summaryrefslogtreecommitdiff
path: root/theories/Numbers/Integer/Abstract/ZLt.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Integer/Abstract/ZLt.v')
-rw-r--r--theories/Numbers/Integer/Abstract/ZLt.v402
1 files changed, 52 insertions, 350 deletions
diff --git a/theories/Numbers/Integer/Abstract/ZLt.v b/theories/Numbers/Integer/Abstract/ZLt.v
index 2a88a535..849bf6b4 100644
--- a/theories/Numbers/Integer/Abstract/ZLt.v
+++ b/theories/Numbers/Integer/Abstract/ZLt.v
@@ -8,424 +8,126 @@
(* Evgeny Makarov, INRIA, 2007 *)
(************************************************************************)
-(*i $Id: ZLt.v 11040 2008-06-03 00:04:16Z letouzey $ i*)
+(*i $Id$ i*)
Require Export ZMul.
-Module ZOrderPropFunct (Import ZAxiomsMod : ZAxiomsSig).
-Module Export ZMulPropMod := ZMulPropFunct ZAxiomsMod.
-Open Local Scope IntScope.
+Module ZOrderPropFunct (Import Z : ZAxiomsSig').
+Include ZMulPropFunct Z.
-(* Axioms *)
+(** Instances of earlier theorems for m == 0 *)
-Theorem Zlt_wd :
- forall n1 n2 : Z, n1 == n2 -> forall m1 m2 : Z, m1 == m2 -> (n1 < m1 <-> n2 < m2).
-Proof NZlt_wd.
-
-Theorem Zle_wd :
- forall n1 n2 : Z, n1 == n2 -> forall m1 m2 : Z, m1 == m2 -> (n1 <= m1 <-> n2 <= m2).
-Proof NZle_wd.
-
-Theorem Zmin_wd :
- forall n1 n2 : Z, n1 == n2 -> forall m1 m2 : Z, m1 == m2 -> Zmin n1 m1 == Zmin n2 m2.
-Proof NZmin_wd.
-
-Theorem Zmax_wd :
- forall n1 n2 : Z, n1 == n2 -> forall m1 m2 : Z, m1 == m2 -> Zmax n1 m1 == Zmax n2 m2.
-Proof NZmax_wd.
-
-Theorem Zlt_eq_cases : forall n m : Z, n <= m <-> n < m \/ n == m.
-Proof NZlt_eq_cases.
-
-Theorem Zlt_irrefl : forall n : Z, ~ n < n.
-Proof NZlt_irrefl.
-
-Theorem Zlt_succ_r : forall n m : Z, n < S m <-> n <= m.
-Proof NZlt_succ_r.
-
-Theorem Zmin_l : forall n m : Z, n <= m -> Zmin n m == n.
-Proof NZmin_l.
-
-Theorem Zmin_r : forall n m : Z, m <= n -> Zmin n m == m.
-Proof NZmin_r.
-
-Theorem Zmax_l : forall n m : Z, m <= n -> Zmax n m == n.
-Proof NZmax_l.
-
-Theorem Zmax_r : forall n m : Z, n <= m -> Zmax n m == m.
-Proof NZmax_r.
-
-(* Renaming theorems from NZOrder.v *)
-
-Theorem Zlt_le_incl : forall n m : Z, n < m -> n <= m.
-Proof NZlt_le_incl.
-
-Theorem Zlt_neq : forall n m : Z, n < m -> n ~= m.
-Proof NZlt_neq.
-
-Theorem Zle_neq : forall n m : Z, n < m <-> n <= m /\ n ~= m.
-Proof NZle_neq.
-
-Theorem Zle_refl : forall n : Z, n <= n.
-Proof NZle_refl.
-
-Theorem Zlt_succ_diag_r : forall n : Z, n < S n.
-Proof NZlt_succ_diag_r.
-
-Theorem Zle_succ_diag_r : forall n : Z, n <= S n.
-Proof NZle_succ_diag_r.
-
-Theorem Zlt_0_1 : 0 < 1.
-Proof NZlt_0_1.
-
-Theorem Zle_0_1 : 0 <= 1.
-Proof NZle_0_1.
-
-Theorem Zlt_lt_succ_r : forall n m : Z, n < m -> n < S m.
-Proof NZlt_lt_succ_r.
-
-Theorem Zle_le_succ_r : forall n m : Z, n <= m -> n <= S m.
-Proof NZle_le_succ_r.
-
-Theorem Zle_succ_r : forall n m : Z, n <= S m <-> n <= m \/ n == S m.
