summaryrefslogtreecommitdiff
path: root/theories/Numbers/Integer/Abstract/ZMulOrder.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Integer/Abstract/ZMulOrder.v')
-rw-r--r--theories/Numbers/Integer/Abstract/ZMulOrder.v356
1 files changed, 123 insertions, 233 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZMulOrder.v b/theories/Numbers/Integer/Abstract/ZMulOrder.v
index c7996ffd..99be58eb 100644
--- a/theories/Numbers/Integer/Abstract/ZMulOrder.v
+++ b/theories/Numbers/Integer/Abstract/ZMulOrder.v
@@ -8,335 +8,225 @@
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
-(*i $Id: ZMulOrder.v 11674 2008-12-12 19:48:40Z letouzey $ i*)
+(*i $Id$ i*)
Require Export ZAddOrder.
-Module ZMulOrderPropFunct (Import ZAxiomsMod : ZAxiomsSig).
-Module Export ZAddOrderPropMod := ZAddOrderPropFunct ZAxiomsMod.
-Open Local Scope IntScope.
+Module Type ZMulOrderPropFunct (Import Z : ZAxiomsSig').
+Include ZAddOrderPropFunct Z.
-Theorem Zmul_lt_pred :
- forall p q n m : Z, S p == q -> (p * n < p * m <-> q * n + m < q * m + n).
-Proof NZmul_lt_pred.
+Local Notation "- 1" := (-(1)).
-Theorem Zmul_lt_mono_pos_l : forall p n m : Z, 0 < p -> (n < m <-> p * n < p * m).
-Proof NZmul_lt_mono_pos_l.
-
-Theorem Zmul_lt_mono_pos_r : forall p n m : Z, 0 < p -> (n < m <-> n * p < m * p).
-Proof NZmul_lt_mono_pos_r.
-
-Theorem Zmul_lt_mono_neg_l : forall p n m : Z, p < 0 -> (n < m <-> p * m < p * n).
-Proof NZmul_lt_mono_neg_l.
-
-Theorem Zmul_lt_mono_neg_r : forall p n m : Z, p < 0 -> (n < m <-> m * p < n * p).
-Proof NZmul_lt_mono_neg_r.
-
-Theorem Zmul_le_mono_nonneg_l : forall n m p : Z, 0 <= p -> n <= m -> p * n <= p * m.
-Proof NZmul_le_mono_nonneg_l.
-
-Theorem Zmul_le_mono_nonpos_l : forall n m p : Z, p <= 0 -> n <= m -> p * m <= p * n.
-Proof NZmul_le_mono_nonpos_l.
-
-Theorem Zmul_le_mono_nonneg_r : forall n m p : Z, 0 <= p -> n <= m -> n * p <= m * p.
-Proof NZmul_le_mono_nonneg_r.
-
-Theorem Zmul_le_mono_nonpos_r : forall n m p : Z, p <= 0 -> n <= m -> m * p <= n * p.
-Proof NZmul_le_mono_nonpos_r.
-
-Theorem Zmul_cancel_l : forall n m p : Z, p ~= 0 -> (p * n == p * m <-> n == m).
-Proof NZmul_cancel_l.
-
-Theorem Zmul_cancel_r : forall n m p : Z, p ~= 0 -> (n * p == m * p <-> n == m).
-Proof NZmul_cancel_r.
-
-Theorem Zmul_id_l : forall n m : Z, m ~= 0 -> (n * m == m <-> n == 1).
-Proof NZmul_id_l.
-
-Theorem Zmul_id_r : forall n m : Z, n ~= 0 -> (n * m == n <-> m == 1).
-Proof NZmul_id_r.
-
-Theorem Zmul_le_mono_pos_l : forall n m p : Z, 0 < p -> (n <= m <-> p * n <= p * m).
-Proof NZmul_le_mono_pos_l.
-
-Theorem Zmul_le_mono_pos_r : forall n m p : Z, 0 < p -> (n <= m <-> n * p <= m * p).
-Proof NZmul_le_mono_pos_r.
-
-Theorem Zmul_le_mono_neg_l : forall n m p : Z, p < 0 -> (n <= m <-> p * m <= p * n).
