summaryrefslogtreecommitdiff
path: root/theories/Numbers/NatInt/NZAdd.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/NatInt/NZAdd.v')
-rw-r--r--theories/Numbers/NatInt/NZAdd.v87
1 files changed, 43 insertions, 44 deletions
diff --git a/theories/Numbers/NatInt/NZAdd.v b/theories/Numbers/NatInt/NZAdd.v
index c9bb5c95..9535cfdb 100644
--- a/theories/Numbers/NatInt/NZAdd.v
+++ b/theories/Numbers/NatInt/NZAdd.v
@@ -8,84 +8,83 @@
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
-(*i $Id: NZAdd.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+(*i $Id$ i*)
-Require Import NZAxioms.
-Require Import NZBase.
+Require Import NZAxioms NZBase.
-Module NZAddPropFunct (Import NZAxiomsMod : NZAxiomsSig).
-Module Export NZBasePropMod := NZBasePropFunct NZAxiomsMod.
-Open Local Scope NatIntScope.
+Module Type NZAddPropSig
+ (Import NZ : NZAxiomsSig')(Import NZBase : NZBasePropSig NZ).
-Theorem NZadd_0_r : forall n : NZ, n + 0 == n.
+Hint Rewrite
+ pred_succ add_0_l add_succ_l mul_0_l mul_succ_l sub_0_r sub_succ_r : nz.
+Ltac nzsimpl := autorewrite with nz.
+
+Theorem add_0_r : forall n, n + 0 == n.
Proof.
-NZinduct n. now rewrite NZadd_0_l.
-intro. rewrite NZadd_succ_l. now rewrite NZsucc_inj_wd.
+nzinduct n. now nzsimpl.
+intro. nzsimpl. now rewrite succ_inj_wd.
Qed.
-Theorem NZadd_succ_r : forall n m : NZ, n + S m == S (n + m).
+Theorem add_succ_r : forall n m, n + S m == S (n + m).
Proof.
-intros n m; NZinduct n.
-now do 2 rewrite NZadd_0_l.
-intro. repeat rewrite NZadd_succ_l. now rewrite NZsucc_inj_wd.
+intros n m; nzinduct n. now nzsimpl.
+intro. nzsimpl. now rewrite succ_inj_wd.
Qed.
-Theorem NZadd_comm : forall n m : NZ, n + m == m + n.
+Hint Rewrite add_0_r add_succ_r : nz.
+
+Theorem add_comm : forall n m, n + m == m + n.
Proof.
-intros n m; NZinduct n.
-rewrite NZadd_0_l; now rewrite NZadd_0_r.
-intros n. rewrite NZadd_succ_l; rewrite NZadd_succ_r. now rewrite NZsucc_inj_wd.
+intros n m; nzinduct n. now nzsimpl.
+intro. nzsimpl. now rewrite succ_inj_wd.
Qed.
-Theorem NZadd_1_l : forall n : NZ, 1 + n == S n.
+Theorem add_1_l : forall n, 1 + n == S n.
Proof.
-intro n; rewrite NZadd_succ_l; now rewrite NZadd_0_l.
+intro n; now nzsimpl.
Qed.
-Theorem NZadd_1_r : forall n : NZ, n + 1 == S n.
+Theorem add_1_r : forall n, n + 1 == S n.
Proof.
-intro n; rewrite NZadd_comm; apply NZadd_1_l.
+intro n; now nzsimpl.
Qed.
-Theorem NZadd_assoc : forall n m p : NZ, n + (m + p) == (n + m) + p.
+Theorem add_assoc : forall n m p, n + (m + p) == (n + m) + p.
Proof.
-intros n m p; NZinduct n.
-now do 2 rewrite NZadd_0_l.
-intro. do 3 rewrite NZadd_succ_l. now rewrite NZsucc_inj_wd.
+intros n m p; nzinduct n. now nzsimpl.
+intro. nzsimpl. now rewrite succ_inj_wd.
Qed.
-Theorem NZadd_shuffle1 : forall n m p q : NZ, (n + m) + (p + q) == (n + p) + (m + q).
+Theorem add_cancel_l : forall n m p, p + n == p + m <-> n == m.
Proof.
-intros n m p q.
-rewrite <- (NZadd_assoc n m (p + q)). rewrite (NZadd_comm m (p + q)).
-rewrite <- (NZadd_assoc p q m). rewrite (NZadd_assoc n p (q + m)).
-now rewrite (NZadd_comm q m).
+intros n m p; nzinduct p. now nzsimpl.
+intro p. nzsimpl. now rewrite succ_inj_wd.
Qed.
-Theorem NZadd_shuffle2 : forall n m p q : NZ, (n + m) + (p + q) == (n + q) + (m + p).
+Theorem add_cancel_r : forall n m p, n + p == m + p <-> n == m.
Proof.
-intros n m p q.
-rewrite <- (NZadd_assoc n m (p + q)). rewrite (NZadd_assoc m p q).
-rewrite (NZadd_comm (m + p) q). now rewrite <- (NZadd_assoc n q (m + p)).
+intros n m p. rewrite (add_comm n p), (add_comm m p). apply add_cancel_l.
Qed.
-Theorem NZadd_cancel_l : forall n m p : NZ, p + n == p + m <-> n == m.
+Theorem add_shuffle0 : forall n m p, n+m+p == n+p+m.
Proof.
-intros n m p; NZinduct p.
-now do 2 rewrite NZadd_0_l.
-intro p. do 2 rewrite NZadd_succ_l. now rewrite NZsucc_inj_wd.
+intros n m p. rewrite <- 2 add_assoc, add_cancel_l. apply add_comm.
Qed.
-Theorem NZadd_cancel_r : forall n m p : NZ, n + p == m + p <-> n == m.
+Theorem add_shuffle1 : forall n m p q, (n + m) + (p + q) == (n + p) + (m + q).
Proof.
-intros n m p. rewrite (NZadd_comm n p); rewrite (NZadd_comm m p).
-apply NZadd_cancel_l.
+intros n m p q. rewrite 2 add_assoc, add_cancel_r. apply add_shuffle0.
Qed.
-Theorem NZsub_1_r : forall n : NZ, n - 1 == P n.
+Theorem add_shuffle2 : forall n m p q, (n + m) + (p + q) == (n + q) + (m + p).
Proof.
-intro n; rewrite NZsub_succ_r; now rewrite NZsub_0_r.
+intros n m p q.
+rewrite 2 add_assoc, add_shuffle0, add_cancel_r. apply add_shuffle0.
Qed.
-End NZAddPropFunct.
+Theorem sub_1_r : forall n, n - 1 == P n.
+Proof.
+intro n; now nzsimpl.
+Qed.
+End NZAddPropSig.