summaryrefslogtreecommitdiff
path: root/theories/Numbers/Cyclic/Int31
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Cyclic/Int31')
-rw-r--r--theories/Numbers/Cyclic/Int31/Cyclic31.v464
-rw-r--r--theories/Numbers/Cyclic/Int31/Int31.v141
-rw-r--r--theories/Numbers/Cyclic/Int31/Ring31.v103
3 files changed, 410 insertions, 298 deletions
diff --git a/theories/Numbers/Cyclic/Int31/Cyclic31.v b/theories/Numbers/Cyclic/Int31/Cyclic31.v
index 6da1c6ec..8addf5b9 100644
--- a/theories/Numbers/Cyclic/Int31/Cyclic31.v
+++ b/theories/Numbers/Cyclic/Int31/Cyclic31.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Cyclic31.v 11907 2009-02-10 23:54:28Z letouzey $ i*)
+(*i $Id$ i*)
(** * Int31 numbers defines indeed a cyclic structure : Z/(2^31)Z *)
@@ -24,8 +24,8 @@ Require Import BigNumPrelude.
Require Import CyclicAxioms.
Require Import ROmega.
-Open Scope nat_scope.
-Open Scope int31_scope.
+Local Open Scope nat_scope.
+Local Open Scope int31_scope.
Section Basics.
@@ -34,9 +34,9 @@ Section Basics.
Lemma iszero_eq0 : forall x, iszero x = true -> x=0.
Proof.
destruct x; simpl; intros.
- repeat
- match goal with H:(if ?d then _ else _) = true |- _ =>
- destruct d; try discriminate
+ repeat
+ match goal with H:(if ?d then _ else _) = true |- _ =>
+ destruct d; try discriminate
end.
reflexivity.
Qed.
@@ -46,26 +46,26 @@ Section Basics.
intros x H Eq; rewrite Eq in H; simpl in *; discriminate.
Qed.
- Lemma sneakl_shiftr : forall x,
+ Lemma sneakl_shiftr : forall x,
x = sneakl (firstr x) (shiftr x).
Proof.
destruct x; simpl; auto.
Qed.
- Lemma sneakr_shiftl : forall x,
+ Lemma sneakr_shiftl : forall x,
x = sneakr (firstl x) (shiftl x).
Proof.
destruct x; simpl; auto.
Qed.
- Lemma twice_zero : forall x,
+ Lemma twice_zero : forall x,
twice x = 0 <-> twice_plus_one x = 1.
Proof.
- destruct x; simpl in *; split;
+ destruct x; simpl in *; split;
intro H; injection H; intros; subst; auto.
Qed.
- Lemma twice_or_twice_plus_one : forall x,
+ Lemma twice_or_twice_plus_one : forall x,
x = twice (shiftr x) \/ x = twice_plus_one (shiftr x).
Proof.
intros; case_eq (firstr x); intros.
@@ -79,13 +79,13 @@ Section Basics.
Definition nshiftr n x := iter_nat n _ shiftr x.
- Lemma nshiftr_S :
+ Lemma nshiftr_S :
forall n x, nshiftr (S n) x = shiftr (nshiftr n x).
Proof.
reflexivity.
Qed.
- Lemma nshiftr_S_tail :
+ Lemma nshiftr_S_tail :
forall n x, nshiftr (S n) x = nshiftr n (shiftr x).
Proof.
induction n; simpl; auto.
@@ -103,7 +103,7 @@ Section Basics.
destruct x; simpl; auto.
Qed.
- Lemma nshiftr_above_size : forall k x, size<=k ->
+ Lemma nshiftr_above_size : forall k x, size<=k ->
nshiftr k x = 0.
Proof.
intros.
@@ -117,13 +117,13 @@ Section Basics.
Definition nshiftl n x := iter_nat n _ shiftl x.
- Lemma nshiftl_S :
+ Lemma nshiftl_S :
forall n x, nshiftl (S n) x = shiftl (nshiftl n x).
Proof.
reflexivity.
Qed.
- Lemma nshiftl_S_tail :
+ Lemma nshiftl_S_tail :
forall n x, nshiftl (S n) x = nshiftl n (shiftl x).
Proof.
induction n; simpl; auto.
@@ -141,7 +141,7 @@ Section Basics.
destruct x; simpl; auto.
Qed.
- Lemma nshiftl_above_size : forall k x, size<=k ->
+ Lemma nshiftl_above_size : forall k x, size<=k ->
nshiftl k x = 0.
Proof.
intros.
@@ -151,27 +151,27 @@ Section Basics.
simpl; rewrite nshiftl_S, IHn; auto.
Qed.
- Lemma firstr_firstl :
+ Lemma firstr_firstl :
forall x, firstr x = firstl (nshiftl (pred size) x).
Proof.
destruct x; simpl; auto.
Qed.
- Lemma firstl_firstr :
+ Lemma firstl_firstr :
forall x, firstl x = firstr (nshiftr (pred size) x).
Proof.
destruct x; simpl; auto.
Qed.
-
+
(** More advanced results about [nshiftr] *)
- Lemma nshiftr_predsize_0_firstl : forall x,
+ Lemma nshiftr_predsize_0_firstl : forall x,
nshiftr (pred size) x = 0 -> firstl x = D0.
Proof.
destruct x; compute; intros H; injection H; intros; subst; auto.
Qed.
- Lemma nshiftr_0_propagates : forall n p x, n <= p ->
+ Lemma nshiftr_0_propagates : forall n p x, n <= p ->
nshiftr n x = 0 -> nshiftr p x = 0.
Proof.
intros.
@@ -181,7 +181,7 @@ Section Basics.
simpl; rewrite nshiftr_S; rewrite IHn0; auto.
Qed.
- Lemma nshiftr_0_firstl : forall n x, n < size ->
+ Lemma nshiftr_0_firstl : forall n x, n < size ->
nshiftr n x = 0 -> firstl x = D0.
Proof.
intros.
@@ -194,8 +194,8 @@ Section Basics.
(** Not used for the moment. Are they really useful ? *)
Lemma int31_ind_sneakl : forall P : int31->Prop,
- P 0 ->
- (forall x d, P x -> P (sneakl d x)) ->
+ P 0 ->
+ (forall x d, P x -> P (sneakl d x)) ->
forall x, P x.
Proof.
intros.
@@ -210,10 +210,10 @@ Section Basics.
change x with (nshiftr (size-size) x); auto.
Qed.
- Lemma int31_ind_twice : forall P : int31->Prop,
- P 0 ->
- (forall x, P x -> P (twice x)) ->
- (forall x, P x -> P (twice_plus_one x)) ->
+ Lemma int31_ind_twice : forall P : int31->Prop,
+ P 0 ->
+ (forall x, P x -> P (twice x)) ->
+ (forall x, P x -> P (twice_plus_one x)) ->
forall x, P x.
Proof.
induction x using int31_ind_sneakl; auto.
@@ -224,21 +224,21 @@ Section Basics.
(** * Some generic results about [recr] *)
Section Recr.
-
+
(** [recr] satisfies the fixpoint equation used for its definition. *)
Variable (A:Type)(case0:A)(caserec:digits->int31->A->A).
-
- Lemma recr_aux_eqn : forall n x, iszero x = false ->
- recr_aux (S n) A case0 caserec x =
+
+ Lemma recr_aux_eqn : forall n x, iszero x = false ->
+ recr_aux (S n) A case0 caserec x =
caserec (firstr x) (shiftr x) (recr_aux n A case0 caserec (shiftr x)).
Proof.
intros; simpl; rewrite H; auto.
Qed.