-Proof NZmul_le_mono_neg_l.
-
-Theorem Zmul_le_mono_neg_r : forall n m p : Z, p < 0 -> (n <= m <-> m * p <= n * p).
-Proof NZmul_le_mono_neg_r.
-
-Theorem Zmul_lt_mono_nonneg :
- forall n m p q : Z, 0 <= n -> n < m -> 0 <= p -> p < q -> n * p < m * q.
-Proof NZmul_lt_mono_nonneg.
-
-Theorem Zmul_lt_mono_nonpos :
- forall n m p q : Z, m <= 0 -> n < m -> q <= 0 -> p < q -> m * q < n * p.
+Theorem mul_lt_mono_nonpos :
+ forall n m p q, m <= 0 -> n < m -> q <= 0 -> p < q -> m * q < n * p.
Proof.
intros n m p q H1 H2 H3 H4.
-apply Zle_lt_trans with (m * p).
-apply Zmul_le_mono_nonpos_l; [assumption | now apply Zlt_le_incl].
-apply -> Zmul_lt_mono_neg_r; [assumption | now apply Zlt_le_trans with q].
+apply le_lt_trans with (m * p).
+apply mul_le_mono_nonpos_l; [assumption | now apply lt_le_incl].
+apply -> mul_lt_mono_neg_r; [assumption | now apply lt_le_trans with q].
Qed.
-Theorem Zmul_le_mono_nonneg :
- forall n m p q : Z, 0 <= n -> n <= m -> 0 <= p -> p <= q -> n * p <= m * q.
-Proof NZmul_le_mono_nonneg.
-
-Theorem Zmul_le_mono_nonpos :
- forall n m p q : Z, m <= 0 -> n <= m -> q <= 0 -> p <= q -> m * q <= n * p.
+Theorem mul_le_mono_nonpos :
+ forall n m p q, m <= 0 -> n <= m -> q <= 0 -> p <= q -> m * q <= n * p.
Proof.
intros n m p q H1 H2 H3 H4.
-apply Zle_trans with (m * p).
-now apply Zmul_le_mono_nonpos_l.
-apply Zmul_le_mono_nonpos_r; [now apply Zle_trans with q | assumption].
-Qed.
-
-Theorem Zmul_pos_pos : forall n m : Z, 0 < n -> 0 < m -> 0 < n * m.
-Proof NZmul_pos_pos.
-
-Theorem Zmul_neg_neg : forall n m : Z, n < 0 -> m < 0 -> 0 < n * m.
-Proof NZmul_neg_neg.
-
-Theorem Zmul_pos_neg : forall n m : Z, 0 < n -> m < 0 -> n * m < 0.
-Proof NZmul_pos_neg.
-
-Theorem Zmul_neg_pos : forall n m : Z, n < 0 -> 0 < m -> n * m < 0.
-Proof NZmul_neg_pos.
-
-Theorem Zmul_nonneg_nonneg : forall n m : Z, 0 <= n -> 0 <= m -> 0 <= n * m.
-Proof.
-intros n m H1 H2.
-rewrite <- (Zmul_0_l m). now apply Zmul_le_mono_nonneg_r.
+apply le_trans with (m * p).
+now apply mul_le_mono_nonpos_l.
+apply mul_le_mono_nonpos_r; [now apply le_trans with q | assumption].
Qed.
-Theorem Zmul_nonpos_nonpos : forall n m : Z, n <= 0 -> m <= 0 -> 0 <= n * m.
+Theorem mul_nonpos_nonpos : forall n m, n <= 0 -> m <= 0 -> 0 <= n * m.
Proof.
intros n m H1 H2.
-rewrite <- (Zmul_0_l m). now apply Zmul_le_mono_nonpos_r.
+rewrite <- (mul_0_l m). now apply mul_le_mono_nonpos_r.
Qed.
-Theorem Zmul_nonneg_nonpos : forall n m : Z, 0 <= n -> m <= 0 -> n * m <= 0.
+Theorem mul_nonneg_nonpos : forall n m, 0 <= n -> m <= 0 -> n * m <= 0.
