diff options
Diffstat (limited to 'theories/Numbers/NatInt/NZDiv.v')
-rw-r--r-- | theories/Numbers/NatInt/NZDiv.v | 542 |
1 files changed, 542 insertions, 0 deletions
diff --git a/theories/Numbers/NatInt/NZDiv.v b/theories/Numbers/NatInt/NZDiv.v new file mode 100644 index 00000000..1f6c615b --- /dev/null +++ b/theories/Numbers/NatInt/NZDiv.v @@ -0,0 +1,542 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +(** Euclidean Division *) + +Require Import NZAxioms NZMulOrder. + +(** The first signatures will be common to all divisions over NZ, N and Z *) + +Module Type DivMod (Import T:Typ). + Parameters Inline div modulo : t -> t -> t. +End DivMod. + +Module Type DivModNotation (T:Typ)(Import NZ:DivMod T). + Infix "/" := div. + Infix "mod" := modulo (at level 40, no associativity). +End DivModNotation. + +Module Type DivMod' (T:Typ) := DivMod T <+ DivModNotation T. + +Module Type NZDivCommon (Import NZ : NZAxiomsSig')(Import DM : DivMod' NZ). + Declare Instance div_wd : Proper (eq==>eq==>eq) div. + Declare Instance mod_wd : Proper (eq==>eq==>eq) modulo. + Axiom div_mod : forall a b, b ~= 0 -> a == b*(a/b) + (a mod b). +End NZDivCommon. + +(** The different divisions will only differ in the conditions + they impose on [modulo]. For NZ, we only describe behavior + on positive numbers. + + NB: This axiom would also be true for N and Z, but redundant. +*) + +Module Type NZDivSpecific (Import NZ : NZOrdAxiomsSig')(Import DM : DivMod' NZ). + Axiom mod_bound : forall a b, 0<=a -> 0<b -> 0 <= a mod b < b. +End NZDivSpecific. + +Module Type NZDiv (NZ:NZOrdAxiomsSig) + := DivMod NZ <+ NZDivCommon NZ <+ NZDivSpecific NZ. + +Module Type NZDiv' (NZ:NZOrdAxiomsSig) := NZDiv NZ <+ DivModNotation NZ. + +Module NZDivPropFunct + (Import NZ : NZOrdAxiomsSig') + (Import NZP : NZMulOrderPropSig NZ) + (Import NZD : NZDiv' NZ) +. + +(** Uniqueness theorems *) + +Theorem div_mod_unique : + forall b q1 q2 r1 r2, 0<=r1<b -> 0<=r2<b -> + b*q1+r1 == b*q2+r2 -> q1 == q2 /\ r1 == r2. +Proof. +intros b. +assert (U : forall q1 q2 r1 r2, + b*q1+r1 == b*q2+r2 -> 0<=r1<b -> 0<=r2 -> q1<q2 -> False). + intros q1 q2 r1 r2 EQ LT Hr1 Hr2. + contradict EQ. + apply lt_neq. + apply lt_le_trans with (b*q1+b). + rewrite <- add_lt_mono_l. tauto. + apply le_trans with (b*q2). + rewrite mul_comm, <- mul_succ_l, mul_comm. + apply mul_le_mono_nonneg_l; intuition; try order. + rewrite le_succ_l; auto. + rewrite <- (add_0_r (b*q2)) at 1. + rewrite <- add_le_mono_l. tauto. + +intros q1 q2 r1 r2 Hr1 Hr2 EQ; destruct (lt_trichotomy q1 q2) as [LT|[EQ'|GT]]. +elim (U q1 q2 r1 r2); intuition. +split; auto. rewrite EQ' in EQ. rewrite add_cancel_l in EQ; auto. +elim (U q2 q1 r2 r1); intuition. +Qed. + +Theorem div_unique: + forall a b q r, 0<=a -> 0<=r<b -> + a == b*q + r -> q == a/b. +Proof. +intros a b q r Ha (Hb,Hr) EQ. +destruct (div_mod_unique b q (a/b) r (a mod b)); auto. +apply mod_bound; order. +rewrite <- div_mod; order. +Qed. + +Theorem mod_unique: + forall a b q r, 0<=a -> 0<=r<b -> + a == b*q + r -> r == a mod b. +Proof. +intros a b q r Ha (Hb,Hr) EQ. +destruct (div_mod_unique