summaryrefslogtreecommitdiff
path: root/theories/Numbers/NatInt/NZAddOrder.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/NatInt/NZAddOrder.v')
-rw-r--r--theories/Numbers/NatInt/NZAddOrder.v141
1 files changed, 64 insertions, 77 deletions
diff --git a/theories/Numbers/NatInt/NZAddOrder.v b/theories/Numbers/NatInt/NZAddOrder.v
index 50d1c42f..97c12202 100644
--- a/theories/Numbers/NatInt/NZAddOrder.v
+++ b/theories/Numbers/NatInt/NZAddOrder.v
@@ -8,159 +8,146 @@
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
-(*i $Id: NZAddOrder.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+(*i $Id$ i*)
-Require Import NZAxioms.
-Require Import NZOrder.
+Require Import NZAxioms NZBase NZMul NZOrder.
-Module NZAddOrderPropFunct (Import NZOrdAxiomsMod : NZOrdAxiomsSig).
-Module Export NZOrderPropMod := NZOrderPropFunct NZOrdAxiomsMod.
-Open Local Scope NatIntScope.
+Module Type NZAddOrderPropSig (Import NZ : NZOrdAxiomsSig').
+Include NZBasePropSig NZ <+ NZMulPropSig NZ <+ NZOrderPropSig NZ.
-Theorem NZadd_lt_mono_l : forall n m p : NZ, n < m <-> p + n < p + m.
+Theorem add_lt_mono_l : forall n m p, n < m <-> p + n < p + m.
Proof.
-intros n m p; NZinduct p.
-now do 2 rewrite NZadd_0_l.
-intro p. do 2 rewrite NZadd_succ_l. now rewrite <- NZsucc_lt_mono.
+intros n m p; nzinduct p. now nzsimpl.
+intro p. nzsimpl. now rewrite <- succ_lt_mono.
Qed.
-Theorem NZadd_lt_mono_r : forall n m p : NZ, n < m <-> n + p < m + p.
+Theorem add_lt_mono_r : forall n m p, n < m <-> n + p < m + p.
Proof.
-intros n m p.
-rewrite (NZadd_comm n p); rewrite (NZadd_comm m p); apply NZadd_lt_mono_l.
+intros n m p. rewrite (add_comm n p), (add_comm m p); apply add_lt_mono_l.
Qed.
-Theorem NZadd_lt_mono : forall n m p q : NZ, n < m -> p < q -> n + p < m + q.
+Theorem add_lt_mono : forall n m p q, n < m -> p < q -> n + p < m + q.
Proof.
intros n m p q H1 H2.
-apply NZlt_trans with (m + p);
-[now apply -> NZadd_lt_mono_r | now apply -> NZadd_lt_mono_l].
+apply lt_trans with (m + p);
+[now apply -> add_lt_mono_r | now apply -> add_lt_mono_l].
Qed.
-Theorem NZadd_le_mono_l : forall n m p : NZ, n <= m <-> p + n <= p + m.
+Theorem add_le_mono_l : forall n m p, n <= m <-> p + n <= p + m.
Proof.
-intros n m p; NZinduct p.
-now do 2 rewrite NZadd_0_l.
-intro p. do 2 rewrite NZadd_succ_l. now rewrite <- NZsucc_le_mono.
+intros n m p; nzinduct p. now nzsimpl.
+intro p. nzsimpl. now rewrite <- succ_le_mono.
Qed.
-Theorem NZadd_le_mono_r : forall n m p : NZ, n <= m <-> n + p <= m + p.
+Theorem add_le_mono_r : forall n m p, n <= m <-> n + p <= m + p.
Proof.
-intros n m p.
-rewrite (NZadd_comm n p); rewrite (NZadd_comm m p); apply NZadd_le_mono_l.
+intros n m p. rewrite (add_comm n p), (add_comm m p); apply add_le_mono_l.
Qed.
-Theorem NZadd_le_mono : forall n m p q : NZ, n <= m -> p <= q -> n + p <= m + q.
+Theorem add_le_mono : forall n m p q, n <= m -> p <= q -> n + p <= m + q.
Proof.
intros n m p q H1 H2.
-apply NZle_trans with (m + p);
-[now apply -> NZadd_le_mono_r | now apply -> NZadd_le_mono_l].
+apply le_trans with (m + p);
+[now apply -> add_le_mono_r | now apply -> add_le_mono_l].
Qed.
-Theorem NZadd_lt_le_mono : forall n m p q : NZ, n < m -> p <= q -> n + p < m + q.