Proof.
intros n m H1 H2.
-rewrite <- (Zmul_0_l m). now apply Zmul_le_mono_nonpos_r.
+rewrite <- (mul_0_l m). now apply mul_le_mono_nonpos_r.
Qed.
-Theorem Zmul_nonpos_nonneg : forall n m : Z, n <= 0 -> 0 <= m -> n * m <= 0.
+Theorem mul_nonpos_nonneg : forall n m, n <= 0 -> 0 <= m -> n * m <= 0.
Proof.
-intros; rewrite Zmul_comm; now apply Zmul_nonneg_nonpos.
+intros; rewrite mul_comm; now apply mul_nonneg_nonpos.
Qed.
-Theorem Zlt_1_mul_pos : forall n m : Z, 1 < n -> 0 < m -> 1 < n * m.
-Proof NZlt_1_mul_pos.
-
-Theorem Zeq_mul_0 : forall n m : Z, n * m == 0 <-> n == 0 \/ m == 0.
-Proof NZeq_mul_0.
-
-Theorem Zneq_mul_0 : forall n m : Z, n ~= 0 /\ m ~= 0 <-> n * m ~= 0.
-Proof NZneq_mul_0.
-
-Theorem Zeq_square_0 : forall n : Z, n * n == 0 <-> n == 0.
-Proof NZeq_square_0.
+Notation mul_pos := lt_0_mul (only parsing).
-Theorem Zeq_mul_0_l : forall n m : Z, n * m == 0 -> m ~= 0 -> n == 0.
-Proof NZeq_mul_0_l.
-
-Theorem Zeq_mul_0_r : forall n m : Z, n * m == 0 -> n ~= 0 -> m == 0.
-Proof NZeq_mul_0_r.
-
-Theorem Zlt_0_mul : forall n m : Z, 0 < n * m <-> 0 < n /\ 0 < m \/ m < 0 /\ n < 0.
-Proof NZlt_0_mul.
-
-Notation Zmul_pos := Zlt_0_mul (only parsing).
-
-Theorem Zlt_mul_0 :
- forall n m : Z, n * m < 0 <-> n < 0 /\ m > 0 \/ n > 0 /\ m < 0.
+Theorem lt_mul_0 :
+ forall n m, n * m < 0 <-> n < 0 /\ m > 0 \/ n > 0 /\ m < 0.
Proof.
intros n m; split; [intro H | intros [[H1 H2] | [H1 H2]]].
-destruct (Zlt_trichotomy n 0) as [H1 | [H1 | H1]];
-[| rewrite H1 in H; rewrite Zmul_0_l in H; false_hyp H Zlt_irrefl |];
-(destruct (Zlt_trichotomy m 0) as [H2 | [H2 | H2]];
-[| rewrite H2 in H; rewrite Zmul_0_r in H; false_hyp H Zlt_irrefl |]);
+destruct (lt_trichotomy n 0) as [H1 | [H1 | H1]];
+[| rewrite H1 in H; rewrite mul_0_l in H; false_hyp H lt_irrefl |];
+(destruct (lt_trichotomy m 0) as [H2 | [H2 | H2]];
+[| rewrite H2 in H; rewrite mul_0_r in H; false_hyp H lt_irrefl |]);
try (left; now split); try (right; now split).
-assert (H3 : n * m > 0) by now apply Zmul_neg_neg.
-elimtype False; now apply (Zlt_asymm (n * m) 0).
-assert (H3 : n * m > 0) by now apply Zmul_pos_pos.
-elimtype False; now apply (Zlt_asymm (n * m) 0).
-now apply Zmul_neg_pos. now apply Zmul_pos_neg.
+assert (H3 : n * m > 0) by now apply mul_neg_neg.
+exfalso; now apply (lt_asymm (n * m) 0).
+assert (H3 : n * m > 0) by now apply mul_pos_pos.
+exfalso; now apply (lt_asymm (n * m) 0).
+now apply mul_neg_pos. now apply mul_pos_neg.
Qed.
-Notation Zmul_neg := Zlt_mul_0 (only parsing).
