summaryrefslogtreecommitdiff
path: root/theories/Numbers/NaryFunctions.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/NaryFunctions.v')
-rw-r--r--theories/Numbers/NaryFunctions.v142
1 files changed, 142 insertions, 0 deletions
diff --git a/theories/Numbers/NaryFunctions.v b/theories/Numbers/NaryFunctions.v
new file mode 100644
index 00000000..04a48d51
--- /dev/null
+++ b/theories/Numbers/NaryFunctions.v
@@ -0,0 +1,142 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Pierre Letouzey, Jerome Vouillon, PPS, Paris 7, 2008 *)
+(************************************************************************)
+
+(*i $Id: NaryFunctions.v 10967 2008-05-22 12:59:38Z letouzey $ i*)
+
+Open Local Scope type_scope.
+
+Require Import List.
+
+(** * Generic dependently-typed operators about [n]-ary functions *)
+
+(** The type of [n]-ary function: [nfun A n B] is
+ [A -> ... -> A -> B] with [n] occurences of [A] in this type. *)
+
+Fixpoint nfun A n B :=
+ match n with
+ | O => B
+ | S n => A -> (nfun A n B)
+ end.
+
+Notation " A ^^ n --> B " := (nfun A n B)
+ (at level 50, n at next level) : type_scope.
+
+(** [napply_cst _ _ a n f] iterates [n] times the application of a
+ particular constant [a] to the [n]-ary function [f]. *)
+
+Fixpoint napply_cst (A B:Type)(a:A) n : (A^^n-->B) -> B :=
+ match n return (A^^n-->B) -> B with
+ | O => fun x => x
+ | S n => fun x => napply_cst _ _ a n (x a)
+ end.
+
+
+(** A generic transformation from an n-ary function to another one.*)
+
+Fixpoint nfun_to_nfun (A B C:Type)(f:B -> C) n :
+ (A^^n-->B) -> (A^^n-->C) :=
+ match n return (A^^n-->B) -> (A^^n-->C) with
+ | O => f
+ | S n => fun g a => nfun_to_nfun _ _ _ f n (g a)
+ end.
+
+(** [napply_except_last _ _ n f] expects [n] arguments of type [A],
+ applies [n-1] of them to [f] and discard the last one. *)
+
+Definition napply_except_last (A B:Type) :=
+ nfun_to_nfun A B (A->B) (fun b a => b).
+
+(** [napply_then_last _ _ a n f] expects [n] arguments of type [A],
+ applies them to [f] and then apply [a] to the result. *)
+
+Definition napply_then_last (A B:Type)(a:A) :=
+ nfun_to_nfun A (A->B) B (fun fab => fab a).
+
+(** [napply_discard _ b n] expects [n] arguments, discards then,
+ and returns [b]. *)
+
+Fixpoint napply_discard (A B:Type)(b:B) n : A^^n-->B :=
+ match n return A^^n-->B with
+ | O => b
+ | S n => fun _ => napply_discard _ _ b n
+ end.
+
+(** A fold function *)
+
+Fixpoint nfold A B (f:A->B->B)(b:B) n : (A^^n-->B) :=
+ match n return (A^^n-->B) with
+ | O => b
+ | S n => fun a => (nfold _ _ f (f a b) n)
+ end.
+
+
+(** [n]-ary products : [nprod A n] is [A*...*A*unit],
+ with [n] occurrences of [A] in this type. *)
+
+Fixpoint nprod A n : Type := match n with
+ | O => unit
+ | S n => (A * nprod A n)%type
+end.
+
+Notation "A ^ n" := (nprod A n) : type_scope.
+
+(** [n]-ary curryfication / uncurryfication *)
+
+Fixpoint ncurry (A B:Type) n : (A^n -> B) -> (A^^n-->B) :=
+ match n return (A^n -> B) -> (A^^n-->B) with
+ | O => fun x => x tt
+ | S n => fun f a => ncurry _ _ n (fun p => f (a,p))
+ end.
+
+Fixpoint nuncurry (A B:Type) n : (A^^n-->B) -> (A^n -> B) :=
+ match n return (A^^n-->B) -> (A^n -> B) with
+ | O => fun x _ => x
+ | S n => fun f p => let (x,p) := p in nuncurry _ _ n (f x) p
+ end.
+
+(** Earlier functions can also be defined via [ncurry/nuncurry].
+ For instance : *)
+
+Definition nfun_to_nfun_bis A B C (f:B->C) n :
+ (A^^n-->B) -> (A^^n-->C) :=
+ fun anb => ncurry _ _ n (fun an => f ((nuncurry _ _ n anb) an)).
+
+(** We can also us it to obtain another [fold] function,
+ equivalent to the previous one, but with a nicer expansion
+ (see for instance Int31.iszero). *)
+
+Fixpoint nfold_bis A B (f:A->B->B)(b:B) n : (A^^n-->B) :=
+ match n return (A^^n-->B) with
+ | O => b
+ | S n => fun a =>
+ nfun_to_nfun_bis _ _ _ (f a) n (nfold_bis _ _ f b n)
+ end.
+
+(** From [nprod] to [list] *)
+
+Fixpoint nprod_to_list (A:Type) n : A^n -> list A :=
+ match n with
+ | O => fun _ => nil
+ | S n => fun p => let (x,p) := p in x::(nprod_to_list _ n p)
+ end.
+
+(** From [list] to [nprod] *)
+
+Fixpoint nprod_of_list (A:Type)(l:list A) : A^(length l) :=
+ match l return A^(length l) with
+ | nil => tt
+ | x::l => (x, nprod_of_list _ l)
+ end.
+
+(** This gives an additional way to write the fold *)
+
+Definition nfold_list (A B:Type)(f:A->B->B)(b:B) n : (A^^n-->B) :=
+ ncurry _ _ n (fun p => fold_right f b (nprod_to_list _ _ p)).
+