<=a -> √(a²) == a. +Proof. + intros a Ha. + apply sqrt_unique' with 0. + split. order. apply mul_nonneg_nonneg; order'. now nzsimpl. +Qed. + +(** Sqrt and predecessors of squares *) + +Lemma sqrt_pred_square : forall a, 0<a -> √(P a²) == P a. +Proof. + intros a Ha. + apply sqrt_unique. + assert (EQ := lt_succ_pred 0 a Ha). + rewrite EQ. split. + apply lt_succ_r. + rewrite (lt_succ_pred 0). + assert (0 <= P a) by (now rewrite <- lt_succ_r, EQ). + assert (P a < a) by (now rewrite <- le_succ_l, EQ). + apply mul_lt_mono_nonneg; trivial. + now apply mul_pos_pos. + apply le_succ_l. + rewrite (lt_succ_pred 0). reflexivity. now apply mul_pos_pos. +Qed. + +(** Sqrt is a monotone function (but not a strict one) *) + +Lemma sqrt_le_mono : forall a b, a <= b -> √a <= √b. +Proof. + intros a b Hab. + destruct (lt_ge_cases a 0) as [Ha|Ha]. + rewrite (sqrt_neg _ Ha). apply sqrt_nonneg. + assert (Hb : 0 <= b) by order. + destruct (sqrt_spec a Ha) as (LE,_). + destruct (sqrt_spec b Hb) as (_,LT). + apply lt_succ_r. + apply square_lt_simpl_nonneg; try order. + now apply lt_le_incl, lt_succ_r, sqrt_nonneg. +Qed. + +(** No reverse result for <=, consider for instance √2 <= √1 *) + +Lemma sqrt_lt_cancel : forall a b, √a < √b -> a < b. +Proof. + intros a b H. + destruct (lt_ge_cases b 0) as [Hb|Hb]. + rewrite (sqrt_neg b Hb) in H; generalize (sqrt_nonneg a); order. + destruct (lt_ge_cases a 0) as [Ha|Ha]; [order|]. + destruct (sqrt_spec a Ha) as (_,LT). + destruct (sqrt_spec b Hb) as (LE,_). + apply le_succ_l in H. + assert ((S (√a))² <= (√b)²). + apply mul_le_mono_nonneg; trivial. + now apply lt_le_incl, lt_succ_r, sqrt_nonneg. + now apply lt_le_incl, lt_succ_r, sqrt_nonneg. + order. +Qed. + +(** When left side is a square, we have an equivalence for <= *) + +Lemma sqrt_le_square : forall a b, 0<=a -> 0<=b -> (b²<=a <-> b <= √a). +Proof. + intros a b Ha Hb. split; intros H. + rewrite <- (sqrt_square b); trivial. + now apply sqrt_le_mono. + destruct (sqrt_spec a Ha) as (LE,LT). + transitivity (√a)²; trivial. + now apply mul_le_mono_nonneg. +Qed. + +(** When right side is a square, we have an equivalence for < *) + +Lemma sqrt_lt_square : forall a b, 0<=a -> 0<=b -> (a<b² <-> √a < b). +Proof. + intros a b Ha Hb. split; intros H. + destruct (sqrt_spec a Ha) as (LE,_). + apply square_lt_simpl_nonneg; try order. + rewrite <- (sqrt_square b Hb) in H. + now apply sqrt_lt_cancel. +Qed. + +(** Sqrt and basic constants *) + +Lemma sqrt_0 : √0 == 0. +Proof. + rewrite <- (mul_0_l 0) at 1. now apply sqrt_square. +Qed. + +Lemma sqrt_1 : √1 == 1. +Proof. + rewrite <- (mul_1_l 1) at 1. apply sqrt_square. order'. +Qed. + +Lemma sqrt_2 : √2 == 1. +Proof. + apply sqrt_unique' with 