+Notation mul_neg := lt_mul_0 (only parsing).
-Theorem Zle_0_mul :
- forall n m : Z, 0 <= n * m -> 0 <= n /\ 0 <= m \/ n <= 0 /\ m <= 0.
+Theorem le_0_mul :
+ forall n m, 0 <= n * m -> 0 <= n /\ 0 <= m \/ n <= 0 /\ m <= 0.
Proof.
-assert (R : forall n : Z, 0 == n <-> n == 0) by (intros; split; apply Zeq_sym).
-intros n m. repeat rewrite Zlt_eq_cases. repeat rewrite R.
-rewrite Zlt_0_mul, Zeq_mul_0.
-pose proof (Zlt_trichotomy n 0); pose proof (Zlt_trichotomy m 0). tauto.
+assert (R : forall n, 0 == n <-> n == 0) by (intros; split; apply eq_sym).
+intros n m. repeat rewrite lt_eq_cases. repeat rewrite R.
+rewrite lt_0_mul, eq_mul_0.
+pose proof (lt_trichotomy n 0); pose proof (lt_trichotomy m 0). tauto.
Qed.
-Notation Zmul_nonneg := Zle_0_mul (only parsing).
+Notation mul_nonneg := le_0_mul (only parsing).
-Theorem Zle_mul_0 :
- forall n m : Z, n * m <= 0 -> 0 <= n /\ m <= 0 \/ n <= 0 /\ 0 <= m.
+Theorem le_mul_0 :
+ forall n m, n * m <= 0 -> 0 <= n /\ m <= 0 \/ n <= 0 /\ 0 <= m.
Proof.
-assert (R : forall n : Z, 0 == n <-> n == 0) by (intros; split; apply Zeq_sym).
-intros n m. repeat rewrite Zlt_eq_cases. repeat rewrite R.
-rewrite Zlt_mul_0, Zeq_mul_0.
-pose proof (Zlt_trichotomy n 0); pose proof (Zlt_trichotomy m 0). tauto.
+assert (R : forall n, 0 == n <-> n == 0) by (intros; split; apply eq_sym).
+intros n m. repeat rewrite lt_eq_cases. repeat rewrite R.
+rewrite lt_mul_0, eq_mul_0.
+pose proof (lt_trichotomy n 0); pose proof (lt_trichotomy m 0). tauto.
Qed.
-Notation Zmul_nonpos := Zle_mul_0 (only parsing).
+Notation mul_nonpos := le_mul_0 (only parsing).
-Theorem Zle_0_square : forall n : Z, 0 <= n * n.
+Theorem le_0_square : forall n, 0 <= n * n.
Proof.
-intro n; destruct (Zneg_nonneg_cases n).
-apply Zlt_le_incl; now apply Zmul_neg_neg.
-now apply Zmul_nonneg_nonneg.
+intro n; destruct (neg_nonneg_cases n).
+apply lt_le_incl; now apply mul_neg_neg.
+now apply mul_nonneg_nonneg.
Qed.
-Notation Zsquare_nonneg := Zle_0_square (only parsing).
+Notation square_nonneg := le_0_square (only parsing).
-Theorem Znlt_square_0 : forall n : Z, ~ n * n < 0.
+Theorem nlt_square_0 : forall n, ~ n * n < 0.
Proof.
-intros n H. apply -> Zlt_nge in H. apply H. apply Zsquare_nonneg.
+intros n H. apply -> lt_nge in H. apply H. apply square_nonneg.
Qed.
-Theorem Zsquare_lt_mono_nonneg : forall n m : Z, 0 <= n -> n < m -> n * n < m * m.
-Proof NZsquare_lt_mono_nonneg.
-
-Theorem Zsquare_lt_mono_nonpos : forall n m : Z, n <= 0 -> m < n -> n * n < m * m.
+Theorem square_lt_mono_nonpos : forall n m, n <= 0 -> m < n -> n * n < m * m.
Proof.
-intros n m H1 H2. now apply Zmul_lt_mono_nonpos.
+intros n m H1 H2. now apply mul_lt_mono_nonpos.
Qed.