-Proof NZle_succ_r.
-
-Theorem Zneq_succ_diag_l : forall n : Z, S n ~= n.
-Proof NZneq_succ_diag_l.
-
-Theorem Zneq_succ_diag_r : forall n : Z, n ~= S n.
-Proof NZneq_succ_diag_r.
-
-Theorem Znlt_succ_diag_l : forall n : Z, ~ S n < n.
-Proof NZnlt_succ_diag_l.
-
-Theorem Znle_succ_diag_l : forall n : Z, ~ S n <= n.
-Proof NZnle_succ_diag_l.
-
-Theorem Zle_succ_l : forall n m : Z, S n <= m <-> n < m.
-Proof NZle_succ_l.
-
-Theorem Zlt_succ_l : forall n m : Z, S n < m -> n < m.
-Proof NZlt_succ_l.
-
-Theorem Zsucc_lt_mono : forall n m : Z, n < m <-> S n < S m.
-Proof NZsucc_lt_mono.
-
-Theorem Zsucc_le_mono : forall n m : Z, n <= m <-> S n <= S m.
-Proof NZsucc_le_mono.
-
-Theorem Zlt_asymm : forall n m, n < m -> ~ m < n.
-Proof NZlt_asymm.
-
-Notation Zlt_ngt := Zlt_asymm (only parsing).
-
-Theorem Zlt_trans : forall n m p : Z, n < m -> m < p -> n < p.
-Proof NZlt_trans.
-
-Theorem Zle_trans : forall n m p : Z, n <= m -> m <= p -> n <= p.
-Proof NZle_trans.
-
-Theorem Zle_lt_trans : forall n m p : Z, n <= m -> m < p -> n < p.
-Proof NZle_lt_trans.
-
-Theorem Zlt_le_trans : forall n m p : Z, n < m -> m <= p -> n < p.
-Proof NZlt_le_trans.
-
-Theorem Zle_antisymm : forall n m : Z, n <= m -> m <= n -> n == m.
-Proof NZle_antisymm.
-
-Theorem Zlt_1_l : forall n m : Z, 0 < n -> n < m -> 1 < m.
-Proof NZlt_1_l.
-
-(** Trichotomy, decidability, and double negation elimination *)
-
-Theorem Zlt_trichotomy : forall n m : Z, n < m \/ n == m \/ m < n.
-Proof NZlt_trichotomy.
-
-Notation Zlt_eq_gt_cases := Zlt_trichotomy (only parsing).
-
-Theorem Zlt_gt_cases : forall n m : Z, n ~= m <-> n < m \/ n > m.
-Proof NZlt_gt_cases.
-
-Theorem Zle_gt_cases : forall n m : Z, n <= m \/ n > m.
-Proof NZle_gt_cases.
-
-Theorem Zlt_ge_cases : forall n m : Z, n < m \/ n >= m.
-Proof NZlt_ge_cases.
-
-Theorem Zle_ge_cases : forall n m : Z, n <= m \/ n >= m.
-Proof NZle_ge_cases.
-
-(** Instances of the previous theorems for m == 0 *)
-
-Theorem Zneg_pos_cases : forall n : Z, n ~= 0 <-> n < 0 \/ n > 0.
+Theorem neg_pos_cases : forall n, n ~= 0 <-> n < 0 \/ n > 0.
Proof.
-intro; apply Zlt_gt_cases.
+intro; apply lt_gt_cases.
Qed.
-Theorem Znonpos_pos_cases : forall n : Z, n <= 0 \/ n > 0.
+Theorem nonpos_pos_cases : forall n, n <= 0 \/ n > 0.
Proof.
-intro; apply Zle_gt_cases.
+intro; apply le_gt_cases.
Qed.
-Theorem Zneg_nonneg_cases : forall n : Z, n < 0 \/ n >= 0.
+Theorem neg_nonneg_cases : forall n, n < 0 \/ n >= 0.
Proof.
-intro; apply Zlt_ge_cases.
+intro; apply lt_ge_cases.
Qed.
-Theorem Znonpos_nonneg_cases : forall n : Z, n <= 0 \/ n >= 0.
+Theorem nonpos_nonneg_cases : forall n, n <= 0 \/ n >= 0.
Proof.
-intro; apply Zle_ge_cases.
+intro; apply le_ge_cases.
Qed.
-Theorem Zle_ngt : forall n m : Z, n <= m <-> ~ n > m.
-Proof NZle_ngt.
-
-Theorem Znlt_ge : forall n m : Z, ~ n < m <-> n >= m.