1. nzsimpl; split; order'. now nzsimpl'. +Qed. + +Lemma sqrt_pos : forall a, 0 < √a <-> 0 < a. +Proof. + intros a. split; intros Ha. apply sqrt_lt_cancel. now rewrite sqrt_0. + rewrite <- le_succ_l, <- one_succ, <- sqrt_1. apply sqrt_le_mono. + now rewrite one_succ, le_succ_l. +Qed. + +Lemma sqrt_lt_lin : forall a, 1<a -> √a<a. +Proof. + intros a Ha. rewrite <- sqrt_lt_square; try order'. + rewrite <- (mul_1_r a) at 1. + rewrite <- mul_lt_mono_pos_l; order'. +Qed. + +Lemma sqrt_le_lin : forall a, 0<=a -> √a<=a. +Proof. + intros a Ha. + destruct (le_gt_cases a 0) as [H|H]. + setoid_replace a with 0 by order. now rewrite sqrt_0. + destruct (le_gt_cases a 1) as [H'|H']. + rewrite <- le_succ_l, <- one_succ in H. + setoid_replace a with 1 by order. now rewrite sqrt_1. + now apply lt_le_incl, sqrt_lt_lin. +Qed. + +(** Sqrt and multiplication. *) + +(** Due to rounding error, we don't have the usual √(a*b) = √a*√b + but only lower and upper bounds. *) + +Lemma sqrt_mul_below : forall a b, √a * √b <= √(a*b). +Proof. + intros a b. + destruct (lt_ge_cases a 0) as [Ha|Ha]. + rewrite (sqrt_neg a Ha). nzsimpl. apply sqrt_nonneg. + destruct (lt_ge_cases b 0) as [Hb|Hb]. + rewrite (sqrt_neg b Hb). nzsimpl. apply sqrt_nonneg. + assert (Ha':=sqrt_nonneg a). + assert (Hb':=sqrt_nonneg b). + apply sqrt_le_square; try now apply mul_nonneg_nonneg. + rewrite mul_shuffle1. + apply mul_le_mono_nonneg; try now apply mul_nonneg_nonneg. + now apply sqrt_spec. + now apply sqrt_spec. +Qed. + +Lemma sqrt_mul_above : forall a b, 0<=a -> 0<=b -> √(a*b) < S (√a) * S (√b). +Proof. + intros a b Ha Hb. + apply sqrt_lt_square. + now apply mul_nonneg_nonneg. + apply mul_nonneg_nonneg. + now apply lt_le_incl, lt_succ_r, sqrt_nonneg. + now apply lt_le_incl, lt_succ_r, sqrt_nonneg. + rewrite mul_shuffle1. + apply mul_lt_mono_nonneg; trivial; now apply sqrt_spec. +Qed. + +(** And we can't find better approximations in general. + - The lower bound is exact for squares + - Concerning the upper bound, for any c>0, take a=b=c²-1, + then √(a*b) = c² -1 while S √a = S √b = c +*) + +(** Sqrt and successor : + - the sqrt function climbs by at most 1 at a time + - otherwise it stays at the same value + - the +1 steps occur for squares +*) + +Lemma sqrt_succ_le : forall a, 0<=a -> √(S a) <= S (√a). +Proof. + intros a Ha. + apply lt_succ_r. + apply sqrt_lt_square. + now apply le_le_succ_r. + apply le_le_succ_r, le_le_succ_r, sqrt_nonneg. + rewrite <- (add_1_l (S (√a))). + apply lt_le_trans with (1²+(S (√a))²). + rewrite mul_1_l, add_1_l, <- succ_lt_mono. + now apply sqrt_spec. + apply add_square_le. order'. apply le_le_succ_r, sqrt_nonneg. +Qed. + +Lemma sqrt_succ_or : forall a, 0<=a -> √(S a) == S (√a) \/ √(S