- Lemma recr_aux_converges :
+ Lemma recr_aux_converges :
forall n p x, n <= size -> n <= p ->
- recr_aux n A case0 caserec (nshiftr (size - n) x) =
+ recr_aux n A case0 caserec (nshiftr (size - n) x) =
recr_aux p A case0 caserec (nshiftr (size - n) x).
Proof.
induction n.
@@ -255,8 +255,8 @@ Section Basics.
apply IHn; auto with arith.
Qed.
- Lemma recr_eqn : forall x, iszero x = false ->
- recr A case0 caserec x =
+ Lemma recr_eqn : forall x, iszero x = false ->
+ recr A case0 caserec x =
caserec (firstr x) (shiftr x) (recr A case0 caserec (shiftr x)).
Proof.
intros.
@@ -265,11 +265,11 @@ Section Basics.
rewrite (recr_aux_converges size (S size)); auto with arith.
rewrite recr_aux_eqn; auto.
Qed.
-
- (** [recr] is usually equivalent to a variant [recrbis]
+
+ (** [recr] is usually equivalent to a variant [recrbis]
written without [iszero] check. *)
- Fixpoint recrbis_aux (n:nat)(A:Type)(case0:A)(caserec:digits->int31->A->A)
+ Fixpoint recrbis_aux (n:nat)(A:Type)(case0:A)(caserec:digits->int31->A->A)
(i:int31) : A :=
match n with
| O => case0
@@ -277,7 +277,7 @@ Section Basics.
let si := shiftr i in
caserec (firstr i) si (recrbis_aux next A case0 caserec si)
end.
-
+
Definition recrbis := recrbis_aux size.
Hypothesis case0_caserec : caserec D0 0 case0 = case0.
@@ -291,8 +291,8 @@ Section Basics.
replace (recrbis_aux n A case0 caserec 0) with case0; auto.
clear H IHn; induction n; simpl; congruence.
Qed.
-
- Lemma recrbis_equiv : forall x,
+
+ Lemma recrbis_equiv : forall x,
recrbis A case0 caserec x = recr A case0 caserec x.
Proof.
intros; apply recrbis_aux_equiv; auto.
@@ -348,7 +348,7 @@ Section Basics.
rewrite incr_eqn1; destruct x; simpl; auto.
Qed.
- Lemma incr_twice_plus_one_firstl :
+ Lemma incr_twice_plus_one_firstl :
forall x, firstl x = D0 -> incr (twice_plus_one x) = twice (incr x).
Proof.
intros.
@@ -356,9 +356,9 @@ Section Basics.
f_equal; f_equal.
destruct x; simpl in *; rewrite H; auto.
Qed.
-
- (** The previous result is actually true even without the
- constraint on [firstl], but this is harder to prove
+
+ (** The previous result is actually true even without the
+ constraint on [firstl], but this is harder to prove
(see later). *)
End Incr.
@@ -369,9 +369,9 @@ Section Basics.
(** Variant of [phi] via [recrbis] *)
- Let Phi := fun b (_:int31) =>
+ Let Phi := fun b (_:int31) =>
match b with D0 => Zdouble | D1 => Zdouble_plus_one end.
-
+
Definition phibis_aux n x := recrbis_aux n _ Z0 Phi x.
Lemma phibis_aux_equiv : forall x, phibis_aux size x = phi x.
@@ -382,7 +382,7 @@ Section Basics.
(** Recursive equations satisfied by [phi] *)
- Lemma phi_eqn1 : forall x, firstr x = D0 ->
+ Lemma phi_eqn1 : forall x, firstr x = D0 ->
phi x = Zdouble (phi (shiftr x)).
Proof.
intros.
@@ -392,7 +392,7 @@ Section Basics.
rewrite H; auto.
Qed.
- Lemma phi_eqn2 : forall x, firstr x = D1 ->
+ Lemma phi_eqn2 : forall x, firstr x = D1 ->
phi x = Zdouble_plus_one (phi (shiftr x)).
Proof.
intros.
@@ -402,7 +402,7 @@ Section Basics.
rewrite H; auto.
Qed.
- Lemma phi_twice_firstl : forall x, firstl x = D0 ->
+ Lemma phi_twice_firstl : forall x, firstl x = D0 ->
phi (twice x) = Zdouble (phi x).
Proof.
intros.
@@ -411,7 +411,7 @@ Section Basics.
destruct x; simpl in *; rewrite H; auto.
Qed.
- Lemma phi_twice_plus_one_firstl : forall x, firstl x = D0 ->
+ Lemma phi_twice_plus_one_firstl : forall x, firstl x = D0 ->
phi (twice_plus_one x) = Zdouble_plus_one (phi x).
Proof.
intros.
@@ -427,23 +427,23 @@ Section Basics.
Lemma phibis_aux_pos : forall n x, (0 <= phibis_aux n x)%Z.
Proof.
induction n.
- simpl; unfold phibis_aux; simpl; auto with zarith.
+ simpl; unfold phibis_aux; simpl; auto with zarith.
intros.
- unfold phibis_aux, recrbis_aux; fold recrbis_aux;
+ unfold phibis_aux, recrbis_aux; fold recrbis_aux;
fold (phibis_aux n (shiftr x)).
destruct (firstr x).
specialize IHn with (shiftr x); rewrite Zdouble_mult; omega.
specialize IHn with (shiftr x); rewrite Zdouble_plus_one_mult; omega.
Qed.
- Lemma phibis_aux_bounded :
- forall n x, n <= size ->
+ Lemma phibis_aux_bounded :
+ forall n x, n <= size ->
(phibis_aux n (nshiftr (size-n) x) < 2 ^ (Z_of_nat n))%Z.
Proof.
induction n.
simpl; unfold phibis_aux; simpl; auto with zarith.
intros.
- unfold phibis_aux, recrbis_aux; fold recrbis_aux;
+ unfold phibis_aux, recrbis_aux; fold recrbis_aux;
fold (phibis_aux n (shiftr (nshiftr (size - S n) x))).
assert (shiftr (nshiftr (size - S n) x) = nshiftr (size-n) x).
replace (size - n)%nat with (S (size - (S n))) by omega.
@@ -468,8 +468,8 @@ Section Basics.
apply phibis_aux_bounded; auto.
Qed.
- Lemma phibis_aux_lowerbound :
- forall n x, firstr (nshiftr n x) = D1 ->
+ Lemma phibis_aux_lowerbound :
+ forall n x, firstr (nshiftr n x) = D1 ->
(2 ^ Z_of_nat n <= phibis_aux (S n) x)%Z.
Proof.
induction n.
@@ -480,7 +480,7 @@ Section Basics.
intros.
remember (S n) as m.
- unfold phibis_aux, recrbis_aux; fold recrbis_aux;
+ unfold phibis_aux, recrbis_aux; fold recrbis_aux;
fold (phibis_aux m (shiftr x)).
subst m.
rewrite inj_S, Zpower_Zsucc; auto with zarith.
@@ -488,13 +488,13 @@ Section Basics.
apply IHn.
rewrite <- nshiftr_S_tail; auto.
destruct (firstr x).
- change (Zdouble (phibis_aux (S n) (shiftr x))) with
+ change (Zdouble (phibis_aux (S n) (shiftr x))) with
(2*(phibis_aux (S n) (shiftr x)))%Z.
omega.
rewrite Zdouble_plus_one_mult; omega.
Qed.
- Lemma phi_lowerbound :
+ Lemma phi_lowerbound :
forall x, firstl x = D1 -> (2^(Z_of_nat (pred size)) <= phi x)%Z.
Proof.
intros.
@@ -508,9 +508,9 @@ Section Basics.
Section EqShiftL.