-Proof NZnlt_ge.
-
-Theorem Zlt_dec : forall n m : Z, decidable (n < m).
-Proof NZlt_dec.
-
-Theorem Zlt_dne : forall n m, ~ ~ n < m <-> n < m.
-Proof NZlt_dne.
-
-Theorem Znle_gt : forall n m : Z, ~ n <= m <-> n > m.
-Proof NZnle_gt.
-
-Theorem Zlt_nge : forall n m : Z, n < m <-> ~ n >= m.
-Proof NZlt_nge.
-
-Theorem Zle_dec : forall n m : Z, decidable (n <= m).
-Proof NZle_dec.
-
-Theorem Zle_dne : forall n m : Z, ~ ~ n <= m <-> n <= m.
-Proof NZle_dne.
-
-Theorem Znlt_succ_r : forall n m : Z, ~ m < S n <-> n < m.
-Proof NZnlt_succ_r.
-
-Theorem Zlt_exists_pred :
- forall z n : Z, z < n -> exists k : Z, n == S k /\ z <= k.
-Proof NZlt_exists_pred.
-
-Theorem Zlt_succ_iter_r :
- forall (n : nat) (m : Z), m < NZsucc_iter (Datatypes.S n) m.
-Proof NZlt_succ_iter_r.
-
-Theorem Zneq_succ_iter_l :
- forall (n : nat) (m : Z), NZsucc_iter (Datatypes.S n) m ~= m.
-Proof NZneq_succ_iter_l.
-
-(** Stronger variant of induction with assumptions n >= 0 (n < 0)
-in the induction step *)
-
-Theorem Zright_induction :
- forall A : Z -> Prop, predicate_wd Zeq A ->
- forall z : Z, A z ->
- (forall n : Z, z <= n -> A n -> A (S n)) ->
- forall n : Z, z <= n -> A n.
-Proof NZright_induction.
-
-Theorem Zleft_induction :
- forall A : Z -> Prop, predicate_wd Zeq A ->
- forall z : Z, A z ->
- (forall n : Z, n < z -> A (S n) -> A n) ->
- forall n : Z, n <= z -> A n.
-Proof NZleft_induction.
-
-Theorem Zright_induction' :
- forall A : Z -> Prop, predicate_wd Zeq A ->
- forall z : Z,
- (forall n : Z, n <= z -> A n) ->
- (forall n : Z, z <= n -> A n -> A (S n)) ->
- forall n : Z, A n.
-Proof NZright_induction'.
-
-Theorem Zleft_induction' :
- forall A : Z -> Prop, predicate_wd Zeq A ->
- forall z : Z,
- (forall n : Z, z <= n -> A n) ->
- (forall n : Z, n < z -> A (S n) -> A n) ->
- forall n : Z, A n.
-Proof NZleft_induction'.
-
-Theorem Zstrong_right_induction :
- forall A : Z -> Prop, predicate_wd Zeq A ->
- forall z : Z,
- (forall n : Z, z <= n -> (forall m : Z, z <= m -> m < n -> A m) -> A n) ->
- forall n : Z, z <= n -> A n.
-Proof NZstrong_right_induction.
-
-Theorem Zstrong_left_induction :
- forall A : Z -> Prop, predicate_wd Zeq A ->
- forall z : Z,
- (forall n : Z, n <= z -> (forall m : Z, m <= z -> S n <= m -> A m) -> A n) ->
- forall n : Z, n <= z -> A n.
-Proof NZstrong_left_induction.
-
-Theorem Zstrong_right_induction' :
- forall A : Z -> Prop, predicate_wd Zeq A ->
- forall z : Z,
- (forall n : Z, n <= z -> A n) ->
- (forall n : Z, z <= n -> (forall m : Z, z <= m -> m < n -> A m) -> A n) ->
- forall n : Z, A n.
-Proof NZstrong_right_induction'.
-
-Theorem Zstrong_left_induction' :
- forall A : Z -> Prop, predicate_wd Zeq A ->
- forall z : Z,
- (forall n : Z, z <= n -> A n) ->
- (forall n : Z, n <= z -> (forall m : Z, m <= z -> S n <= m -> A m) -> A n) ->
- forall n : Z, A n.
-Proof NZstrong_left_induction'.
-
-Theorem Zorder_induction :
- forall A : Z -> Prop, predicate_wd Zeq A ->
- forall z : Z, A z ->
- (forall n : Z, z <= n -> A n -> A (S n)) ->
- (forall n : Z, n < z -> A (S n) -> A n) ->
- forall n : Z, A n.