a) == √a. +Proof. + intros a Ha. + destruct (le_gt_cases (√(S a)) (√a)) as [H|H]. + right. generalize (sqrt_le_mono _ _ (le_succ_diag_r a)); order. + left. apply le_succ_l in H. generalize (sqrt_succ_le a Ha); order. +Qed. + +Lemma sqrt_eq_succ_iff_square : forall a, 0<=a -> + (√(S a) == S (√a) <-> exists b, 0<b /\ S a == b²). +Proof. + intros a Ha. split. + intros EQ. exists (S (√a)). + split. apply lt_succ_r, sqrt_nonneg. + generalize (proj2 (sqrt_spec a Ha)). rewrite <- le_succ_l. + assert (Ha' : 0 <= S a) by now apply le_le_succ_r. + generalize (proj1 (sqrt_spec (S a) Ha')). rewrite EQ; order. + intros (b & Hb & H). + rewrite H. rewrite sqrt_square; try order. + symmetry. + rewrite <- (lt_succ_pred 0 b Hb). f_equiv. + rewrite <- (lt_succ_pred 0 b²) in H. apply succ_inj in H. + now rewrite H, sqrt_pred_square. + now apply mul_pos_pos. +Qed. + +(** Sqrt and addition *) + +Lemma sqrt_add_le : forall a b, √(a+b) <= √a + √b. +Proof. + assert (AUX : forall a b, a<0 -> √(a+b) <= √a + √b). + intros a b Ha. rewrite (sqrt_neg a Ha). nzsimpl. + apply sqrt_le_mono. + rewrite <- (add_0_l b) at 2. + apply add_le_mono_r; order. + intros a b. + destruct (lt_ge_cases a 0) as [Ha|Ha]. now apply AUX. + destruct (lt_ge_cases b 0) as [Hb|Hb]. + rewrite (add_comm a), (add_comm (√a)); now apply AUX. + assert (Ha':=sqrt_nonneg a). + assert (Hb':=sqrt_nonneg b). + rewrite <- lt_succ_r. + apply sqrt_lt_square. + now apply add_nonneg_nonneg. + now apply lt_le_incl, lt_succ_r, add_nonneg_nonneg. + destruct (sqrt_spec a Ha) as (_,LTa). + destruct (sqrt_spec b Hb) as (_,LTb). + revert LTa LTb. nzsimpl. rewrite 3 lt_succ_r. + intros LTa LTb. + assert (H:=add_le_mono _ _ _ _ LTa LTb). + etransitivity; [eexact H|]. clear LTa LTb H. + rewrite <- (add_assoc _ (√a) (√a)). + rewrite <- (add_assoc _ (√b) (√b)). + rewrite add_shuffle1. + rewrite <- (add_assoc _ (√a + √b)). + rewrite (add_shuffle1 (√a) (√b)). + apply add_le_mono_r. + now apply add_square_le. +Qed. + +(** convexity inequality for sqrt: sqrt of middle is above middle + of square roots. *) + +Lemma add_sqrt_le : forall a b, 0<=a -> 0<=b -> √a + √b <= √(2*(a+b)). +Proof. + intros a b Ha Hb. + assert (Ha':=sqrt_nonneg a). + assert (Hb':=sqrt_nonneg b). + apply sqrt_le_square. + apply mul_nonneg_nonneg. order'. now apply add_nonneg_nonneg. + now apply add_nonneg_nonneg. + transitivity (2*((√a)² + (√b)²)). + now apply square_add_le. + apply mul_le_mono_nonneg_l. order'. + apply add_le_mono; now apply sqrt_spec. +Qed. + +End NZSqrtProp. + +Module Type NZSqrtUpProp + (Import A : NZDecOrdAxiomsSig') + (Import B : NZSqrt' A) + (Import C : NZMulOrderProp A) + (Import D : NZSqrtProp A B C). + +(** * [sqrt_up] : a square root that rounds up instead