- (** After killing [n] bits at the left, are the numbers equal ?*)
+ (** After killing [n] bits at the left, are the numbers equal ?*)
- Definition EqShiftL n x y :=
+ Definition EqShiftL n x y :=
nshiftl n x = nshiftl n y.
Lemma EqShiftL_zero : forall x y, EqShiftL O x y <-> x = y.
@@ -523,7 +523,7 @@ Section Basics.
red; intros; rewrite 2 nshiftl_above_size; auto.
Qed.
- Lemma EqShiftL_le : forall k k' x y, k <= k' ->
+ Lemma EqShiftL_le : forall k k' x y, k <= k' ->
EqShiftL k x y -> EqShiftL k' x y.
Proof.
unfold EqShiftL; intros.
@@ -534,18 +534,18 @@ Section Basics.
rewrite 2 nshiftl_S; f_equal; auto.
Qed.
- Lemma EqShiftL_firstr : forall k x y, k < size ->
+ Lemma EqShiftL_firstr : forall k x y, k < size ->
EqShiftL k x y -> firstr x = firstr y.
Proof.
intros.
rewrite 2 firstr_firstl.
f_equal.
- apply EqShiftL_le with k; auto.
+ apply EqShiftL_le with k; auto.
unfold size.
auto with arith.
Qed.
- Lemma EqShiftL_twice : forall k x y,
+ Lemma EqShiftL_twice : forall k x y,
EqShiftL k (twice x) (twice y) <-> EqShiftL (S k) x y.
Proof.
intros; unfold EqShiftL.
@@ -553,7 +553,7 @@ Section Basics.
Qed.
(** * From int31 to list of digits. *)
-
+
(** Lower (=rightmost) bits comes first. *)
Definition i2l := recrbis _ nil (fun d _ rec => d::rec).
@@ -561,10 +561,10 @@ Section Basics.
Lemma i2l_length : forall x, length (i2l x) = size.
Proof.
intros; reflexivity.
- Qed.
+ Qed.
- Fixpoint lshiftl l x :=
- match l with
+ Fixpoint lshiftl l x :=
+ match l with
| nil => x
| d::l => sneakl d (lshiftl l x)
end.
@@ -576,19 +576,19 @@ Section Basics.
destruct x; compute; auto.
Qed.
- Lemma i2l_sneakr : forall x d,
+ Lemma i2l_sneakr : forall x d,
i2l (sneakr d x) = tail (i2l x) ++ d::nil.
Proof.
destruct x; compute; auto.
Qed.
- Lemma i2l_sneakl : forall x d,
+ Lemma i2l_sneakl : forall x d,
i2l (sneakl d x) = d :: removelast (i2l x).
Proof.
destruct x; compute; auto.
Qed.
- Lemma i2l_l2i : forall l, length l = size ->
+ Lemma i2l_l2i : forall l, length l = size ->
i2l (l2i l) = l.
Proof.
repeat (destruct l as [ |? l]; [intros; discriminate | ]).
@@ -596,9 +596,9 @@ Section Basics.
intros _; compute; auto.
Qed.
- Fixpoint cstlist (A:Type)(a:A) n :=
- match n with
- | O => nil
+ Fixpoint cstlist (A:Type)(a:A) n :=
+ match n with
+ | O => nil
| S n => a::cstlist _ a n
end.
@@ -612,7 +612,7 @@ Section Basics.
induction (i2l x); simpl; f_equal; auto.
rewrite H0; clear H0.
reflexivity.
-
+
intros.
rewrite nshiftl_S.
unfold shiftl; rewrite i2l_sneakl.
@@ -657,10 +657,10 @@ Section Basics.
f_equal; auto.
Qed.
- (** This equivalence allows to prove easily the following delicate
+ (** This equivalence allows to prove easily the following delicate
result *)
- Lemma EqShiftL_twice_plus_one : forall k x y,
+ Lemma EqShiftL_twice_plus_one : forall k x y,
EqShiftL k (twice_plus_one x) (twice_plus_one y) <-> EqShiftL (S k) x y.
Proof.
intros.
@@ -683,7 +683,7 @@ Section Basics.
subst lx n; rewrite i2l_length; omega.
Qed.
- Lemma EqShiftL_shiftr : forall k x y, EqShiftL k x y ->
+ Lemma EqShiftL_shiftr : forall k x y, EqShiftL k x y ->
EqShiftL (S k) (shiftr x) (shiftr y).
Proof.
intros.
@@ -704,41 +704,41 @@ Section Basics.
omega.
Qed.
- Lemma EqShiftL_incrbis : forall n k x y, n<=size ->
+ Lemma EqShiftL_incrbis : forall n k x y, n<=size ->
(n+k=S size)%nat ->
- EqShiftL k x y ->
+ EqShiftL k x y ->
EqShiftL k (incrbis_aux n x) (incrbis_aux n y).
Proof.
induction n; simpl; intros.
red; auto.
- destruct (eq_nat_dec k size).
+ destruct (eq_nat_dec k size).
subst k; apply EqShiftL_size; auto.
- unfold incrbis_aux; simpl;
+ unfold incrbis_aux; simpl;
fold (incrbis_aux n (shiftr x)); fold (incrbis_aux n (shiftr y)).
rewrite (EqShiftL_firstr k x y); auto; try omega.
case_eq (firstr y); intros.
rewrite EqShiftL_twice_plus_one.
apply EqShiftL_shiftr; auto.
-
+
rewrite EqShiftL_twice.
apply IHn; try omega.
apply EqShiftL_shiftr; auto.
Qed.
- Lemma EqShiftL_incr : forall x y,
+ Lemma EqShiftL_incr : forall x y,
EqShiftL 1 x y -> EqShiftL 1 (incr x) (incr y).
Proof.
intros.
rewrite <- 2 incrbis_aux_equiv.
apply EqShiftL_incrbis; auto.
Qed.
-
+
End EqShiftL.
(** * More equations about [incr] *)
- Lemma incr_twice_plus_one :
+ Lemma incr_twice_plus_one :
forall x, incr (twice_plus_one x) = twice (incr x).
Proof.
intros.
@@ -757,7 +757,7 @@ Section Basics.
destruct (incr (shiftr x)); simpl; discriminate.
Qed.
- Lemma incr_inv : forall x y,
+ Lemma incr_inv : forall x y,
incr x = twice_plus_one y -> x = twice y.
Proof.
intros.
@@ -777,7 +777,7 @@ Section Basics.
(** First, recursive equations *)
- Lemma phi_inv_double_plus_one : forall z,
+ Lemma phi_inv_double_plus_one : forall z,
phi_inv (Zdouble_plus_one z) = twice_plus_one (phi_inv z).
Proof.
destruct z; simpl; auto.
@@ -789,14 +789,14 @@ Section Basics.
auto.
Qed.
- Lemma phi_inv_double : forall z,
+ Lemma phi_inv_double : forall z,
phi_inv (Zdouble z) = twice (phi_inv z).
Proof.
destruct z; simpl; auto.
rewrite incr_twice_plus_one; auto.
Qed.
- Lemma phi_inv_incr : forall z,
+ Lemma phi_inv_incr : forall z,
phi_inv (Zsucc z) = incr (phi_inv z).
Proof.
destruct z.
@@ -816,19 +816,19 @@ Section Basics.
rewrite incr_twice_plus_one; auto.
Qed.
- (** [phi_inv o inv], the always-exact and easy-to-prove trip :
+ (** [phi_inv o inv], the always-exact and easy-to-prove trip :
from int31 to Z and then back to int31. *)
- Lemma phi_inv_phi_aux :
- forall n x, n <= size ->
- phi_inv (phibis_aux n (nshiftr (size-n) x)) =
+ Lemma phi_inv_phi_aux :
+ forall n x, n <= size ->
+ phi_inv (phibis_aux n (nshiftr (size-n) x)) =
nshiftr (size-n) x.