+Theorem add_lt_le_mono : forall n m p q, n < m -> p <= q -> n + p < m + q.
Proof.
intros n m p q H1 H2.
-apply NZlt_le_trans with (m + p);
-[now apply -> NZadd_lt_mono_r | now apply -> NZadd_le_mono_l].
+apply lt_le_trans with (m + p);
+[now apply -> add_lt_mono_r | now apply -> add_le_mono_l].
Qed.
-Theorem NZadd_le_lt_mono : forall n m p q : NZ, n <= m -> p < q -> n + p < m + q.
+Theorem add_le_lt_mono : forall n m p q, n <= m -> p < q -> n + p < m + q.
Proof.
intros n m p q H1 H2.
-apply NZle_lt_trans with (m + p);
-[now apply -> NZadd_le_mono_r | now apply -> NZadd_lt_mono_l].
+apply le_lt_trans with (m + p);
+[now apply -> add_le_mono_r | now apply -> add_lt_mono_l].
Qed.
-Theorem NZadd_pos_pos : forall n m : NZ, 0 < n -> 0 < m -> 0 < n + m.
+Theorem add_pos_pos : forall n m, 0 < n -> 0 < m -> 0 < n + m.
Proof.
-intros n m H1 H2. rewrite <- (NZadd_0_l 0). now apply NZadd_lt_mono.
+intros n m H1 H2. rewrite <- (add_0_l 0). now apply add_lt_mono.
Qed.
-Theorem NZadd_pos_nonneg : forall n m : NZ, 0 < n -> 0 <= m -> 0 < n + m.
+Theorem add_pos_nonneg : forall n m, 0 < n -> 0 <= m -> 0 < n + m.
Proof.
-intros n m H1 H2. rewrite <- (NZadd_0_l 0). now apply NZadd_lt_le_mono.
+intros n m H1 H2. rewrite <- (add_0_l 0). now apply add_lt_le_mono.
Qed.
-Theorem NZadd_nonneg_pos : forall n m : NZ, 0 <= n -> 0 < m -> 0 < n + m.
+Theorem add_nonneg_pos : forall n m, 0 <= n -> 0 < m -> 0 < n + m.
Proof.
-intros n m H1 H2. rewrite <- (NZadd_0_l 0). now apply NZadd_le_lt_mono.
+intros n m H1 H2. rewrite <- (add_0_l 0). now apply add_le_lt_mono.
Qed.
-Theorem NZadd_nonneg_nonneg : forall n m : NZ, 0 <= n -> 0 <= m -> 0 <= n + m.
+Theorem add_nonneg_nonneg : forall n m, 0 <= n -> 0 <= m -> 0 <= n + m.
Proof.
-intros n m H1 H2. rewrite <- (NZadd_0_l 0). now apply NZadd_le_mono.
+intros n m H1 H2. rewrite <- (add_0_l 0). now apply add_le_mono.
Qed.
-Theorem NZlt_add_pos_l : forall n m : NZ, 0 < n -> m < n + m.
+Theorem lt_add_pos_l : forall n m, 0 < n -> m < n + m.
Proof.
-intros n m H. apply -> (NZadd_lt_mono_r 0 n m) in H.
-now rewrite NZadd_0_l in H.
+intros n m. rewrite (add_lt_mono_r 0 n m). now nzsimpl.
Qed.
-Theorem NZlt_add_pos_r : forall n m : NZ, 0 < n -> m < m + n.
+Theorem lt_add_pos_r : forall n m, 0 < n -> m < m + n.
Proof.
-intros; rewrite NZadd_comm; now apply NZlt_add_pos_l.
+intros; rewrite add_comm; now apply lt_add_pos_l.
Qed.
-Theorem NZle_lt_add_lt : forall n m p q : NZ, n <= m -> p + m < q + n -> p < q.
+Theorem le_lt_add_lt : forall n m p q, n <= m -> p + m < q + n -> p < q.
Proof.
-intros n m p q H1 H2. destruct (NZle_gt_cases q p); [| assumption].
-pose proof (NZadd_le_mono q p n m H H1) as H3. apply <- NZnle_gt in H2.
-false_hyp H3 H2.
+intros n m p q H1 H2. destruct (le_gt_cases q p); [| assumption].
+contradict H2. rewrite nlt_ge. now apply add_le_mono.
Qed.
-Theorem NZlt_le_add_lt : forall n m p q : NZ, n < m -> p + m <= q + n -> p < q.
