diff options
Diffstat (limited to 'theories/Numbers/Integer/NatPairs/ZNatPairs.v')
-rw-r--r-- | theories/Numbers/Integer/NatPairs/ZNatPairs.v | 422 |
1 files changed, 422 insertions, 0 deletions
diff --git a/theories/Numbers/Integer/NatPairs/ZNatPairs.v b/theories/Numbers/Integer/NatPairs/ZNatPairs.v new file mode 100644 index 00000000..8b3d815d --- /dev/null +++ b/theories/Numbers/Integer/NatPairs/ZNatPairs.v @@ -0,0 +1,422 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) +(* Evgeny Makarov, INRIA, 2007 *) +(************************************************************************) + +(*i $Id: ZNatPairs.v 11040 2008-06-03 00:04:16Z letouzey $ i*) + +Require Import NSub. (* The most complete file for natural numbers *) +Require Export ZMulOrder. (* The most complete file for integers *) +Require Export Ring. + +Module ZPairsAxiomsMod (Import NAxiomsMod : NAxiomsSig) <: ZAxiomsSig. +Module Import NPropMod := NSubPropFunct NAxiomsMod. (* Get all properties of natural numbers *) + +(* We do not declare ring in Natural/Abstract for two reasons. First, some +of the properties proved in NAdd and NMul are used in the new BinNat, +and it is in turn used in Ring. Using ring in Natural/Abstract would be +circular. It is possible, however, not to make BinNat dependent on +Numbers/Natural and prove the properties necessary for ring from scratch +(this is, of course, how it used to be). In addition, if we define semiring +structures in the implementation subdirectories of Natural, we are able to +specify binary natural numbers as the type of coefficients. For these +reasons we define an abstract semiring here. *) + +Open Local Scope NatScope. + +Lemma Nsemi_ring : semi_ring_theory 0 1 add mul Neq. +Proof. +constructor. +exact add_0_l. +exact add_comm. +exact add_assoc. +exact mul_1_l. +exact mul_0_l. +exact mul_comm. +exact mul_assoc. +exact mul_add_distr_r. +Qed. + +Add Ring NSR : Nsemi_ring. + +(* The definitios of functions (NZadd, NZmul, etc.) will be unfolded by +the properties functor. Since we don't want Zadd_comm to refer to unfolded +definitions of equality: fun p1 p2 : NZ => (fst p1 + snd p2) = (fst p2 + snd p1), +we will provide an extra layer of definitions. *) + +Definition Z := (N * N)%type. +Definition Z0 : Z := (0, 0). +Definition Zeq (p1 p2 : Z) := ((fst p1) + (snd p2) == (fst p2) + (snd p1)). +Definition Zsucc (n : Z) : Z := (S (fst n), snd n). +Definition Zpred (n : Z) : Z := (fst n, S (snd n)). + +(* We do not have Zpred (Zsucc n) = n but only Zpred (Zsucc n) == n. It +could be possible to consider as canonical only pairs where one of the +elements is 0, and make all operations convert canonical values into other +canonical values. In that case, we could get rid of setoids and arrive at +integers as signed natural numbers. *) + +Definition Zadd (n m : Z) : Z := ((fst n) + (fst m), (snd n) + (snd m)). +Definition Zsub (n m : Z) : Z := ((fst n) + (snd m), (snd n) + (fst m)). + +(* Unfortunately, the elements of the pair keep increasing, even during +subtraction *) + +Definition Zmul (n m : Z) : Z := + ((fst n) * (fst m) + (snd n) * (snd m), (fst n) * (snd m) + (snd n) * (fst m)). +Definition Zlt (n m : Z) := (fst n) + (snd m) < (fst m) + (snd n). +Definition Zle (n m : Z) := (fst n) + (snd m) <= (fst m) + (snd n). +Definition Zmin (n m : Z) := (min ((fst n) + (snd m)) ((fst m) + (snd n)), (snd n) + (snd m)). +Definition Zmax (n m : Z) := (max ((fst n) + (snd m)) ((fst m) + (snd n)), (snd n) + (snd m)). + +Delimit Scope IntScope with Int. +Bind Scope IntScope with Z. +Notation "x == y" := (Zeq x y) (at level 70) : IntScope. +Notation "x ~= y" := (~ Zeq x y) (at level 70) : IntScope. +Notation "0" := Z0 : IntScope. +Notation "1" := (Zsucc Z0) : IntScope. +Notation "x + y" := (Zadd x y) : IntScope. +Notation "x - y" := (Zsub x y) : IntScope. +Notation "x * y" := (Zmul x y) : IntScope. +Notation "x < y" := (Zlt x y) : IntScope. +Notation "x <= y" := (Zle x y) : IntScope. +Notation "x > y" := (Zlt y x) (only parsing) : IntScope. +Notation "x >= y" := (Zle y x) (only parsing) : IntScope. + +Notation Local N := NZ. +(* To remember N without having to use a long qualifying name. since NZ will be redefined *) +Notation Local NE := NZeq (only parsing). +Notation Local add_wd := NZadd_wd (only parsing). + +Module Export NZOrdAxiomsMod <: NZOrdAxiomsSig. +Module Export NZAxiomsMod <: NZAxiomsSig. + +Definition NZ : Type := Z. +Definition NZeq := Zeq. +Definition NZ0 := Z0. +Definition NZsucc := Zsucc. +Definition NZpred := Zpred. +Definition NZadd := Zadd. +Definition NZsub := Zsub. +Definition NZmul := Zmul. + +Theorem ZE_refl : reflexive Z Zeq. +Proof. +unfold reflexive, Zeq. reflexivity. +Qed. + +Theorem ZE_symm : symmetric Z Zeq. +Proof. +unfold symmetric, Zeq; now symmetry. +Qed. + +Theorem ZE_trans : transitive Z Zeq. +Proof. +unfold transitive, Zeq. intros n m p H1 H2. +assert (H3 : (fst n + snd m) + (fst m + snd p) == (fst m + snd n) + (fst p + snd m)) +by now apply add_wd. +stepl ((fst n + snd p) + (fst m + snd m)) in H3 by ring. +stepr ((fst p + snd n) + (fst m + snd m)) in H3 by ring. +now apply -> add_cancel_r in H3. +Qed. + +Theorem NZeq_equiv : equiv Z Zeq. +Proof. +unfold equiv; repeat split; [apply ZE_refl | apply ZE_trans | apply ZE_symm]. +Qed. + +Add Relation Z Zeq + reflexivity proved by (proj1 NZeq_equiv) + symmetry proved by (proj2 (proj2 NZeq_equiv)) + transitivity proved by (proj1 (proj2 NZeq_equiv)) +as NZeq_rel. + +Add Morphism (@pair N N) with signature NE ==> NE ==> Zeq as Zpair_wd. +Proof. +intros n1 n2 H1 m1 m2 H2; unfold Zeq; simpl; rewrite H1; now rewrite H2. +Qed. + +Add Morphism NZsucc with signature Zeq ==> Zeq as NZsucc_wd. +Proof. +unfold NZsucc, Zeq; intros n m H; simpl. +do 2 rewrite add_succ_l; now rewrite H. +Qed. + +Add Morphism NZpred with signature Zeq ==> Zeq as NZpred_wd. +Proof. +unfold NZpred, Zeq; intros n m H; simpl. +do 2 rewrite add_succ_r; now rewrite H. +Qed. + +Add Morphism NZadd with signature Zeq ==> Zeq ==> Zeq as NZadd_wd. +Proof. +unfold Zeq, NZadd; intros n1 m1 H1 n2 m2 H2; simpl. +assert (H3 : (fst n1 + snd m1) + (fst