-Theorem Zsquare_le_mono_nonneg : forall n m : Z, 0 <= n -> n <= m -> n * n <= m * m.
-Proof NZsquare_le_mono_nonneg.
-
-Theorem Zsquare_le_mono_nonpos : forall n m : Z, n <= 0 -> m <= n -> n * n <= m * m.
+Theorem square_le_mono_nonpos : forall n m, n <= 0 -> m <= n -> n * n <= m * m.
Proof.
-intros n m H1 H2. now apply Zmul_le_mono_nonpos.
+intros n m H1 H2. now apply mul_le_mono_nonpos.
Qed.
-Theorem Zsquare_lt_simpl_nonneg : forall n m : Z, 0 <= m -> n * n < m * m -> n < m.
-Proof NZsquare_lt_simpl_nonneg.
-
-Theorem Zsquare_le_simpl_nonneg : forall n m : Z, 0 <= m -> n * n <= m * m -> n <= m.
-Proof NZsquare_le_simpl_nonneg.
-
-Theorem Zsquare_lt_simpl_nonpos : forall n m : Z, m <= 0 -> n * n < m * m -> m < n.
+Theorem square_lt_simpl_nonpos : forall n m, m <= 0 -> n * n < m * m -> m < n.
Proof.
-intros n m H1 H2. destruct (Zle_gt_cases n 0).
-destruct (NZlt_ge_cases m n).
-assumption. assert (F : m * m <= n * n) by now apply Zsquare_le_mono_nonpos.
-apply -> NZle_ngt in F. false_hyp H2 F.
-now apply Zle_lt_trans with 0.
+intros n m H1 H2. destruct (le_gt_cases n 0).
+destruct (lt_ge_cases m n).
+assumption. assert (F : m * m <= n * n) by now apply square_le_mono_nonpos.
+apply -> le_ngt in F. false_hyp H2 F.
+now apply le_lt_trans with 0.
Qed.
-Theorem Zsquare_le_simpl_nonpos : forall n m : NZ, m <= 0 -> n * n <= m * m -> m <= n.
+Theorem square_le_simpl_nonpos : forall n m, m <= 0 -> n * n <= m * m -> m <= n.
Proof.
-intros n m H1 H2. destruct (NZle_gt_cases n 0).
-destruct (NZle_gt_cases m n).
-assumption. assert (F : m * m < n * n) by now apply Zsquare_lt_mono_nonpos.
-apply -> NZlt_nge in F. false_hyp H2 F.
-apply Zlt_le_incl; now apply NZle_lt_trans with 0.
+intros n m H1 H2. destruct (le_gt_cases n 0).
+destruct (le_gt_cases m n).
+assumption. assert (F : m * m < n * n) by now apply square_lt_mono_nonpos.
+apply -> lt_nge in F. false_hyp H2 F.
+apply lt_le_incl; now apply le_lt_trans with 0.
Qed.
-Theorem Zmul_2_mono_l : forall n m : Z, n < m -> 1 + (1 + 1) * n < (1 + 1) * m.
-Proof NZmul_2_mono_l.
-
-Theorem Zlt_1_mul_neg : forall n m : Z, n < -1 -> m < 0 -> 1 < n * m.
+Theorem lt_1_mul_neg : forall n m, n < -1 -> m < 0 -> 1 < n * m.
Proof.
-intros n m H1 H2. apply -> (NZmul_lt_mono_neg_r m) in H1.
-apply <- Zopp_pos_neg in H2. rewrite Zmul_opp_l, Zmul_1_l in H1.
-now apply Zlt_1_l with (- m).
+intros n m H1 H2. apply -> (mul_lt_mono_neg_r m) in H1.
+apply <- opp_pos_neg in H2. rewrite mul_opp_l, mul_1_l in H1.
+now apply lt_1_l with (- m).
assumption.
Qed.
-Theorem Zlt_mul_n1_neg : forall n m : Z, 1 < n -> m < 0 -> n * m < -1.
+Theorem lt_mul_n1_neg : forall n m, 1 < n -> m < 0 -> n * m < -1.
Proof.