Proof.
induction n.
intros; simpl.
rewrite nshiftr_size; auto.
intros.
- unfold phibis_aux, recrbis_aux; fold recrbis_aux;
+ unfold phibis_aux, recrbis_aux; fold recrbis_aux;
fold (phibis_aux n (shiftr (nshiftr (size-S n) x))).
assert (shiftr (nshiftr (size - S n) x) = nshiftr (size-n) x).
replace (size - n)%nat with (S (size - (S n))); auto; omega.
@@ -863,10 +863,10 @@ Section Basics.
(** * [positive_to_int31] *)
- (** A variant of [p2i] with [twice] and [twice_plus_one] instead of
+ (** A variant of [p2i] with [twice] and [twice_plus_one] instead of
[2*i] and [2*i+1] *)
- Fixpoint p2ibis n p : (N*int31)%type :=
+ Fixpoint p2ibis n p : (N*int31)%type :=
match n with
| O => (Npos p, On)
| S n => match p with
@@ -876,7 +876,7 @@ Section Basics.
end
end.
- Lemma p2ibis_bounded : forall n p,
+ Lemma p2ibis_bounded : forall n p,
nshiftr n (snd (p2ibis n p)) = 0.
Proof.
induction n.
@@ -906,20 +906,20 @@ Section Basics.
replace (shiftr In) with 0; auto.
apply nshiftr_n_0.
Qed.
-
+
Lemma p2ibis_spec : forall n p, n<=size ->
- Zpos p = ((Z_of_N (fst (p2ibis n p)))*2^(Z_of_nat n) +
+ Zpos p = ((Z_of_N (fst (p2ibis n p)))*2^(Z_of_nat n) +
phi (snd (p2ibis n p)))%Z.
Proof.
induction n; intros.
simpl; rewrite Pmult_1_r; auto.
- replace (2^(Z_of_nat (S n)))%Z with (2*2^(Z_of_nat n))%Z by
- (rewrite <- Zpower_Zsucc, <- Zpos_P_of_succ_nat;
+ replace (2^(Z_of_nat (S n)))%Z with (2*2^(Z_of_nat n))%Z by
+ (rewrite <- Zpower_Zsucc, <- Zpos_P_of_succ_nat;
auto with zarith).
rewrite (Zmult_comm 2).
assert (n<=size) by omega.
- destruct p; simpl; [ | | auto];
- specialize (IHn p H0);
+ destruct p; simpl; [ | | auto];
+ specialize (IHn p H0);
generalize (p2ibis_bounded n p);
destruct (p2ibis n p) as (r,i); simpl in *; intros.
@@ -937,25 +937,25 @@ Section Basics.
(** We now prove that this [p2ibis] is related to [phi_inv_positive] *)
- Lemma phi_inv_positive_p2ibis : forall n p, (n<=size)%nat ->
+ Lemma phi_inv_positive_p2ibis : forall n p, (n<=size)%nat ->
EqShiftL (size-n) (phi_inv_positive p) (snd (p2ibis n p)).
Proof.
induction n.
intros.
apply EqShiftL_size; auto.
intros.
- simpl p2ibis; destruct p; [ | | red; auto];
- specialize IHn with p;
- destruct (p2ibis n p); simpl snd in *; simpl phi_inv_positive;
- rewrite ?EqShiftL_twice_plus_one, ?EqShiftL_twice;
- replace (S (size - S n))%nat with (size - n)%nat by omega;
+ simpl p2ibis; destruct p; [ | | red; auto];
+ specialize IHn with p;
+ destruct (p2ibis n p); simpl snd in *; simpl phi_inv_positive;
+ rewrite ?EqShiftL_twice_plus_one, ?EqShiftL_twice;
+ replace (S (size - S n))%nat with (size - n)%nat by omega;
apply IHn; omega.
Qed.
(** This gives the expected result about [phi o phi_inv], at least
for the positive case. *)
- Lemma phi_phi_inv_positive : forall p,
+ Lemma phi_phi_inv_positive : forall p,
phi (phi_inv_positive p) = (Zpos p) mod (2^(Z_of_nat size)).
Proof.
intros.
@@ -975,12 +975,12 @@ Section Basics.
Lemma double_twice_firstl : forall x, firstl x = D0 -> Twon*x = twice x.
Proof.
- intros.
+ intros.
unfold mul31.
rewrite <- Zdouble_mult, <- phi_twice_firstl, phi_inv_phi; auto.
Qed.
- Lemma double_twice_plus_one_firstl : forall x, firstl x = D0 ->
+ Lemma double_twice_plus_one_firstl : forall x, firstl x = D0 ->
Twon*x+In = twice_plus_one x.
Proof.
intros.
@@ -989,14 +989,14 @@ Section Basics.
rewrite phi_twice_firstl, <- Zdouble_plus_one_mult,
<- phi_twice_plus_one_firstl, phi_inv_phi; auto.
Qed.
-
- Lemma p2i_p2ibis : forall n p, (n<=size)%nat ->
+
+ Lemma p2i_p2ibis : forall n p, (n<=size)%nat ->
p2i n p = p2ibis n p.
Proof.
induction n; simpl; auto; intros.
- destruct p; auto; specialize IHn with p;
- generalize (p2ibis_bounded n p);
- rewrite IHn; try omega; destruct (p2ibis n p); simpl; intros;
+ destruct p; auto; specialize IHn with p;
+ generalize (p2ibis_bounded n p);
+ rewrite IHn; try omega; destruct (p2ibis n p); simpl; intros;
f_equal; auto.
apply double_twice_plus_one_firstl.
apply (nshiftr_0_firstl n); auto; omega.
@@ -1004,7 +1004,7 @@ Section Basics.
apply (nshiftr_0_firstl n); auto; omega.
Qed.
- Lemma positive_to_int31_phi_inv_positive : forall p,
+ Lemma positive_to_int31_phi_inv_positive : forall p,
snd (positive_to_int31 p) = phi_inv_positive p.
Proof.
intros; unfold positive_to_int31.
@@ -1014,8 +1014,8 @@ Section Basics.
apply (phi_inv_positive_p2ibis size); auto.
Qed.
- Lemma positive_to_int31_spec : forall p,
- Zpos p = ((Z_of_N (fst (positive_to_int31 p)))*2^(Z_of_nat size) +
+ Lemma positive_to_int31_spec : forall p,
+ Zpos p = ((Z_of_N (fst (positive_to_int31 p)))*2^(Z_of_nat size) +
phi (snd (positive_to_int31 p)))%Z.
Proof.
unfold positive_to_int31.
@@ -1023,11 +1023,11 @@ Section Basics.
apply p2ibis_spec; auto.
Qed.
- (** Thanks to the result about [phi o phi_inv_positive], we can
- now establish easily the most general results about
+ (** Thanks to the result about [phi o phi_inv_positive], we can
+ now establish easily the most general results about
[phi o twice] and so one. *)
-
- Lemma phi_twice : forall x,
+
+ Lemma phi_twice : forall x,
phi (twice x) = (Zdouble (phi x)) mod 2^(Z_of_nat size).
Proof.
intros.
@@ -1041,7 +1041,7 @@ Section Basics.
compute in H; elim H; auto.
Qed.
- Lemma phi_twice_plus_one : forall x,
+ Lemma phi_twice_plus_one : forall x,
phi (twice_plus_one x) = (Zdouble_plus_one (phi x)) mod 2^(Z_of_nat size).