b q (a/b) r (a mod b)); auto. +apply mod_bound; order. +rewrite <- div_mod; order. +Qed. + + +(** A division by itself returns 1 *) + +Lemma div_same : forall a, 0<a -> a/a == 1. +Proof. +intros. symmetry. +apply div_unique with 0; intuition; try order. +now nzsimpl. +Qed. + +Lemma mod_same : forall a, 0<a -> a mod a == 0. +Proof. +intros. symmetry. +apply mod_unique with 1; intuition; try order. +now nzsimpl. +Qed. + +(** A division of a small number by a bigger one yields zero. *) + +Theorem div_small: forall a b, 0<=a<b -> a/b == 0. +Proof. +intros. symmetry. +apply div_unique with a; intuition; try order. +now nzsimpl. +Qed. + +(** Same situation, in term of modulo: *) + +Theorem mod_small: forall a b, 0<=a<b -> a mod b == a. +Proof. +intros. symmetry. +apply mod_unique with 0; intuition; try order. +now nzsimpl. +Qed. + +(** * Basic values of divisions and modulo. *) + +Lemma div_0_l: forall a, 0<a -> 0/a == 0. +Proof. +intros; apply div_small; split; order. +Qed. + +Lemma mod_0_l: forall a, 0<a -> 0 mod a == 0. +Proof. +intros; apply mod_small; split; order. +Qed. + +Lemma div_1_r: forall a, 0<=a -> a/1 == a. +Proof. +intros. symmetry. +apply div_unique with 0; try split; try order; try apply lt_0_1. +now nzsimpl. +Qed. + +Lemma mod_1_r: forall a, 0<=a -> a mod 1 == 0. +Proof. +intros. symmetry. +apply mod_unique with a; try split; try order; try apply lt_0_1. +now nzsimpl. +Qed. + +Lemma div_1_l: forall a, 1<a -> 1/a == 0. +Proof. +intros; apply div_small; split; auto. apply le_succ_diag_r. +Qed. + +Lemma mod_1_l: forall a, 1<a -> 1 mod a == 1. +Proof. +intros; apply mod_small; split; auto. apply le_succ_diag_r. +Qed. + +Lemma div_mul : forall a b, 0<=a -> 0<b -> (a*b)/b == a. +Proof. +intros; symmetry. +apply div_unique with 0; try split; try order. +apply mul_nonneg_nonneg; order. +nzsimpl; apply mul_comm. +Qed. + +Lemma mod_mul : forall a b, 0<=a -> 0<b -> (a*b) mod b == 0. +Proof. +intros; symmetry. +apply mod_unique with a; try split; try order. +apply mul_nonneg_nonneg; order. +nzsimpl; apply mul_comm. +Qed. + + +(** * Order results about mod and div *) + +(** A modulo cannot grow beyond its starting point. *) + +Theorem mod_le: forall a b, 0<=a -> 0<b -> a mod b <= a. +Proof. +intros. destruct (le_gt_cases b a). +apply le_trans with b; auto. +apply lt_le_incl. destruct (mod_bound a b); auto. +rewrite lt_eq_cases; right. +apply mod_small; auto. +Qed. + + +(* Division of positive numbers is positive. *) + +Lemma div_pos: forall a b, 0<=a -> 0<b -> 0 <= a/b. +Proof. +intros. +rewrite (mul_le_mono_pos_l _ _ b); auto; nzsimpl. +rewrite (add_le_mono_r _ _ (a mod b)). +rewrite <- div_mod by order. +nzsimpl. +apply mod_le; auto. +Qed. + +Lemma div_str_pos : forall a b, 0<b<=a -> 0 < a/b. +Proof. +intros a b (Hb,Hab). +assert (LE : 0 <= a/b) by (apply div_pos; order). +assert (MOD : a mod b < b) by (destruct (mod_bound a b); order). +rewrite lt_eq_cases in LE; destruct LE as [LT|EQ]; auto. +exfalso; revert Hab. +rewrite (div_mod a b), <-EQ; nzsimpl; order. +Qed. + +Lemma div_small_iff : forall a b, 0<=a -> 0<b -> (a/b==0 <-> a<b). +Proof. +intros a b Ha Hb; split; intros Hab. +destruct (lt_ge_cases a b); auto. +symmetry in Hab. contradict Hab. apply lt_neq, div_str_pos; auto. +apply div_small; auto. +Qed. + +Lemma mod_small_iff : forall a b, 0<=a -> 0<b -> (a mod b == a <-> a<b). +Proof. +intros a b Ha Hb. split; intros H; auto using mod_small. +rewrite <- div_small_iff; auto. +rewrite <- (mul_cancel_l _ _ b) by order. +rewrite <- (add_cancel_r _ _ (a mod b)). +rewrite <- div_mod, H by order. now nzsimpl. +Qed. + +Lemma div_str_pos_iff : forall a b, 0<=a -> 0<b -> (0<a/b <-> b<=a). +Proof. +intros a b Ha Hb; split; intros Hab. +destruct (lt_ge_cases a b) as [LT|LE]; auto. +rewrite <- div_small_iff in LT; order. +apply div_str_pos; auto. +Qed. + + +(** As soon as the divisor is strictly greater than 1, + the division is strictly decreasing. *) + +Lemma div_lt : forall a b, 0<a -> 1<b -> a/b < a. +Proof. +intros. +assert (0 < b) by (apply lt_trans with 1; auto using lt_0_1). +destruct (lt_ge_cases a b). +rewrite div_small; try split; order. +rewrite (div_mod a b) at 2 by order. +apply lt_le_trans with (b*(a/b)). +rewrite <- (mul_1_l (a/b)) at 1. +rewrite <- mul_lt_mono_pos_r; auto. +apply div_str_pos; auto. +rewrite <- (add_0_r (b*(a/b))) at 1. +rewrite <- add_le_mono_l. destruct (mod_bound a b); order. +Qed. + +(** [le] is compatible with a positive division. *) + +Lemma div_le_mono : forall a b c, 0<c -> 0<=a<=b -> a/c <= b/c. +Proof. +intros a b c Hc (Ha,Hab). +rewrite lt_eq_cases in Hab. destruct Hab as [LT|EQ]; + [|rewrite EQ; order]. +rewrite <- lt_succ_r. +rewrite (mul_lt_mono_pos_l c) by order. +nzsimpl. +rewrite (add_lt_mono_r _ _ (a mod c)). +rewrite <- div_mod by order. +apply lt_le_trans with b; auto. +rewrite (div_mod b c) at 1 by order. +rewrite <- add_assoc, <- add_le_mono_l. +apply le_trans with (c+0). +nzsimpl; destruct (mod_bound b c); order. +rewrite <- add_le_mono_l. destruct (mod_bound a c); order. +Qed. + +(** The following two properties could be used as specification of div *) + +Lemma mul_div_le : forall a b, 0<=a -> 0<b -> b*(a/b) <= a. +Proof. +intros. +rewrite (add_le_mono_r _ _ (a mod b)), <- div_mod by order. +rewrite <- (add_0_r a) at 1. +rewrite <- add_le_mono_l. destruct (mod_bound a b); order. +Qed. + +Lemma mul_succ_div_gt : forall a b, 0<=a -> 0<b -> a < b*(S (a/b)). +Proof. +intros. +rewrite (div_mod a b) at 1 by order. +rewrite (mul_succ_r). +rewrite <- add_lt_mono_l. +destruct (mod_bound a b); auto. +Qed. + + +(** The previous inequality is exact iff the modulo is zero. *) + +Lemma div_exact : forall a b, 0<=a -> 0<b -> (a == b*(a/b) <-> a mod b == 0). +Proof. +intros. rewrite (div_mod a b) at 1 by order. +rewrite <- (add_0_r (b*(a/b))) at 2. +apply add_cancel_l. +Qed. + +(** Some additionnal inequalities about div. *) + +Theorem div_lt_upper_bound: + forall a b q, 0<=a -> 0<b -> a < b*q -> a/b < q. +Proof. +intros. +rewrite (mul_lt_mono_pos_l b) by order. +apply le_lt_trans with a; auto. +apply mul_div_le; auto. +Qed. + +Theorem div_le_upper_bound: + forall a b q, 0<=a -> 0<b -> a <= b*q -> a/b <= q. +Proof. +intros. +rewrite (mul_le_mono_pos_l _ _ b) by order. +apply le_trans with a; auto. +apply mul_div_le; auto. +Qed. + +Theorem div_le_lower_bound: + forall a b q, 0<=a -> 0<b -> b*q <= a -> q <= a/b. +Proof. +intros a b q Ha Hb H. +destruct (lt_ge_cases 0 q). +rewrite <- (div_mul q b); try order. +apply div_le_mono; auto. +rewrite mul_comm; split; auto. +apply lt_le_incl, mul_pos_pos; auto. +apply le_trans with 0; auto; apply div_pos; auto. +Qed. + +(** A division respects opposite monotonicity for the divisor *) + +Lemma div_le_compat_l: forall p q r, 0<=p -> 0<q<=r -> + p/r <= p/q. +Proof. + intros p q r Hp (Hq,Hqr). + apply div_le_lower_bound; auto. + rewrite (div_mod p r) at 2 by order. + apply le_trans with (r*(p/r)). + apply mul_le_mono_nonneg_r; try order. + apply div_pos; order. + rewrite <- (add_0_r (r*(p/r))) at 1. + rewrite <- add_le_mono_l. destruct (mod_bound p r); order. +Qed. + + +(** * Relations between usual operations and mod and div *) + +Lemma mod_add : forall a b c, 0<=a -> 0<=a+b*c -> 0<c -> + (a + b * c) mod c == a mod c. +Proof. + intros. + symmetry. + apply mod_unique with (a/c+b); auto. + apply mod_bound; auto. + rewrite mul_add_distr_l, add_shuffle0, <- div_mod by order. + now rewrite mul_comm. +Qed. + +Lemma div_add : forall a b c, 0<=a -> 0<=a+b*c -> 0<c -> + (a + b * c) / c == a / c + b. +Proof. + intros. + apply (mul_cancel_l _ _ c); try order. + apply (add_cancel_r _ _ ((a+b*c) mod c)). + rewrite <- div_mod, mod_add by order. + rewrite mul_add_distr_l, add_shuffle0, <- div_mod by order. + now rewrite mul_comm. +Qed. + +Lemma div_add_l: forall a b c, 0<=c -> 0<=a*b+c -> 0<b -> + (a * b + c) / b == a + c / b. +Proof. + intros a b c. rewrite (add_comm _ c), (add_comm a). + intros. apply div_add; auto. +Qed. + +(** Cancellations. *) + +Lemma div_mul_cancel_r : forall a b c, 0<=a -> 0<b -> 0<c -> + (a*c)/(b*c) == a/b. +Proof. + intros. + symmetry. + apply div_unique with ((a mod b)*c). + apply mul_nonneg_nonneg; order. + split. + apply mul_nonneg_nonneg; destruct (mod_bound a b); order. + rewrite <- mul_lt_mono_pos_r; auto. destruct (mod_bound a b); auto. + rewrite (div_mod a b) at 1 by order. + rewrite mul_add_distr_r. + rewrite add_cancel_r. + rewrite <- 2 mul_assoc. now rewrite (mul_comm c). +Qed. + +Lemma div_mul_cancel_l : forall a b c, 0<=a -> 0<b -> 0<c -> + (c*a)/(c*b) == a/b. +Proof. + intros. rewrite !(mul_comm c); apply div_mul_cancel_r; auto. +Qed. + +Lemma mul_mod_distr_l: forall a b c, 0<=a -> 0<b -> 0<c -> + (c*a) mod (c*b) == c * (a mod b). +Proof. + intros. + rewrite <- (add_cancel_l _ _ ((c*b)* ((c*a)/(c*b)))). + rewrite <- div_mod. + rewrite div_mul_cancel_l; auto. + rewrite <- mul_assoc, <- mul_add_distr_l, mul_cancel_l by order. + apply div_mod; order. + rewrite <- neq_mul_0; intuition; order. +Qed. + +Lemma mul_mod_distr_r: forall a b c, 0<=a -> 0<b -> 0<c -> + (a*c) mod (b*c) == (a mod b) * c. +Proof. + intros. rewrite !