-intros n m H1 H2. apply -> (NZmul_lt_mono_neg_r m) in H1.
-rewrite Zmul_1_l in H1. now apply Zlt_n1_r with m.
+intros n m H1 H2. apply -> (mul_lt_mono_neg_r m) in H1.
+rewrite mul_1_l in H1. now apply lt_n1_r with m.
assumption.
Qed.
-Theorem Zlt_mul_n1_pos : forall n m : Z, n < -1 -> 0 < m -> n * m < -1.
+Theorem lt_mul_n1_pos : forall n m, n < -1 -> 0 < m -> n * m < -1.
Proof.
-intros n m H1 H2. apply -> (NZmul_lt_mono_pos_r m) in H1.
-rewrite Zmul_opp_l, Zmul_1_l in H1.
-apply <- Zopp_neg_pos in H2. now apply Zlt_n1_r with (- m).
+intros n m H1 H2. apply -> (mul_lt_mono_pos_r m) in H1.
+rewrite mul_opp_l, mul_1_l in H1.
+apply <- opp_neg_pos in H2. now apply lt_n1_r with (- m).
assumption.
Qed.
-Theorem Zlt_1_mul_l : forall n m : Z, 1 < n -> n * m < -1 \/ n * m == 0 \/ 1 < n * m.
+Theorem lt_1_mul_l : forall n m, 1 < n ->
+ n * m < -1 \/ n * m == 0 \/ 1 < n * m.
Proof.
-intros n m H; destruct (Zlt_trichotomy m 0) as [H1 | [H1 | H1]].
-left. now apply Zlt_mul_n1_neg.
-right; left; now rewrite H1, Zmul_0_r.
-right; right; now apply Zlt_1_mul_pos.
+intros n m H; destruct (lt_trichotomy m 0) as [H1 | [H1 | H1]].
+left. now apply lt_mul_n1_neg.
+right; left; now rewrite H1, mul_0_r.
+right; right; now apply lt_1_mul_pos.
Qed.
-Theorem Zlt_n1_mul_r : forall n m : Z, n < -1 -> n * m < -1 \/ n * m == 0 \/ 1 < n * m.
+Theorem lt_n1_mul_r : forall n m, n < -1 ->
+ n * m < -1 \/ n * m == 0 \/ 1 < n * m.
Proof.
-intros n m H; destruct (Zlt_trichotomy m 0) as [H1 | [H1 | H1]].
-right; right. now apply Zlt_1_mul_neg.
-right; left; now rewrite H1, Zmul_0_r.
-left. now apply Zlt_mul_n1_pos.
+intros n m H; destruct (lt_trichotomy m 0) as [H1 | [H1 | H1]].
+right; right. now apply lt_1_mul_neg.
+right; left; now rewrite H1, mul_0_r.
+left. now apply lt_mul_n1_pos.
Qed.
-Theorem Zeq_mul_1 : forall n m : Z, n * m == 1 -> n == 1 \/ n == -1.
+Theorem eq_mul_1 : forall n m, n * m == 1 -> n == 1 \/ n == -1.
Proof.
assert (F : ~ 1 < -1).
intro H.
-assert (H1 : -1 < 0). apply <- Zopp_neg_pos. apply Zlt_succ_diag_r.
-assert (H2 : 1 < 0) by now apply Zlt_trans with (-1). false_hyp H2 Znlt_succ_diag_l.
-Z0_pos_neg n.
-intros m H; rewrite Zmul_0_l in H; false_hyp H Zneq_succ_diag_r.
-intros n H; split; apply <- Zle_succ_l in H; le_elim H.
-intros m H1; apply (Zlt_1_mul_l n m) in H.
+assert (H1 : -1 < 0). apply <- opp_neg_pos. apply lt_succ_diag_r.
+assert (H2 : 1 < 0) by now apply lt_trans with (-1).
+false_hyp H2 nlt_succ_diag_l.
+zero_pos_neg n.
+intros m H; rewrite mul_0_l in H; false_hyp H neq_succ_diag_r.
+intros n H; split; apply <- le_succ_l in H; le_elim H.