Proof.
intros.
@@ -1055,14 +1055,14 @@ Section Basics.
compute in H; elim H; auto.
Qed.
- Lemma phi_incr : forall x,
+ Lemma phi_incr : forall x,
phi (incr x) = (Zsucc (phi x)) mod 2^(Z_of_nat size).
Proof.
intros.
pattern x at 1; rewrite <- (phi_inv_phi x).
rewrite <- phi_inv_incr.
assert (0 <= Zsucc (phi x))%Z.
- change (Zsucc (phi x)) with ((phi x)+1)%Z;
+ change (Zsucc (phi x)) with ((phi x)+1)%Z;
generalize (phi_bounded x); omega.
destruct (Zsucc (phi x)).
simpl; auto.
@@ -1070,10 +1070,10 @@ Section Basics.
compute in H; elim H; auto.
Qed.
- (** With the previous results, we can deal with [phi o phi_inv] even
+ (** With the previous results, we can deal with [phi o phi_inv] even
in the negative case *)
- Lemma phi_phi_inv_negative :
+ Lemma phi_phi_inv_negative :
forall p, phi (incr (complement_negative p)) = (Zneg p) mod 2^(Z_of_nat size).
Proof.
induction p.
@@ -1091,11 +1091,11 @@ Section Basics.
rewrite incr_twice_plus_one, phi_twice.
remember (phi (incr (complement_negative p))) as q.
rewrite Zdouble_mult, IHp, Zmult_mod_idemp_r; auto with zarith.
-
+
simpl; auto.
Qed.
- Lemma phi_phi_inv :
+ Lemma phi_phi_inv :
forall z, phi (phi_inv z) = z mod 2 ^ (Z_of_nat size).
Proof.
destruct z.
@@ -1120,7 +1120,7 @@ Let w_pos_mod p i :=
end.
(** Parity test *)
-Let w_iseven i :=
+Let w_iseven i :=
let (_,r) := i/2 in
match r ?= 0 with Eq => true | _ => false end.
@@ -1140,7 +1140,7 @@ Definition int31_op := (mk_znz_op
w_iszero
(* Basic arithmetic operations *)
(fun i => 0 -c i)
- (fun i => 0 - i)
+ opp31
(fun i => 0-i-1)
(fun i => i +c 1)
add31c
@@ -1181,14 +1181,14 @@ Definition int31_op := (mk_znz_op
End Int31_Op.
Section Int31_Spec.
-
- Open Local Scope Z_scope.
+
+ Local Open Scope Z_scope.
Notation "[| x |]" := (phi x) (at level 0, x at level 99).
- Notation Local wB := (2 ^ (Z_of_nat size)).
-
- Lemma wB_pos : wB > 0.
+ Local Notation wB := (2 ^ (Z_of_nat size)).
+
+ Lemma wB_pos : wB > 0.
Proof.
auto with zarith.
Qed.
@@ -1216,12 +1216,12 @@ Section Int31_Spec.
Proof.
reflexivity.
Qed.
-
+
Lemma spec_1 : [| 1 |] = 1.
Proof.
reflexivity.
Qed.
-
+
Lemma spec_Bm1 : [| Tn |] = wB - 1.
Proof.
reflexivity.
@@ -1252,16 +1252,16 @@ Section Int31_Spec.
destruct (Z_lt_le_dec (X+Y) wB).
contradict H1; auto using Zmod_small with zarith.
rewrite <- (Z_mod_plus_full (X+Y) (-1) wB).
- rewrite Zmod_small; romega.
+ rewrite Zmod_small; romega.
generalize (Zcompare_Eq_eq ((X+Y) mod wB) (X+Y)); intros Heq.
- destruct Zcompare; intros;
+ destruct Zcompare; intros;
[ rewrite phi_phi_inv; auto | now apply H1 | now apply H1].
Qed.
Lemma spec_succ_c : forall x, [+|add31c x 1|] = [|x|] + 1.
Proof.
- intros; apply spec_add_c.
+ intros; apply spec_add_c.
Qed.
Lemma spec_add_carry_c : forall x y, [+|add31carryc x y|] = [|x|] + [|y|] + 1.
@@ -1279,7 +1279,7 @@ Section Int31_Spec.
rewrite Zmod_small; romega.
generalize (Zcompare_Eq_eq ((X+Y+1) mod wB) (X+Y+1)); intros Heq.
- destruct Zcompare; intros;
+ destruct Zcompare; intros;
[ rewrite phi_phi_inv; auto | now apply H1 | now apply H1].
Qed.
@@ -1304,7 +1304,7 @@ Section Int31_Spec.
(** Substraction *)
Lemma spec_sub_c : forall x y, [-|sub31c x y|] = [|x|] - [|y|].
- Proof.
+ Proof.
unfold sub31c, sub31, interp_carry; intros.
rewrite phi_phi_inv.
generalize (phi_bounded x)(phi_bounded y); intros.
@@ -1337,7 +1337,7 @@ Section Int31_Spec.
contradict H1; apply Zmod_small; romega.
generalize (Zcompare_Eq_eq ((X-Y-1) mod wB) (X-Y-1)); intros Heq.
- destruct Zcompare; intros;
+ destruct Zcompare; intros;
[ rewrite phi_phi_inv; auto | now apply H1 | now apply H1].
Qed.
@@ -1355,7 +1355,7 @@ Section Int31_Spec.
Qed.
Lemma spec_opp_c : forall x, [-|sub31c 0 x|] = -[|x|].
- Proof.
+ Proof.
intros; apply spec_sub_c.
Qed.
@@ -1402,7 +1402,7 @@ Section Int31_Spec.
change (wB*wB) with (wB^2); ring.
unfold phi_inv2.
- destruct x; unfold zn2z_to_Z; rewrite ?phi_phi_inv;
+ destruct x; unfold zn2z_to_Z; rewrite ?phi_phi_inv;
change base with wB; auto.
Qed.
@@ -1426,7 +1426,7 @@ Section Int31_Spec.
intros; apply spec_mul_c.
Qed.
- (** Division *)
+ (** Division *)
Lemma spec_div21 : forall a1 a2 b,
wB/2 <= [|b|] ->
@@ -1537,7 +1537,7 @@ Section Int31_Spec.
intros (H,_); compute in H; elim H; auto.
Qed.
- Lemma iter_int31_iter_nat : forall A f i a,
+ Lemma iter_int31_iter_nat : forall A f i a,
iter_int31 i A f a = iter_nat (Zabs_nat [|i|]) A f a.
Proof.
intros.
@@ -1548,17 +1548,17 @@ Section Int31_Spec.
revert i a; induction size.
simpl; auto.
simpl; intros.
- case_eq (firstr i); intros H; rewrite 2 IHn;
+ case_eq (firstr i); intros H; rewrite 2 IHn;
unfold phibis_aux; simpl; rewrite H; fold (phibis_aux n (shiftr i));
- generalize (phibis_aux_pos n (shiftr i)); intros;
- set (z := phibis_aux n (shiftr i)) in *; clearbody z;
+ generalize (phibis_aux_pos n (shiftr i)); intros;
+ set (z := phibis_aux n (shiftr i)) in *; clearbody z;
rewrite <- iter_nat_plus.
f_equal.
rewrite Zdouble_mult, Zmult_comm, <- Zplus_diag_eq_mult_2.
symmetry; apply Zabs_nat_Zplus; auto with zarith.