(mul_comm _ c); now rewrite mul_mod_distr_l. +Qed. + +(** Operations modulo. *) + +Theorem mod_mod: forall a n, 0<=a -> 0<n -> + (a mod n) mod n == a mod n. +Proof. + intros. destruct (mod_bound a n); auto. now rewrite mod_small_iff. +Qed. + +Lemma mul_mod_idemp_l : forall a b n, 0<=a -> 0<=b -> 0<n -> + ((a mod n)*b) mod n == (a*b) mod n. +Proof. + intros a b n Ha Hb Hn. symmetry. + generalize (mul_nonneg_nonneg _ _ Ha Hb). + rewrite (div_mod a n) at 1 2 by order. + rewrite add_comm, (mul_comm n), (mul_comm _ b). + rewrite mul_add_distr_l, mul_assoc. + intros. rewrite mod_add; auto. + now rewrite mul_comm. + apply mul_nonneg_nonneg; destruct (mod_bound a n); auto. +Qed. + +Lemma mul_mod_idemp_r : forall a b n, 0<=a -> 0<=b -> 0<n -> + (a*(b mod n)) mod n == (a*b) mod n. +Proof. + intros. rewrite !(mul_comm a). apply mul_mod_idemp_l; auto. +Qed. + +Theorem mul_mod: forall a b n, 0<=a -> 0<=b -> 0<n -> + (a * b) mod n == ((a mod n) * (b mod n)) mod n. +Proof. + intros. rewrite mul_mod_idemp_l, mul_mod_idemp_r; trivial. reflexivity. + now destruct (mod_bound b n). +Qed. + +Lemma add_mod_idemp_l : forall a b n, 0<=a -> 0<=b -> 0<n -> + ((a mod n)+b) mod n == (a+b) mod n. +Proof. + intros a b n Ha Hb Hn. symmetry. + generalize (add_nonneg_nonneg _ _ Ha Hb). + rewrite (div_mod a n) at 1 2 by order. + rewrite <- add_assoc, add_comm, mul_comm. + intros. rewrite mod_add; trivial. reflexivity. + apply add_nonneg_nonneg; auto. destruct (mod_bound a n); auto. +Qed. + +Lemma add_mod_idemp_r : forall a b n, 0<=a -> 0<=b -> 0<n -> + (a+(b mod n)) mod n == (a+b) mod n. +Proof. + intros. rewrite !(add_comm a). apply add_mod_idemp_l; auto. +Qed. + +Theorem add_mod: forall a b n, 0<=a -> 0<=b -> 0<n -> + (a+b) mod n == (a mod n + b mod n) mod n. +Proof. + intros. rewrite add_mod_idemp_l, add_mod_idemp_r; trivial. reflexivity. + now destruct (mod_bound b n). +Qed. + +Lemma div_div : forall a b c, 0<=a -> 0<b -> 0<c -> + (a/b)/c == a/(b*c). +Proof. + intros a b c Ha Hb Hc. + apply div_unique with (b*((a/b) mod c) + a mod b); trivial. + (* begin 0<= ... <b*c *) + destruct (mod_bound (a/b) c), (mod_bound a b); auto using div_pos. + split. + apply add_nonneg_nonneg; auto. + apply mul_nonneg_nonneg; order. + apply lt_le_trans with (b*((a/b) mod c) + b). + rewrite <- add_lt_mono_l; auto. + rewrite <- mul_succ_r, <- mul_le_mono_pos_l, le_succ_l; auto. + (* end 0<= ... < b*c *) + rewrite (div_mod a b) at 1 by order. + rewrite add_assoc, add_cancel_r. + rewrite <- mul_assoc, <- mul_add_distr_l, mul_cancel_l by order. + apply div_mod; order. +Qed. + +(** A last inequality: *) + +Theorem div_mul_le: + forall a b c, 0<=a -> 0<b -> 0<=c -> c*(a/b) <= (c*a)/b. +Proof. + intros. + apply div_le_lower_bound; auto. + apply mul_nonneg_nonneg; auto. + rewrite mul_assoc, (mul_comm b c), <- mul_assoc. + apply mul_le_mono_nonneg_l; auto. + apply mul_div_le; auto. +Qed. + +(** mod is related to divisibility *) + +Lemma mod_divides : forall a b, 0<=a -> 0<b -> + (a mod b == 0 <-> exists c, a == b*c). +Proof. + split. + intros. exists (a/b). rewrite div_exact; auto. + intros (c,Hc). rewrite Hc, mul_comm. apply mod_mul; auto. + rewrite (mul_le_mono_pos_l _ _ b); auto. nzsimpl. order. +Qed. + +End NZDivPropFunct. + |