+intros m H1; apply (lt_1_mul_l n m) in H.
rewrite H1 in H; destruct H as [H | [H | H]].
-false_hyp H F. false_hyp H Zneq_succ_diag_l. false_hyp H Zlt_irrefl.
+false_hyp H F. false_hyp H neq_succ_diag_l. false_hyp H lt_irrefl.
intros; now left.
-intros m H1; apply (Zlt_1_mul_l n m) in H. rewrite Zmul_opp_l in H1;
-apply -> Zeq_opp_l in H1. rewrite H1 in H; destruct H as [H | [H | H]].
-false_hyp H Zlt_irrefl. apply -> Zeq_opp_l in H. rewrite Zopp_0 in H.
-false_hyp H Zneq_succ_diag_l. false_hyp H F.
-intros; right; symmetry; now apply Zopp_wd.
+intros m H1; apply (lt_1_mul_l n m) in H. rewrite mul_opp_l in H1;
+apply -> eq_opp_l in H1. rewrite H1 in H; destruct H as [H | [H | H]].
+false_hyp H lt_irrefl. apply -> eq_opp_l in H. rewrite opp_0 in H.
+false_hyp H neq_succ_diag_l. false_hyp H F.
+intros; right; symmetry; now apply opp_wd.
Qed.
-Theorem Zlt_mul_diag_l : forall n m : Z, n < 0 -> (1 < m <-> n * m < n).
+Theorem lt_mul_diag_l : forall n m, n < 0 -> (1 < m <-> n * m < n).
Proof.
-intros n m H. stepr (n * m < n * 1) by now rewrite Zmul_1_r.
-now apply Zmul_lt_mono_neg_l.
+intros n m H. stepr (n * m < n * 1) by now rewrite mul_1_r.
+now apply mul_lt_mono_neg_l.
Qed.
-Theorem Zlt_mul_diag_r : forall n m : Z, 0 < n -> (1 < m <-> n < n * m).
+Theorem lt_mul_diag_r : forall n m, 0 < n -> (1 < m <-> n < n * m).
Proof.
-intros n m H. stepr (n * 1 < n * m) by now rewrite Zmul_1_r.
-now apply Zmul_lt_mono_pos_l.
+intros n m H. stepr (n * 1 < n * m) by now rewrite mul_1_r.
+now apply mul_lt_mono_pos_l.
Qed.
-Theorem Zle_mul_diag_l : forall n m : Z, n < 0 -> (1 <= m <-> n * m <= n).
+Theorem le_mul_diag_l : forall n m, n < 0 -> (1 <= m <-> n * m <= n).
Proof.
-intros n m H. stepr (n * m <= n * 1) by now rewrite Zmul_1_r.
-now apply Zmul_le_mono_neg_l.
+intros n m H. stepr (n * m <= n * 1) by now rewrite mul_1_r.
+now apply mul_le_mono_neg_l.
Qed.
-Theorem Zle_mul_diag_r : forall n m : Z, 0 < n -> (1 <= m <-> n <= n * m).
+Theorem le_mul_diag_r : forall n m, 0 < n -> (1 <= m <-> n <= n * m).
Proof.
-intros n m H. stepr (n * 1 <= n * m) by now rewrite Zmul_1_r.
-now apply Zmul_le_mono_pos_l.
+intros n m H. stepr (n * 1 <= n * m) by now rewrite mul_1_r.
+now apply mul_le_mono_pos_l.
Qed.
-Theorem Zlt_mul_r : forall n m p : Z, 0 < n -> 1 < p -> n < m -> n < m * p.
+Theorem lt_mul_r : forall n m p, 0 < n -> 1 < p -> n < m -> n < m * p.
Proof.
-intros. stepl (n * 1) by now rewrite Zmul_1_r.
-apply Zmul_lt_mono_nonneg.
-now apply Zlt_le_incl. assumption. apply Zle_0_1. assumption.
+intros. stepl (n * 1) by now rewrite mul_1_r.
+apply mul_lt_mono_nonneg.
+now apply lt_le_incl. assumption. apply le_0_1. assumption.
Qed.
End ZMulOrderPropFunct.