- change (iter_nat (S (Zabs_nat z + Zabs_nat z)) A f a =
+ change (iter_nat (S (Zabs_nat z + Zabs_nat z)) A f a =
iter_nat (Zabs_nat (Zdouble_plus_one z)) A f a); f_equal.
rewrite Zdouble_plus_one_mult, Zmult_comm, <- Zplus_diag_eq_mult_2.
rewrite Zabs_nat_Zplus; auto with zarith.
@@ -1566,13 +1566,13 @@ Section Int31_Spec.
change (Zabs_nat 1) with 1%nat; omega.
Qed.
- Fixpoint addmuldiv31_alt n i j :=
- match n with
- | O => i
+ Fixpoint addmuldiv31_alt n i j :=
+ match n with
+ | O => i
| S n => addmuldiv31_alt n (sneakl (firstl j) i) (shiftl j)
end.
- Lemma addmuldiv31_equiv : forall p x y,
+ Lemma addmuldiv31_equiv : forall p x y,
addmuldiv31 p x y = addmuldiv31_alt (Zabs_nat [|p|]) x y.
Proof.
intros.
@@ -1588,7 +1588,7 @@ Section Int31_Spec.
Qed.
Lemma spec_add_mul_div : forall x y p, [|p|] <= Zpos 31 ->
- [| addmuldiv31 p x y |] =
+ [| addmuldiv31 p x y |] =
([|x|] * (2 ^ [|p|]) + [|y|] / (2 ^ ((Zpos 31) - [|p|]))) mod wB.
Proof.
intros.
@@ -1626,7 +1626,7 @@ Section Int31_Spec.
replace (31-Z_of_nat n) with (Zsucc(31-Zsucc(Z_of_nat n))) by ring.
rewrite Zpower_Zsucc, <- Zdiv_Zdiv; auto with zarith.
rewrite Zmult_comm, Z_div_mult; auto with zarith.
-
+
rewrite phi_twice_plus_one, Zdouble_plus_one_mult.
rewrite phi_twice; auto.
change (Zdouble [|y|]) with (2*[|y|]).
@@ -1644,7 +1644,7 @@ Section Int31_Spec.
unfold wB'. rewrite <- Zpower_Zsucc, <- inj_S by (auto with zarith).
f_equal.
rewrite H1.
- replace wB with (2^(Z_of_nat n)*2^(31-Z_of_nat n)) by
+ replace wB with (2^(Z_of_nat n)*2^(31-Z_of_nat n)) by
(rewrite <- Zpower_exp; auto with zarith; f_equal; unfold size; ring).
unfold Zminus; rewrite Zopp_mult_distr_l.
rewrite Z_div_plus; auto with zarith.
@@ -1669,8 +1669,8 @@ Section Int31_Spec.
apply Zlt_le_trans with wB; auto with zarith.
apply Zpower_le_monotone; auto with zarith.
intros.
- case_eq ([|p|] ?= 31); intros;
- [ apply H; rewrite (Zcompare_Eq_eq _ _ H0); auto with zarith | |
+ case_eq ([|p|] ?= 31); intros;
+ [ apply H; rewrite (Zcompare_Eq_eq _ _ H0); auto with zarith | |
apply H; change ([|p|]>31)%Z in H0; auto with zarith ].
change ([|p|]<31) in H0.
rewrite spec_add_mul_div by auto with zarith.
@@ -1701,16 +1701,16 @@ Section Int31_Spec.
simpl; auto.
Qed.
- Fixpoint head031_alt n x :=
- match n with
+ Fixpoint head031_alt n x :=
+ match n with
| O => 0%nat
- | S n => match firstl x with
+ | S n => match firstl x with
| D0 => S (head031_alt n (shiftl x))
| D1 => 0%nat
end
end.
- Lemma head031_equiv :
+ Lemma head031_equiv :
forall x, [|head031 x|] = Z_of_nat (head031_alt size x).
Proof.
intros.
@@ -1720,10 +1720,10 @@ Section Int31_Spec.
unfold head031, recl.
change On with (phi_inv (Z_of_nat (31-size))).
- replace (head031_alt size x) with
+ replace (head031_alt size x) with
(head031_alt size x + (31 - size))%nat by (apply plus_0_r; auto).
assert (size <= 31)%nat by auto with arith.
-
+
revert x H; induction size; intros.
simpl; auto.
unfold recl_aux; fold recl_aux.
@@ -1748,7 +1748,7 @@ Section Int31_Spec.
change [|In|] with 1.
replace (31-n)%nat with (S (31 - S n))%nat by omega.
rewrite inj_S; ring.
-
+
clear - H H2.
rewrite (sneakr_shiftl x) in H.
rewrite H2 in H.
@@ -1793,7 +1793,7 @@ Section Int31_Spec.
rewrite (sneakr_shiftl x), H1, H; auto.
rewrite <- nshiftl_S_tail; auto.
-
+
change (2^(Z_of_nat 0)) with 1; rewrite Zmult_1_l.
generalize (phi_bounded x); unfold size; split; auto with zarith.
change (2^(Z_of_nat 31)/2) with (2^(Z_of_nat (pred size))).
@@ -1809,16 +1809,16 @@ Section Int31_Spec.
simpl; auto.
Qed.
- Fixpoint tail031_alt n x :=
- match n with
+ Fixpoint tail031_alt n x :=
+ match n with
| O => 0%nat
- | S n => match firstr x with
+ | S n => match firstr x with
| D0 => S (tail031_alt n (shiftr x))
| D1 => 0%nat
end
end.
- Lemma tail031_equiv :
+ Lemma tail031_equiv :
forall x, [|tail031 x|] = Z_of_nat (tail031_alt size x).
Proof.
intros.
@@ -1828,10 +1828,10 @@ Section Int31_Spec.
unfold tail031, recr.
change On with (phi_inv (Z_of_nat (31-size))).
- replace (tail031_alt size x) with
+ replace (tail031_alt size x) with
(tail031_alt size x + (31 - size))%nat by (apply plus_0_r; auto).
assert (size <= 31)%nat by auto with arith.
-
+
revert x H; induction size; intros.
simpl; auto.
unfold recr_aux; fold recr_aux.
@@ -1856,7 +1856,7 @@ Section Int31_Spec.
change [|In|] with 1.
replace (31-n)%nat with (S (31 - S n))%nat by omega.
rewrite inj_S; ring.
-
+
clear - H H2.
rewrite (sneakl_shiftr x) in H.
rewrite H2 in H.
@@ -1864,7 +1864,7 @@ Section Int31_Spec.
rewrite (iszero_eq0 _ H0) in H; discriminate.
Qed.
- Lemma spec_tail0 : forall x, 0 < [|x|] ->
+ Lemma spec_tail0 : forall x, 0 < [|x|] ->
exists y, 0 <= y /\ [|x|] = (2 * y + 1) * (2 ^ [|tail031 x|]).
Proof.
intros.
@@ -1882,23 +1882,23 @@ Section Int31_Spec.
case_eq (firstr x); intros.
rewrite (inj_S (tail031_alt n (shiftr x))), Zpower_Zsucc; auto with zarith.
destruct (IHn (shiftr x)) as (y & Hy1 & Hy2).
-
+
rewrite phi_nz; rewrite phi_nz in H; contradict H.
rewrite (sneakl_shiftr x), H1, H; auto.
rewrite <- nshiftr_S_tail; auto.
-
+
exists y; split; auto.
rewrite phi_eqn1; auto.
rewrite Zdouble_mult, Hy2; ring.
-
+
exists [|shiftr x|].
split.
generalize (phi_bounded (shiftr x)); auto with zarith.
rewrite phi_eqn2; auto.
rewrite Zdouble_plus_one_mult; simpl; ring.
Qed.
-
+
(* Sqrt *)
(* Direct transcription of an old proof
@@ -1906,27 +1906,27 @@ Section Int31_Spec.