n2 + snd m2) == (fst m1 + snd n1) + (fst m2 + snd n2)) +by now apply add_wd. +stepl (fst n1 + snd m1 + (fst n2 + snd m2)) by ring. +now stepr (fst m1 + snd n1 + (fst m2 + snd n2)) by ring. +Qed. + +Add Morphism NZsub with signature Zeq ==> Zeq ==> Zeq as NZsub_wd. +Proof. +unfold Zeq, NZsub; intros n1 m1 H1 n2 m2 H2; simpl. +symmetry in H2. +assert (H3 : (fst n1 + snd m1) + (fst m2 + snd n2) == (fst m1 + snd n1) + (fst n2 + snd m2)) +by now apply add_wd. +stepl (fst n1 + snd m1 + (fst m2 + snd n2)) by ring. +now stepr (fst m1 + snd n1 + (fst n2 + snd m2)) by ring. +Qed. + +Add Morphism NZmul with signature Zeq ==> Zeq ==> Zeq as NZmul_wd. +Proof. +unfold NZmul, Zeq; intros n1 m1 H1 n2 m2 H2; simpl. +stepl (fst n1 * fst n2 + (snd n1 * snd n2 + fst m1 * snd m2 + snd m1 * fst m2)) by ring. +stepr (fst n1 * snd n2 + (fst m1 * fst m2 + snd m1 * snd m2 + snd n1 * fst n2)) by ring. +apply add_mul_repl_pair with (n := fst m2) (m := snd m2); [| now idtac]. +stepl (snd n1 * snd n2 + (fst n1 * fst m2 + fst m1 * snd m2 + snd m1 * fst m2)) by ring. +stepr (snd n1 * fst n2 + (fst n1 * snd m2 + fst m1 * fst m2 + snd m1 * snd m2)) by ring. +apply add_mul_repl_pair with (n := snd m2) (m := fst m2); +[| (stepl (fst n2 + snd m2) by ring); now stepr (fst m2 + snd n2) by ring]. +stepl (snd m2 * snd n1 + (fst n1 * fst m2 + fst m1 * snd m2 + snd m1 * fst m2)) by ring. +stepr (snd m2 * fst n1 + (snd n1 * fst m2 + fst m1 * fst m2 + snd m1 * snd m2)) by ring. +apply add_mul_repl_pair with (n := snd m1) (m := fst m1); +[ | (stepl (fst n1 + snd m1) by ring); now stepr (fst m1 + snd n1) by ring]. +stepl (fst m2 * fst n1 + (snd m2 * snd m1 + fst m1 * snd m2 + snd m1 * fst m2)) by ring. +stepr (fst m2 * snd n1 + (snd m2 * fst m1 + fst m1 * fst m2 + snd m1 * snd m2)) by ring. +apply add_mul_repl_pair with (n := fst m1) (m := snd m1); [| now idtac]. +ring. +Qed. + +Section Induction. +Open Scope NatScope. (* automatically closes at the end of the section *) +Variable A : Z -> Prop. +Hypothesis A_wd : predicate_wd Zeq A. + +Add Morphism A with signature Zeq ==> iff as A_morph. +Proof. +exact A_wd. +Qed. + +Theorem NZinduction : + A 0 -> (forall n : Z, A n <-> A (Zsucc n)) -> forall n : Z, A n. (* 0 is interpreted as in Z due to "Bind" directive *) +Proof. +intros A0 AS n; unfold NZ0, Zsucc, predicate_wd, fun_wd, Zeq in *. +destruct n as [n m]. +cut (forall p : N, A (p, 0)); [intro H1 |]. +cut (forall p : N, A (0, p)); [intro H2 |]. +destruct (add_dichotomy n m) as [[p H] | [p H]]. +rewrite (A_wd (n, m) (0, p)) by (rewrite add_0_l; now rewrite add_comm). +apply H2. +rewrite (A_wd (n, m) (p, 0)) by now rewrite add_0_r. apply H1. +induct p. assumption. intros p IH. +apply -> (A_wd (0, p) (1, S p)) in IH; [| now rewrite add_0_l, add_1_l]. +now apply <- AS. +induct p. assumption. intros p IH. +replace 0 with (snd (p, 0)); [| reflexivity]. +replace (S p) with (S (fst (p, 0))); [| reflexivity]. now apply -> AS. +Qed. + +End Induction. + +(* Time to prove theorems in the language of Z *) + +Open Local Scope IntScope. + +Theorem