of down *) + +Local Notation "a ²" := (a*a) (at level 5, no associativity, format "a ²"). + +(** For once, we define instead of axiomatizing, thanks to sqrt *) + +Definition sqrt_up a := + match compare 0 a with + | Lt => S √(P a) + | _ => 0 + end. + +Local Notation "√° a" := (sqrt_up a) (at level 6, no associativity). + +Lemma sqrt_up_eqn0 : forall a, a<=0 -> √°a == 0. +Proof. + intros a Ha. unfold sqrt_up. case compare_spec; try order. +Qed. + +Lemma sqrt_up_eqn : forall a, 0<a -> √°a == S √(P a). +Proof. + intros a Ha. unfold sqrt_up. case compare_spec; try order. +Qed. + +Lemma sqrt_up_spec : forall a, 0<a -> (P √°a)² < a <= (√°a)². +Proof. + intros a Ha. + rewrite sqrt_up_eqn, pred_succ; trivial. + assert (Ha' := lt_succ_pred 0 a Ha). + rewrite <- Ha' at 3 4. + rewrite le_succ_l, lt_succ_r. + apply sqrt_spec. + now rewrite <- lt_succ_r, Ha'. +Qed. + +(** First, [sqrt_up] is non-negative *) + +Lemma sqrt_up_nonneg : forall a, 0<=√°a. +Proof. + intros. destruct (le_gt_cases a 0) as [Ha|Ha]. + now rewrite sqrt_up_eqn0. + rewrite sqrt_up_eqn; trivial. apply le_le_succ_r, sqrt_nonneg. +Qed. + +(** [sqrt_up] is a morphism *) + +Instance sqrt_up_wd : Proper (eq==>eq) sqrt_up. +Proof. + assert (Proper (eq==>eq==>Logic.eq) compare). + intros x x' Hx y y' Hy. do 2 case compare_spec; trivial; order. + intros x x' Hx. unfold sqrt_up. rewrite Hx. case compare; now rewrite ?Hx. +Qed. + +(** The spec of [sqrt_up] indeed determines it *) + +Lemma sqrt_up_unique : forall a b, 0<b -> (P b)² < a <= b² -> √°a == b. +Proof. + intros a b Hb (LEb,LTb). + assert (Ha : 0<a) + by (apply le_lt_trans with (P b)²; trivial using square_nonneg). + rewrite sqrt_up_eqn; trivial. + assert (Hb' := lt_succ_pred 0 b Hb). + rewrite <- Hb'. f_equiv. apply sqrt_unique. + rewrite <- le_succ_l, <- lt_succ_r, Hb'. + rewrite (lt_succ_pred 0 a Ha). now split. +Qed. + +(** [sqrt_up] is exact on squares *) + +Lemma sqrt_up_square : forall a, 0<=a -> √°(a²) == a. +Proof. + intros a Ha. + le_elim Ha. + rewrite sqrt_up_eqn by (now apply mul_pos_pos). + rewrite sqrt_pred_square; trivial. apply (lt_succ_pred 0); trivial. + rewrite sqrt_up_eqn0; trivial. rewrite <- Ha. now nzsimpl. +Qed. + +(** [sqrt_up] and successors of squares *) + +Lemma sqrt_up_succ_square : forall a, 0<=a -> √°(S a²) == S a. +Proof. + intros a Ha. + rewrite sqrt_up_eqn by (now apply lt_succ_r, mul_nonneg_nonneg). + now rewrite pred_succ, sqrt_square. +Qed. + +(** Basic constants *) + +Lemma sqrt_up_0 : √°0 == 0. +Proof. + rewrite <- (mul_0_l 0) at 1. now apply sqrt_up_square. +Qed. + +Lemma sqrt_up_1 : √°1 == 1. +Proof. + rewrite <- (mul_1_l 1) at 1. apply sqrt_up_square. order'. +Qed. + +Lemma sqrt_up_2 : √°2 == 2. +Proof. + rewrite