Lemma quotient_by_2 a: a - 1 <= (a/2) + (a/2).
Proof.
- intros a; case (Z_mod_lt a 2); auto with zarith.
+ case (Z_mod_lt a 2); auto with zarith.
intros H1; rewrite Zmod_eq_full; auto with zarith.
Qed.
- Lemma sqrt_main_trick j k: 0 <= j -> 0 <= k ->
+ Lemma sqrt_main_trick j k: 0 <= j -> 0 <= k ->
(j * k) + j <= ((j + k)/2 + 1) ^ 2.
Proof.
- intros j k Hj; generalize Hj k; pattern j; apply natlike_ind;
+ intros Hj; generalize Hj k; pattern j; apply natlike_ind;
auto; clear k j Hj.
intros _ k Hk; repeat rewrite Zplus_0_l.
apply Zmult_le_0_compat; generalize (Z_div_pos k 2); auto with zarith.
intros j Hj Hrec _ k Hk; pattern k; apply natlike_ind; auto; clear k Hk.
rewrite Zmult_0_r, Zplus_0_r, Zplus_0_l.
- generalize (sqr_pos (Zsucc j / 2)) (quotient_by_2 (Zsucc j));
+ generalize (sqr_pos (Zsucc j / 2)) (quotient_by_2 (Zsucc j));
unfold Zsucc.
rewrite Zpower_2, Zmult_plus_distr_l; repeat rewrite Zmult_plus_distr_r.
auto with zarith.
intros k Hk _.
replace ((Zsucc j + Zsucc k) / 2) with ((j + k)/2 + 1).
generalize (Hrec Hj k Hk) (quotient_by_2 (j + k)).
- unfold Zsucc; repeat rewrite Zpower_2;
+ unfold Zsucc; repeat rewrite Zpower_2;
repeat rewrite Zmult_plus_distr_l; repeat rewrite Zmult_plus_distr_r.
repeat rewrite Zmult_1_l; repeat rewrite Zmult_1_r.
auto with zarith.
@@ -1936,7 +1936,7 @@ Section Int31_Spec.
Lemma sqrt_main i j: 0 <= i -> 0 < j -> i < ((j + (i/j))/2 + 1) ^ 2.
Proof.
- intros i j Hi Hj.
+ intros Hi Hj.
assert (Hij: 0 <= i/j) by (apply Z_div_pos; auto with zarith).
apply Zlt_le_trans with (2 := sqrt_main_trick _ _ (Zlt_le_weak _ _ Hj) Hij).
pattern i at 1; rewrite (Z_div_mod_eq i j); case (Z_mod_lt i j); auto with zarith.
@@ -1944,7 +1944,7 @@ Section Int31_Spec.
Lemma sqrt_init i: 1 < i -> i < (i/2 + 1) ^ 2.
Proof.
- intros i Hi.
+ intros Hi.
assert (H1: 0 <= i - 2) by auto with zarith.
assert (H2: 1 <= (i / 2) ^ 2); auto with zarith.
replace i with (1* 2 + (i - 2)); auto with zarith.
@@ -1962,14 +1962,14 @@ Section Int31_Spec.
Lemma sqrt_test_true i j: 0 <= i -> 0 < j -> i/j >= j -> j ^ 2 <= i.
Proof.
- intros i j Hi Hj Hd; rewrite Zpower_2.
+ intros Hi Hj Hd; rewrite Zpower_2.
apply Zle_trans with (j * (i/j)); auto with zarith.
apply Z_mult_div_ge; auto with zarith.
Qed.
Lemma sqrt_test_false i j: 0 <= i -> 0 < j -> i/j < j -> (j + (i/j))/2 < j.
Proof.
- intros i j Hi Hj H; case (Zle_or_lt j ((j + (i/j))/2)); auto.
+ intros Hi Hj H; case (Zle_or_lt j ((j + (i/j))/2)); auto.
intros H1; contradict H; apply Zle_not_lt.
assert (2 * j <= j + (i/j)); auto with zarith.
apply Zle_trans with (2 * ((j + (i/j))/2)); auto with zarith.
@@ -1984,32 +1984,32 @@ Section Int31_Spec.
Lemma Zcompare_spec i j: ZcompareSpec i j (i ?= j).
Proof.
- intros i j; case_eq (Zcompare i j); intros H.
+ case_eq (Zcompare i j); intros H.
apply ZcompareSpecEq; apply Zcompare_Eq_eq; auto.
apply ZcompareSpecLt; auto.
apply ZcompareSpecGt; apply Zgt_lt; auto.
Qed.
Lemma sqrt31_step_def rec i j:
- sqrt31_step rec i j =
+ sqrt31_step rec i j =
match (fst (i/j) ?= j)%int31 with
Lt => rec i (fst ((j + fst(i/j))/2))%int31
| _ => j
end.
Proof.
- intros rec i j; unfold sqrt31_step; case div31; intros.
+ unfold sqrt31_step; case div31; intros.
simpl; case compare31; auto.
Qed.
Lemma div31_phi i j: 0 < [|j|] -> [|fst (i/j)%int31|] = [|i|]/[|j|].
- intros i j Hj; generalize (spec_div i j Hj).
+ intros Hj; generalize (spec_div i j Hj).
case div31; intros q r; simpl fst.
intros (H1,H2); apply Zdiv_unique with [|r|]; auto with zarith.
rewrite H1; ring.
Qed.
- Lemma sqrt31_step_correct rec i j:
- 0 < [|i|] -> 0 < [|j|] -> [|i|] < ([|j|] + 1) ^ 2 ->
+ Lemma sqrt31_step_correct rec i j:
+ 0 < [|i|] -> 0 < [|j|] -> [|i|] < ([|j|] + 1) ^ 2 ->
2 * [|j|] < wB ->
(forall j1 : int31,
0 < [|j1|] < [|j|] -> [|i|] < ([|j1|] + 1) ^ 2 ->
@@ -2017,15 +2017,15 @@ Section Int31_Spec.
[|sqrt31_step rec i j|] ^ 2 <= [|i|] < ([|sqrt31_step rec i j|] + 1) ^ 2.
Proof.
assert (Hp2: 0 < [|2|]) by exact (refl_equal Lt).
- intros rec i j Hi Hj Hij H31 Hrec; rewrite sqrt31_step_def.
- generalize (spec_compare (fst (i/j)%int31) j); case compare31;
+ intros Hi Hj Hij H31 Hrec; rewrite sqrt31_step_def.
+ generalize (spec_compare (fst (i/j)%int31) j); case compare31;
rewrite div31_phi; auto; intros Hc;
try (split; auto; apply sqrt_test_true; auto with zarith; fail).
apply Hrec; repeat rewrite div31_phi; auto with zarith.
replace [|(j + fst (i / j)%int31)|] with ([|j|] + [|i|] / [|j|]).
split.
case (Zle_lt_or_eq 1 [|j|]); auto with zarith; intros Hj1.
- replace ([|j|] + [|i|]/[|j|]) with
+ replace ([|j|] + [|i|]/[|j|]) with
(1 * 2 + (([|j|] - 2) + [|i|] / [|j|])); try ring.
rewrite Z_div_plus_full_l; auto with zarith.
assert (0 <= [|i|]/ [|j|]) by (apply Z_div_pos; auto with zarith).
@@ -2048,12 +2048,12 @@ Section Int31_Spec.