-Proof NZorder_induction.
-
-Theorem Zorder_induction' :
- forall A : Z -> Prop, predicate_wd Zeq A ->
- forall z : Z, A z ->
- (forall n : Z, z <= n -> A n -> A (S n)) ->
- (forall n : Z, n <= z -> A n -> A (P n)) ->
- forall n : Z, A n.
-Proof NZorder_induction'.
-
-Theorem Zorder_induction_0 :
- forall A : Z -> Prop, predicate_wd Zeq A ->
- A 0 ->
- (forall n : Z, 0 <= n -> A n -> A (S n)) ->
- (forall n : Z, n < 0 -> A (S n) -> A n) ->
- forall n : Z, A n.
-Proof NZorder_induction_0.
-
-Theorem Zorder_induction'_0 :
- forall A : Z -> Prop, predicate_wd Zeq A ->
- A 0 ->
- (forall n : Z, 0 <= n -> A n -> A (S n)) ->
- (forall n : Z, n <= 0 -> A n -> A (P n)) ->
- forall n : Z, A n.
-Proof NZorder_induction'_0.
-
-Ltac Zinduct n := induction_maker n ltac:(apply Zorder_induction_0).
-
-(** Elimintation principle for < *)
-
-Theorem Zlt_ind :
- forall A : Z -> Prop, predicate_wd Zeq A ->
- forall n : Z, A (S n) ->
- (forall m : Z, n < m -> A m -> A (S m)) -> forall m : Z, n < m -> A m.
-Proof NZlt_ind.
-
-(** Elimintation principle for <= *)
-
-Theorem Zle_ind :
- forall A : Z -> Prop, predicate_wd Zeq A ->
- forall n : Z, A n ->
- (forall m : Z, n <= m -> A m -> A (S m)) -> forall m : Z, n <= m -> A m.
-Proof NZle_ind.
-
-(** Well-founded relations *)
-
-Theorem Zlt_wf : forall z : Z, well_founded (fun n m : Z => z <= n /\ n < m).
-Proof NZlt_wf.
-
-Theorem Zgt_wf : forall z : Z, well_founded (fun n m : Z => m < n /\ n <= z).
-Proof NZgt_wf.
+Ltac zinduct n := induction_maker n ltac:(apply order_induction_0).
-(* Theorems that are either not valid on N or have different proofs on N and Z *)
+(** Theorems that are either not valid on N or have different proofs
+ on N and Z *)
-Theorem Zlt_pred_l : forall n : Z, P n < n.
+Theorem lt_pred_l : forall n, P n < n.
Proof.
-intro n; rewrite <- (Zsucc_pred n) at 2; apply Zlt_succ_diag_r.
+intro n; rewrite <- (succ_pred n) at 2; apply lt_succ_diag_r.
Qed.
-Theorem Zle_pred_l : forall n : Z, P n <= n.
+Theorem le_pred_l : forall n, P n <= n.
Proof.
-intro; apply Zlt_le_incl; apply Zlt_pred_l.
+intro; apply lt_le_incl; apply lt_pred_l.
Qed.
-Theorem Zlt_le_pred : forall n m : Z, n < m <-> n <= P m.
+Theorem lt_le_pred : forall n m, n < m <-> n <= P m.
Proof.
-intros n m; rewrite <- (Zsucc_pred m); rewrite Zpred_succ. apply Zlt_succ_r.
+intros n m; rewrite <- (succ_pred m); rewrite pred_succ. apply lt_succ_r.
Qed.
-Theorem Znle_pred_r : forall n : Z, ~ n <= P n.
+Theorem nle_pred_r : forall n, ~ n <= P n.
Proof.
-intro; rewrite <- Zlt_le_pred; apply Zlt_irrefl.
+intro; rewrite <- lt_le_pred; apply lt_irrefl.
Qed.
-Theorem Zlt_pred_le : forall n m : Z, P n < m <-> n <= m.
+Theorem lt_pred_le : forall n m, P n < m <-> n <= m.
Proof.
-intros n m; rewrite <- (Zsucc_pred n) at 2.
-symmetry; apply Zle_succ_l.
+intros n m; rewrite <- (succ_pred n) at 2.
+symmetry; apply le_succ_l.
Qed.
-Theorem Zlt_lt_pred : forall n m : Z, n < m -> P n < m.
+Theorem lt_lt_pred : forall n m, n < m -> P n < m.
Proof.
-intros; apply <- Zlt_pred_le; now apply Zlt_le_incl.