sqrt_up_eqn by order'. + now rewrite two_succ, pred_succ, sqrt_1. +Qed. + +(** Links between sqrt and [sqrt_up] *) + +Lemma le_sqrt_sqrt_up : forall a, √a <= √°a. +Proof. + intros a. unfold sqrt_up. case compare_spec; intros H. + rewrite <- H, sqrt_0. order. + rewrite <- (lt_succ_pred 0 a H) at 1. apply sqrt_succ_le. + apply lt_succ_r. now rewrite (lt_succ_pred 0 a H). + now rewrite sqrt_neg. +Qed. + +Lemma le_sqrt_up_succ_sqrt : forall a, √°a <= S (√a). +Proof. + intros a. unfold sqrt_up. + case compare_spec; intros H; try apply le_le_succ_r, sqrt_nonneg. + rewrite <- succ_le_mono. apply sqrt_le_mono. + rewrite <- (lt_succ_pred 0 a H) at 2. apply le_succ_diag_r. +Qed. + +Lemma sqrt_sqrt_up_spec : forall a, 0<=a -> (√a)² <= a <= (√°a)². +Proof. + intros a H. split. + now apply sqrt_spec. + le_elim H. + now apply sqrt_up_spec. + now rewrite <-H, sqrt_up_0, mul_0_l. +Qed. + +Lemma sqrt_sqrt_up_exact : + forall a, 0<=a -> (√a == √°a <-> exists b, 0<=b /\ a == b²). +Proof. + intros a Ha. + split. intros. exists √a. + split. apply sqrt_nonneg. + generalize (sqrt_sqrt_up_spec a Ha). rewrite <-H. destruct 1; order. + intros (b & Hb & Hb'). rewrite Hb'. + now rewrite sqrt_square, sqrt_up_square. +Qed. + +(** [sqrt_up] is a monotone function (but not a strict one) *) + +Lemma sqrt_up_le_mono : forall a b, a <= b -> √°a <= √°b. +Proof. + intros a b H. + destruct (le_gt_cases a 0) as [Ha|Ha]. + rewrite (sqrt_up_eqn0 _ Ha). apply sqrt_up_nonneg. + rewrite 2 sqrt_up_eqn by order. rewrite <- succ_le_mono. + apply sqrt_le_mono, succ_le_mono. rewrite 2 (lt_succ_pred 0); order. +Qed. + +(** No reverse result for <=, consider for instance √°3 <= √°2 *) + +Lemma sqrt_up_lt_cancel : forall a b, √°a < √°b -> a < b. +Proof. + intros a b H. + destruct (le_gt_cases b 0) as [Hb|Hb]. + rewrite (sqrt_up_eqn0 _ Hb) in H; generalize (sqrt_up_nonneg a); order. + destruct (le_gt_cases a 0) as [Ha|Ha]; [order|]. + rewrite <- (lt_succ_pred 0 a Ha), <- (lt_succ_pred 0 b Hb), <- succ_lt_mono. + apply sqrt_lt_cancel, succ_lt_mono. now rewrite <- 2 sqrt_up_eqn. +Qed. + +(** When left side is a square, we have an equivalence for < *) + +Lemma sqrt_up_lt_square : forall a b, 0<=a -> 0<=b -> (b² < a <-> b < √°a). +Proof. + intros a b Ha Hb. split; intros H. + destruct (sqrt_up_spec a) as (LE,LT). + apply le_lt_trans with b²; trivial using square_nonneg. + apply square_lt_simpl_nonneg; try order. apply sqrt_up_nonneg. + apply sqrt_up_lt_cancel. now rewrite sqrt_up_square. +Qed. + +(** When right side is a square, we have an equivalence for <= *) + +Lemma sqrt_up_le_square : forall a b, 0<=a -> 0<=b -> (a <= b² <-> √°a <= b). +Proof. + intros a b Ha Hb. split; intros H. + rewrite <- (sqrt_up_square b Hb). + now apply sqrt_up_le_mono. + apply square_le_mono_nonneg in H; [|now apply sqrt_up_nonneg]. + transitivity (√°a)²; trivial. now apply sqrt_sqrt_up_spec. +Qed. + +Lemma sqrt_up_pos : forall a, 0 < √°a <-> 0 < a. +Proof. + intros a. split; intros Ha. apply sqrt_up_lt_cancel. now rewrite sqrt_up_0. + rewrite <- le_succ_l, <- one_succ, <- sqrt_up_1. apply sqrt_up_le_mono. + now rewrite one_succ, le_succ_l. +Qed. + +Lemma sqrt_up_lt_lin : forall a, 2<a -> √°a < a. +Proof. + intros a Ha. + rewrite sqrt_up_eqn by order'. + assert (Ha' := lt_succ_pred 2 a Ha). + rewrite <- Ha' at 2. rewrite <- succ_lt_mono. + apply sqrt_lt_lin. rewrite succ_lt_mono. now rewrite Ha', <- two_succ. +Qed. + +Lemma sqrt_up_le_lin : forall a, 0<=a -> √°a<=a. +Proof. + intros a Ha. + le_elim Ha. + rewrite sqrt_up_eqn; trivial. apply le_succ_l. + apply le_lt_trans with (P a). apply sqrt_le_lin. + now rewrite <- lt_succ_r, (lt_succ_pred 0). + rewrite <- (lt_succ_pred 0 a) at 2; trivial. apply lt_succ_diag_r. + now rewrite <- Ha, sqrt_up_0. +Qed. + +(** [sqrt_up] and multiplication. *) + +(** Due to rounding error, we don't have the usual [√(a*b) = √a*√b] + but only lower and upper bounds. *) + +Lemma sqrt_up_mul_above : forall a b, 0<=a -> 0<=b -> √°(a*b) <= √°a * √°b. +Proof. + intros a b Ha Hb. + apply sqrt_up_le_square. + now apply mul_nonneg_nonneg. + apply mul_nonneg_nonneg; apply sqrt_up_nonneg. + rewrite mul_shuffle1. + apply mul_le_mono_nonneg; trivial; now apply sqrt_sqrt_up_spec. +Qed. + +Lemma sqrt_up_mul_below : forall a b, 0<a -> 0<b -> (P √°a)*(P √°b) < √°(a*b). +Proof. + intros a b Ha Hb. + apply sqrt_up_lt_square. + apply mul_nonneg_nonneg; order. + apply mul_nonneg_nonneg; apply lt_succ_r. + rewrite (lt_succ_pred 0); now rewrite sqrt_up_pos. + rewrite (lt_succ_pred 0); now rewrite sqrt_up_pos. + rewrite mul_shuffle1. + apply mul_lt_mono_nonneg; trivial using square_nonneg; + now apply sqrt_up_spec. +Qed. + +(** And we can't find better approximations in general. + - The upper bound is exact for squares + - Concerning the lower bound, for any c>0, take [a=b=c²+1], + then [√°(a*b) = c²+1] while [P √°a = P √°b = c] +*) + +(** [sqrt_up] and successor : + - the [sqrt_up] function climbs by at most 1 at a time + - otherwise it stays at the same value + - the +1 steps occur after squares +*) + +Lemma sqrt_up_succ_le : forall a, 0<=a -> √°(S a) <= S (√°a). +Proof. + intros a Ha. + apply sqrt_up_le_square. + now apply le_le_succ_r. + apply le_le_succ_r, sqrt_up_nonneg. + rewrite <- (add_1_l (√°a)). + apply le_trans with (1²+(√°a)²). + rewrite mul_1_l, add_1_l, <- succ_le_mono. + now apply sqrt_sqrt_up_spec. + apply add_square_le. order'. apply sqrt_up_nonneg. +Qed. + +Lemma