diff options
Diffstat (limited to 'theories/Numbers/NaryFunctions.v')
-rw-r--r-- | theories/Numbers/NaryFunctions.v | 142 |
1 files changed, 142 insertions, 0 deletions
diff --git a/theories/Numbers/NaryFunctions.v b/theories/Numbers/NaryFunctions.v new file mode 100644 index 00000000..04a48d51 --- /dev/null +++ b/theories/Numbers/NaryFunctions.v @@ -0,0 +1,142 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) +(* Pierre Letouzey, Jerome Vouillon, PPS, Paris 7, 2008 *) +(************************************************************************) + +(*i $Id: NaryFunctions.v 10967 2008-05-22 12:59:38Z letouzey $ i*) + +Open Local Scope type_scope. + +Require Import List. + +(** * Generic dependently-typed operators about [n]-ary functions *) + +(** The type of [n]-ary function: [nfun A n B] is + [A -> ... -> A -> B] with [n] occurences of [A] in this type. *) + +Fixpoint nfun A n B := + match n with + | O => B + | S n => A -> (nfun A n B) + end. + +Notation " A ^^ n --> B " := (nfun A n B) + (at level 50, n at next level) : type_scope. + +(** [napply_cst _ _ a n f] iterates [n] times the application of a + particular constant [a] to the [n]-ary function [f]. *) + +Fixpoint napply_cst (A B:Type)(a:A) n : (A^^n-->B) -> B := + match n return (A^^n-->B) -> B with + | O => fun x => x + | S n => fun x => napply_cst _ _ a n (x a) + end. + + +(** A generic transformation from an n-ary function to another one.*) + +Fixpoint nfun_to_nfun (A B C:Type)(f:B -> C) n : + (A^^n-->B) -> (A^^n-->C) := + match n return (A^^n-->B) -> (A^^n-->C) with + | O => f + | S n => fun g a => nfun_to_nfun _ _ _ f n (g a) + end. + +(** [napply_except_last _ _ n f] expects [n] arguments of type [A], + applies [n-1] of them to [f] and discard the last one. *) + +Definition napply_except_last (A B:Type) := + nfun_to_nfun A B (A->B) (fun b a => b). + +(** [napply_then_last _ _ a n f] expects [n] arguments of type [A], + applies them to [f] and then apply [a] to the result. *) + +Definition napply_then_last (A B:Type)(a:A) := + nfun_to_nfun A (A->B) B (fun fab => fab a). + +(** [napply_discard _ b n] expects [n] arguments, discards then, + and returns [b]. *) + +Fixpoint napply_discard (A B:Type)(b:B) n : A^^n-->B := + match n return A^^n-->B with + | O => b + | S n => fun _ => napply_discard _ _ b n + end. + +(** A fold function *) + +Fixpoint nfold A B (f:A->B->B)(b:B) n : (A^^n-->B) := + match n return (A^^n-->B) with + | O => b + | S n => fun a => (nfold _ _ f (f a b) n) + end. + + +(** [n]-ary products : [nprod A n] is [A*...*A*unit], + with [n] occurrences of [A] in this type. *) + +Fixpoint nprod A n : Type := match n with + | O => unit + | S n => (A * nprod A n)%type +end. + +Notation "A ^ n" := (nprod A n) : type_scope. + +(** [n]-ary curryfication / uncurryfication *) + +Fixpoint ncurry (A B:Type) n : (A^n -> B) -> (A^^n-->B) := + match n return (A^n -> B) -> (A^^n-->B) with + | O => fun x => x tt + | S n => fun f a => ncurry _ _ n (fun p => f (a,p)) + end. + +Fixpoint nuncurry (A B:Type) n : (A^^n-->B) -> (A^n -> B) := + match n return (A^^n-->B) -> (A^n -> B) with + | O => fun x _ => x + | S n => fun f p => let (x,p) := p in nuncurry _ _ n (f x) p + end. + +(** Earlier functions can also be defined via [ncurry/nuncurry]. + For instance : *) + +Definition nfun_to_nfun_bis A B C (f:B->C) n : + (A^^n-->B) -> (A^^n-->C) := + fun anb => ncurry _ _ n (fun an => f ((nuncurry _ _ n anb) an)). + +(** We can also us it to obtain another [fold] function, + equivalent to the previous one, but with a nicer expansion + (see for instance Int31.iszero). *) + +Fixpoint nfold_bis A B (f:A->B->B)(b:B) n : (A^^n-->B) := + match n return (A^^n-->B) with + | O => b + | S n => fun a => + nfun_to_nfun_bis _ _ _ (f a) n (nfold_bis _ _ f b n) + end. + +(** From [nprod] to [list] *) + +Fixpoint nprod_to_list (A:Type) n : A^n -> list A := + match n with + | O => fun _ => nil + | S n => fun p => let (x,p) := p in x::(nprod_to_list _ n p) + end. + +(** From [list] to [nprod] *) + +Fixpoint nprod_of_list (A:Type)(l:list A) : A^(length l) := + match l return A^(length l) with + | nil => tt + | x::l => (x, nprod_of_list _ l) + end. + +(** This gives an additional way to write the fold *) + +Definition nfold_list (A B:Type)(f:A->B->B)(b:B) n : (A^^n-->B) := + ncurry _ _ n (fun p => fold_right f b (nprod_to_list _ _ p)). + |