NZpred_succ : forall n : Z, Zpred (Zsucc n) == n. +Proof. +unfold NZpred, NZsucc, Zeq; intro n; simpl. +rewrite add_succ_l; now rewrite add_succ_r. +Qed. + +Theorem NZadd_0_l : forall n : Z, 0 + n == n. +Proof. +intro n; unfold NZadd, Zeq; simpl. now do 2 rewrite add_0_l. +Qed. + +Theorem NZadd_succ_l : forall n m : Z, (Zsucc n) + m == Zsucc (n + m). +Proof. +intros n m; unfold NZadd, Zeq; simpl. now do 2 rewrite add_succ_l. +Qed. + +Theorem NZsub_0_r : forall n : Z, n - 0 == n. +Proof. +intro n; unfold NZsub, Zeq; simpl. now do 2 rewrite add_0_r. +Qed. + +Theorem NZsub_succ_r : forall n m : Z, n - (Zsucc m) == Zpred (n - m). +Proof. +intros n m; unfold NZsub, Zeq; simpl. symmetry; now rewrite add_succ_r. +Qed. + +Theorem NZmul_0_l : forall n : Z, 0 * n == 0. +Proof. +intro n; unfold NZmul, Zeq; simpl. +repeat rewrite mul_0_l. now rewrite add_assoc. +Qed. + +Theorem NZmul_succ_l : forall n m : Z, (Zsucc n) * m == n * m + m. +Proof. +intros n m; unfold NZmul, NZsucc, Zeq; simpl. +do 2 rewrite mul_succ_l. ring. +Qed. + +End NZAxiomsMod. + +Definition NZlt := Zlt. +Definition NZle := Zle. +Definition NZmin := Zmin. +Definition NZmax := Zmax. + +Add Morphism NZlt with signature Zeq ==> Zeq ==> iff as NZlt_wd. +Proof. +unfold NZlt, Zlt, Zeq; intros n1 m1 H1 n2 m2 H2; simpl. split; intro H. +stepr (snd m1 + fst m2) by apply add_comm. +apply (add_lt_repl_pair (fst n1) (snd n1)); [| assumption]. +stepl (snd m2 + fst n1) by apply add_comm. +stepr (fst m2 + snd n1) by apply add_comm. +apply (add_lt_repl_pair (snd n2) (fst n2)). +now stepl (fst n1 + snd n2) by apply add_comm. +stepl (fst m2 + snd n2) by apply add_comm. now stepr (fst n2 + snd m2) by apply add_comm. +stepr (snd n1 + fst n2) by apply add_comm. +apply (add_lt_repl_pair (fst m1) (snd m1)); [| now symmetry]. +stepl (snd n2 + fst m1) by apply add_comm. +stepr (fst n2 + snd m1) by apply add_comm. +apply (add_lt_repl_pair (snd m2) (fst m2)). +now stepl (fst m1 + snd m2) by apply add_comm. +stepl (fst n2 + snd m2) by apply add_comm. now stepr (fst m2 + snd n2) by apply add_comm. +Qed. + +Add Morphism NZle with signature Zeq ==> Zeq ==> iff as NZle_wd. +Proof. +unfold NZle, Zle, Zeq; intros n1 m1 H1 n2 m2 H2; simpl. +do 2 rewrite lt_eq_cases. rewrite (NZlt_wd n1 m1 H1 n2 m2 H2). fold (m1 < m2)%Int. +fold (n1 == n2)%Int (m1 == m2)%Int; fold (n1 == m1)%Int in H1; fold (n2 == m2)%Int in H2. +now rewrite H1, H2. +Qed. + +Add Morphism NZmin with signature Zeq ==> Zeq ==> Zeq as NZmin_wd. +Proof. +intros n1 m1 H1 n2 m2 H2; unfold NZmin, Zeq; simpl. +destruct (le_ge_cases (fst n1 + snd n2) (fst n2 + snd n1)) as [H | H]. +rewrite (min_l (fst n1 + snd n2) (fst n2 + snd n1)) by assumption. +rewrite (min_l (fst m1 + snd m2) (fst m2 + snd m1)) by +now apply -> (NZle_wd n1 m1 H1 n2 m2 H2). +stepl ((fst n1 + snd m1) + (snd n2 + snd m2)) by ring. +unfold Zeq in H1. rewrite H1. ring. +rewrite (min_r (fst n1 + snd n2) (fst n2 + snd n1)) by assumption. +rewrite (min_r (fst m1 + snd m2) (fst m2 + snd m1)) by +now apply -> (NZle_wd n2 m2 H2 n1 m1 H1). +stepl ((fst n2 + snd m2) + (snd n1 + snd m1)) by ring. +unfold Zeq in H2. rewrite H2. ring. +Qed. + +Add Morphism NZmax with signature Zeq ==> Zeq ==> Zeq as NZmax_wd. +Proof. +intros n1 m1 H1 n2 m2 H2; unfold NZmax, Zeq; simpl. +destruct (le_ge_cases (fst n1 + snd n2) (fst n2 + snd n1)) as [H | H]. +rewrite (max_r (fst n1 + snd n2) (fst n2 + snd n1)) by assumption. +rewrite (max_r (fst m1 + snd m2) (fst m2 + snd m1)) by +now apply -> (NZle_wd n1 m1 H1 n2 m2 H2). +stepl ((fst n2 + snd m2) + (snd n1 + snd m1)) by ring. +unfold Zeq in H2. rewrite H2. ring. +rewrite (max_l (fst n1 + snd n2) (fst n2 + snd n1)) by assumption. +rewrite (max_l (fst m1 + snd m2) (fst m2 + snd m1)) by +now apply -> (NZle_wd n2 m2 H2 n1 m1 H1). +stepl ((fst n1 + snd m1) + (snd n2 + snd m2)) by ring. +unfold Zeq in H1. rewrite H1. ring. +Qed. + +Open Local Scope IntScope. + +Theorem NZlt_eq_cases : forall n m : Z, n <= m <-> n < m \/ n == m. +Proof. +intros n m; unfold Zlt, Zle, Zeq; simpl. apply lt_eq_cases. +Qed. + +Theorem NZlt_irrefl : forall n : Z, ~ (n < n). +Proof. +intros n; unfold Zlt, Zeq; simpl. apply lt_irrefl. +Qed. + +Theorem NZlt_succ_r : forall n m : Z, n < (Zsucc m) <-> n <= m. +Proof. +intros n m; unfold Zlt, Zle, Zeq; simpl. rewrite add_succ_l; apply lt_succ_r. +Qed. + +Theorem NZmin_l : forall n m : Z, n <= m -> Zmin n m == n. +Proof. +unfold Zmin, Zle, Zeq; simpl; intros n m H. +rewrite min_l by assumption. ring. +Qed. + +Theorem NZmin_r : forall n m : Z, m <= n -> Zmin n m == m. +Proof. +unfold Zmin, Zle, Zeq; simpl; intros n m H. +rewrite min_r by assumption. ring. +Qed. + +Theorem NZmax_l : forall n m : Z, m <= n -> Zmax n m == n. +Proof. +unfold Zmax, Zle, Zeq; simpl; intros n m H. +rewrite max_l by assumption. ring. +Qed. + +Theorem NZmax_r : forall n m : Z, n <= m -> Zmax n m == m. +Proof. +unfold Zmax, Zle, Zeq; simpl; intros n m H. +rewrite max_r by assumption. ring. +Qed. + +End NZOrdAxiomsMod. + +Definition Zopp (n : Z) : Z := (snd n, fst n). + +Notation "- x" := (Zopp x) : IntScope. + +Add Morphism Zopp with signature Zeq ==> Zeq as Zopp_wd. +Proof. +unfold Zeq; intros n m H; simpl. symmetry. +stepl (fst n + snd m) by apply add_comm. +now stepr (fst m + snd n) by apply add_comm. +Qed. + +Open Local Scope IntScope. + +Theorem Zsucc_pred : forall n : Z, Zsucc (Zpred n) == n. +Proof. +intro n; unfold Zsucc, Zpred, Zeq; simpl. +rewrite add_succ_l; now rewrite add_succ_r. +Qed. + +Theorem Zopp_0 : - 0 == 0. +Proof. +unfold Zopp, Zeq; simpl. now rewrite add_0_l. +Qed. + +Theorem Zopp_succ : forall n, - (Zsucc n) == Zpred (- n). +Proof. +reflexivity. +Qed. + +End ZPairsAxiomsMod. + +(* For example, let's build integers out of pairs of Peano natural numbers +and get their properties *) + +(* The following lines increase the compilation time at least twice *) +(* +Require Import NPeano. + +Module Export ZPairsPeanoAxiomsMod := ZPairsAxiomsMod NPeanoAxiomsMod. +Module Export ZPairsMulOrderPropMod := ZMulOrderPropFunct ZPairsPeanoAxiomsMod. + +Open Local Scope IntScope. + +Eval compute in (3, 5) * (4, 6). +*) + |