+intros; apply <- lt_pred_le; now apply lt_le_incl.
Qed.
-Theorem Zle_le_pred : forall n m : Z, n <= m -> P n <= m.
+Theorem le_le_pred : forall n m, n <= m -> P n <= m.
Proof.
-intros; apply Zlt_le_incl; now apply <- Zlt_pred_le.
+intros; apply lt_le_incl; now apply <- lt_pred_le.
Qed.
-Theorem Zlt_pred_lt : forall n m : Z, n < P m -> n < m.
+Theorem lt_pred_lt : forall n m, n < P m -> n < m.
Proof.
-intros n m H; apply Zlt_trans with (P m); [assumption | apply Zlt_pred_l].
+intros n m H; apply lt_trans with (P m); [assumption | apply lt_pred_l].
Qed.
-Theorem Zle_pred_lt : forall n m : Z, n <= P m -> n <= m.
+Theorem le_pred_lt : forall n m, n <= P m -> n <= m.
Proof.
-intros; apply Zlt_le_incl; now apply <- Zlt_le_pred.
+intros; apply lt_le_incl; now apply <- lt_le_pred.
Qed.
-Theorem Zpred_lt_mono : forall n m : Z, n < m <-> P n < P m.
+Theorem pred_lt_mono : forall n m, n < m <-> P n < P m.
Proof.
-intros; rewrite Zlt_le_pred; symmetry; apply Zlt_pred_le.
+intros; rewrite lt_le_pred; symmetry; apply lt_pred_le.
Qed.
-Theorem Zpred_le_mono : forall n m : Z, n <= m <-> P n <= P m.
+Theorem pred_le_mono : forall n m, n <= m <-> P n <= P m.
Proof.
-intros; rewrite <- Zlt_pred_le; now rewrite Zlt_le_pred.
+intros; rewrite <- lt_pred_le; now rewrite lt_le_pred.
Qed.
-Theorem Zlt_succ_lt_pred : forall n m : Z, S n < m <-> n < P m.
+Theorem lt_succ_lt_pred : forall n m, S n < m <-> n < P m.
Proof.
-intros n m; now rewrite (Zpred_lt_mono (S n) m), Zpred_succ.
+intros n m; now rewrite (pred_lt_mono (S n) m), pred_succ.
Qed.
-Theorem Zle_succ_le_pred : forall n m : Z, S n <= m <-> n <= P m.
+Theorem le_succ_le_pred : forall n m, S n <= m <-> n <= P m.
Proof.
-intros n m; now rewrite (Zpred_le_mono (S n) m), Zpred_succ.
+intros n m; now rewrite (pred_le_mono (S n) m), pred_succ.
Qed.
-Theorem Zlt_pred_lt_succ : forall n m : Z, P n < m <-> n < S m.
+Theorem lt_pred_lt_succ : forall n m, P n < m <-> n < S m.
Proof.
-intros; rewrite Zlt_pred_le; symmetry; apply Zlt_succ_r.
+intros; rewrite lt_pred_le; symmetry; apply lt_succ_r.
Qed.
-Theorem Zle_pred_lt_succ : forall n m : Z, P n <= m <-> n <= S m.
+Theorem le_pred_lt_succ : forall n m, P n <= m <-> n <= S m.
Proof.
-intros n m; now rewrite (Zpred_le_mono n (S m)), Zpred_succ.
+intros n m; now rewrite (pred_le_mono n (S m)), pred_succ.
Qed.
-Theorem Zneq_pred_l : forall n : Z, P n ~= n.
+Theorem neq_pred_l : forall n, P n ~= n.
Proof.
-intro; apply Zlt_neq; apply Zlt_pred_l.
+intro; apply lt_neq; apply lt_pred_l.
Qed.
-Theorem Zlt_n1_r : forall n m : Z, n < m -> m < 0 -> n < -1.
+Theorem lt_n1_r : forall n m, n < m -> m < 0 -> n < -(1).
Proof.
-intros n m H1 H2. apply -> Zlt_le_pred in H2.
-setoid_replace (P 0) with (-1) in H2. now apply NZlt_le_trans with m.
-apply <- Zeq_opp_r. now rewrite Zopp_pred, Zopp_0.
+intros n m H1 H2. apply -> lt_le_pred in H2.
+setoid_replace (P 0) with (-(1)) in H2. now apply lt_le_trans with m.
+apply <- eq_opp_r. now rewrite opp_pred, opp_0.
Qed.
End ZOrderPropFunct.