+Theorem lt_le_add_lt : forall n m p q, n < m -> p + m <= q + n -> p < q.
Proof.
-intros n m p q H1 H2. destruct (NZle_gt_cases q p); [| assumption].
-pose proof (NZadd_le_lt_mono q p n m H H1) as H3. apply <- NZnle_gt in H3.
-false_hyp H2 H3.
+intros n m p q H1 H2. destruct (le_gt_cases q p); [| assumption].
+contradict H2. rewrite nle_gt. now apply add_le_lt_mono.
Qed.
-Theorem NZle_le_add_le : forall n m p q : NZ, n <= m -> p + m <= q + n -> p <= q.
+Theorem le_le_add_le : forall n m p q, n <= m -> p + m <= q + n -> p <= q.
Proof.
-intros n m p q H1 H2. destruct (NZle_gt_cases p q); [assumption |].
-pose proof (NZadd_lt_le_mono q p n m H H1) as H3. apply <- NZnle_gt in H3.
-false_hyp H2 H3.
+intros n m p q H1 H2. destruct (le_gt_cases p q); [assumption |].
+contradict H2. rewrite nle_gt. now apply add_lt_le_mono.
Qed.
-Theorem NZadd_lt_cases : forall n m p q : NZ, n + m < p + q -> n < p \/ m < q.
+Theorem add_lt_cases : forall n m p q, n + m < p + q -> n < p \/ m < q.
Proof.
intros n m p q H;
-destruct (NZle_gt_cases p n) as [H1 | H1].
-destruct (NZle_gt_cases q m) as [H2 | H2].
-pose proof (NZadd_le_mono p n q m H1 H2) as H3. apply -> NZle_ngt in H3.
-false_hyp H H3.
-now right. now left.
+destruct (le_gt_cases p n) as [H1 | H1]; [| now left].
+destruct (le_gt_cases q m) as [H2 | H2]; [| now right].
+contradict H; rewrite nlt_ge. now apply add_le_mono.
Qed.
-Theorem NZadd_le_cases : forall n m p q : NZ, n + m <= p + q -> n <= p \/ m <= q.
+Theorem add_le_cases : forall n m p q, n + m <= p + q -> n <= p \/ m <= q.
Proof.
intros n m p q H.
-destruct (NZle_gt_cases n p) as [H1 | H1]. now left.
-destruct (NZle_gt_cases m q) as [H2 | H2]. now right.
-assert (H3 : p + q < n + m) by now apply NZadd_lt_mono.
-apply -> NZle_ngt in H. false_hyp H3 H.
+destruct (le_gt_cases n p) as [H1 | H1]. now left.
+destruct (le_gt_cases m q) as [H2 | H2]. now right.
+contradict H; rewrite nle_gt. now apply add_lt_mono.
Qed.
-Theorem NZadd_neg_cases : forall n m : NZ, n + m < 0 -> n < 0 \/ m < 0.
+Theorem add_neg_cases : forall n m, n + m < 0 -> n < 0 \/ m < 0.
Proof.
-intros n m H; apply NZadd_lt_cases; now rewrite NZadd_0_l.
+intros n m H; apply add_lt_cases; now nzsimpl.
Qed.
-Theorem NZadd_pos_cases : forall n m : NZ, 0 < n + m -> 0 < n \/ 0 < m.
+Theorem add_pos_cases : forall n m, 0 < n + m -> 0 < n \/ 0 < m.
Proof.
-intros n m H; apply NZadd_lt_cases; now rewrite NZadd_0_l.
+intros n m H; apply add_lt_cases; now nzsimpl.
Qed.
-Theorem NZadd_nonpos_cases : forall n m : NZ, n + m <= 0 -> n <= 0 \/ m <= 0.
+Theorem add_nonpos_cases : forall n m, n + m <= 0 -> n <= 0 \/ m <= 0.
Proof.
-intros n m H; apply NZadd_le_cases; now rewrite NZadd_0_l.
+intros n m H; apply add_le_cases; now nzsimpl.
Qed.
-Theorem NZadd_nonneg_cases : forall n m : NZ, 0 <= n + m -> 0 <= n \/ 0 <= m.
+Theorem add_nonneg_cases : forall n m, 0 <= n + m -> 0 <= n \/ 0 <= m.
Proof.
-intros n m H; apply NZadd_le_cases; now rewrite NZadd_0_l.
+intros n m H; apply add_le_cases; now nzsimpl.
Qed.
-End NZAddOrderPropFunct.
+End NZAddOrderPropSig.