sqrt_up_succ_or : forall a, 0<=a -> √°(S a) == S (√°a) \/ √°(S a) == √°a. +Proof. + intros a Ha. + destruct (le_gt_cases (√°(S a)) (√°a)) as [H|H]. + right. generalize (sqrt_up_le_mono _ _ (le_succ_diag_r a)); order. + left. apply le_succ_l in H. generalize (sqrt_up_succ_le a Ha); order. +Qed. + +Lemma sqrt_up_eq_succ_iff_square : forall a, 0<=a -> + (√°(S a) == S (√°a) <-> exists b, 0<=b /\ a == b²). +Proof. + intros a Ha. split. + intros EQ. + le_elim Ha. + exists (√°a). split. apply sqrt_up_nonneg. + generalize (proj2 (sqrt_up_spec a Ha)). + assert (Ha' : 0 < S a) by (apply lt_succ_r; order'). + generalize (proj1 (sqrt_up_spec (S a) Ha')). + rewrite EQ, pred_succ, lt_succ_r. order. + exists 0. nzsimpl. now split. + intros (b & Hb & H). + now rewrite H, sqrt_up_succ_square, sqrt_up_square. +Qed. + +(** [sqrt_up] and addition *) + +Lemma sqrt_up_add_le : forall a b, √°(a+b) <= √°a + √°b. +Proof. + assert (AUX : forall a b, a<=0 -> √°(a+b) <= √°a + √°b). + intros a b Ha. rewrite (sqrt_up_eqn0 a Ha). nzsimpl. + apply sqrt_up_le_mono. + rewrite <- (add_0_l b) at 2. + apply add_le_mono_r; order. + intros a b. + destruct (le_gt_cases a 0) as [Ha|Ha]. now apply AUX. + destruct (le_gt_cases b 0) as [Hb|Hb]. + rewrite (add_comm a), (add_comm (√°a)); now apply AUX. + rewrite 2 sqrt_up_eqn; trivial. + nzsimpl. rewrite <- succ_le_mono. + transitivity (√(P a) + √b). + rewrite <- (lt_succ_pred 0 a Ha) at 1. nzsimpl. apply sqrt_add_le. + apply add_le_mono_l. + apply le_sqrt_sqrt_up. + now apply add_pos_pos. +Qed. + +(** Convexity-like inequality for [sqrt_up]: [sqrt_up] of middle is above middle + of square roots. We cannot say more, for instance take a=b=2, then + 2+2 <= S 3 *) + +Lemma add_sqrt_up_le : forall a b, 0<=a -> 0<=b -> √°a + √°b <= S √°(2*(a+b)). +Proof. + intros a b Ha Hb. + le_elim Ha. + le_elim Hb. + rewrite 3 sqrt_up_eqn; trivial. + nzsimpl. rewrite <- 2 succ_le_mono. + etransitivity; [eapply add_sqrt_le|]. + apply lt_succ_r. now rewrite (lt_succ_pred 0 a Ha). + apply lt_succ_r. now rewrite (lt_succ_pred 0 b Hb). + apply sqrt_le_mono. + apply lt_succ_r. rewrite (lt_succ_pred 0). + apply mul_lt_mono_pos_l. order'. + apply add_lt_mono. + apply le_succ_l. now rewrite (lt_succ_pred 0). + apply le_succ_l. now rewrite (lt_succ_pred 0). + apply mul_pos_pos. order'. now apply add_pos_pos. + apply mul_pos_pos. order'. now apply add_pos_pos. + rewrite <- Hb, sqrt_up_0. nzsimpl. apply le_le_succ_r, sqrt_up_le_mono. + rewrite <- (mul_1_l a) at 1. apply mul_le_mono_nonneg_r; order'. + rewrite <- Ha, sqrt_up_0. nzsimpl. apply le_le_succ_r, sqrt_up_le_mono. + rewrite <- (mul_1_l b) at 1. apply mul_le_mono_nonneg_r; order'. +Qed. + +End NZSqrtUpProp. |