Lemma iter31_sqrt_correct n rec i j: 0 < [|i|] -> 0 < [|j|] ->
[|i|] < ([|j|] + 1) ^ 2 -> 2 * [|j|] < 2 ^ (Z_of_nat size) ->
- (forall j1, 0 < [|j1|] -> 2^(Z_of_nat n) + [|j1|] <= [|j|] ->
+ (forall j1, 0 < [|j1|] -> 2^(Z_of_nat n) + [|j1|] <= [|j|] ->
[|i|] < ([|j1|] + 1) ^ 2 -> 2 * [|j1|] < 2 ^ (Z_of_nat size) ->
[|rec i j1|] ^ 2 <= [|i|] < ([|rec i j1|] + 1) ^ 2) ->
[|iter31_sqrt n rec i j|] ^ 2 <= [|i|] < ([|iter31_sqrt n rec i j|] + 1) ^ 2.
Proof.
- intros n; elim n; unfold iter31_sqrt; fold iter31_sqrt; clear n.
+ revert rec i j; elim n; unfold iter31_sqrt; fold iter31_sqrt; clear n.
intros rec i j Hi Hj Hij H31 Hrec; apply sqrt31_step_correct; auto with zarith.
intros; apply Hrec; auto with zarith.
rewrite Zpower_0_r; auto with zarith.
@@ -2098,7 +2098,7 @@ Section Int31_Spec.
Qed.
Lemma sqrt312_step_def rec ih il j:
- sqrt312_step rec ih il j =
+ sqrt312_step rec ih il j =
match (ih ?= j)%int31 with
Eq => j
| Gt => j
@@ -2112,14 +2112,14 @@ Section Int31_Spec.
end
end.
Proof.
- intros rec ih il j; unfold sqrt312_step; case div3121; intros.
+ unfold sqrt312_step; case div3121; intros.
simpl; case compare31; auto.
Qed.
- Lemma sqrt312_lower_bound ih il j:
+ Lemma sqrt312_lower_bound ih il j:
phi2 ih il < ([|j|] + 1) ^ 2 -> [|ih|] <= [|j|].
Proof.
- intros ih il j H1.
+ intros H1.
case (phi_bounded j); intros Hbj _.
case (phi_bounded il); intros Hbil _.
case (phi_bounded ih); intros Hbih Hbih1.
@@ -2133,22 +2133,22 @@ Section Int31_Spec.
Lemma div312_phi ih il j: (2^30 <= [|j|] -> [|ih|] < [|j|] ->
[|fst (div3121 ih il j)|] = phi2 ih il/[|j|])%Z.
Proof.
- intros ih il j Hj Hj1.
+ intros Hj Hj1.
generalize (spec_div21 ih il j Hj Hj1).
case div3121; intros q r (Hq, Hr).
apply Zdiv_unique with (phi r); auto with zarith.
simpl fst; apply trans_equal with (1 := Hq); ring.
Qed.
- Lemma sqrt312_step_correct rec ih il j:
- 2 ^ 29 <= [|ih|] -> 0 < [|j|] -> phi2 ih il < ([|j|] + 1) ^ 2 ->
+ Lemma sqrt312_step_correct rec ih il j:
+ 2 ^ 29 <= [|ih|] -> 0 < [|j|] -> phi2 ih il < ([|j|] + 1) ^ 2 ->
(forall j1, 0 < [|j1|] < [|j|] -> phi2 ih il < ([|j1|] + 1) ^ 2 ->
[|rec ih il j1|] ^ 2 <= phi2 ih il < ([|rec ih il j1|] + 1) ^ 2) ->
- [|sqrt312_step rec ih il j|] ^ 2 <= phi2 ih il
+ [|sqrt312_step rec ih il j|] ^ 2 <= phi2 ih il
< ([|sqrt312_step rec ih il j|] + 1) ^ 2.
Proof.
assert (Hp2: (0 < [|2|])%Z) by exact (refl_equal Lt).
- intros rec ih il j Hih Hj Hij Hrec; rewrite sqrt312_step_def.
+ intros Hih Hj Hij Hrec; rewrite sqrt312_step_def.
assert (H1: ([|ih|] <= [|j|])%Z) by (apply sqrt312_lower_bound with il; auto).
case (phi_bounded ih); intros Hih1 _.
case (phi_bounded il); intros Hil1 _.
@@ -2174,7 +2174,7 @@ Section Int31_Spec.
case (Zle_lt_or_eq 1 ([|j|])); auto with zarith; intros Hf2.
2: contradict Hc; apply Zle_not_lt; rewrite <- Hf2, Zdiv_1_r; auto with zarith.
assert (Hf3: 0 < ([|j|] + phi2 ih il / [|j|]) / 2).
- replace ([|j|] + phi2 ih il/ [|j|])%Z with
+ replace ([|j|] + phi2 ih il/ [|j|])%Z with
(1 * 2 + (([|j|] - 2) + phi2 ih il / [|j|])); try ring.
rewrite Z_div_plus_full_l; auto with zarith.
assert (0 <= ([|j|] - 2 + phi2 ih il / [|j|]) / 2) ; auto with zarith.
@@ -2213,7 +2213,7 @@ Section Int31_Spec.
rewrite div31_phi; change (phi 2) with 2%Z; auto.
change (2 ^Z_of_nat size) with (base/2 + phi v30).
assert (phi r / 2 < base/2); auto with zarith.
- apply Zmult_gt_0_lt_reg_r with 2; auto with zarith.
+ apply Zmult_gt_0_lt_reg_r with 2; auto with zarith.
change (base/2 * 2) with base.
apply Zle_lt_trans with (phi r).
rewrite Zmult_comm; apply Z_mult_div_ge; auto with zarith.
@@ -2234,15 +2234,15 @@ Section Int31_Spec.
apply Zge_le; apply Z_div_ge; auto with zarith.
Qed.
- Lemma iter312_sqrt_correct n rec ih il j:
- 2^29 <= [|ih|] -> 0 < [|j|] -> phi2 ih il < ([|j|] + 1) ^ 2 ->
- (forall j1, 0 < [|j1|] -> 2^(Z_of_nat n) + [|j1|] <= [|j|] ->
- phi2 ih il < ([|j1|] + 1) ^ 2 ->
+ Lemma iter312_sqrt_correct n rec ih il j:
+ 2^29 <= [|ih|] -> 0 < [|j|] -> phi2 ih il < ([|j|] + 1) ^ 2 ->
+ (forall j1, 0 < [|j1|] -> 2^(Z_of_nat n) + [|j1|] <= [|j|] ->
+ phi2 ih il < ([|j1|] + 1) ^ 2 ->
[|rec ih il j1|] ^ 2 <= phi2 ih il < ([|rec ih il j1|] + 1) ^ 2) ->
- [|iter312_sqrt n rec ih il j|] ^ 2 <= phi2 ih il
+ [|iter312_sqrt n rec ih il j|] ^ 2 <= phi2 ih il
< ([|iter312_sqrt n rec ih il j|] + 1) ^ 2.
Proof.
- intros n; elim n; unfold iter312_sqrt; fold iter312_sqrt; clear n.
+ revert rec ih il j; elim n; unfold iter312_sqrt; fold iter312_sqrt; clear n.
intros rec ih il j Hi Hj Hij Hrec; apply sqrt312_step_correct; auto with zarith.
intros; apply Hrec; auto with zarith.
rewrite Zpower_0_r; auto with zarith.
@@ -2265,7 +2265,7 @@ Section Int31_Spec.
Proof.
intros ih il Hih; unfold sqrt312.
change [||WW ih il||] with (phi2 ih il).
- assert (Hbin: forall s, s * s + 2* s + 1 = (s + 1) ^ 2) by
+ assert (Hbin: forall s, s * s + 2* s + 1 = (s + 1) ^ 2) by
(intros s; ring).
assert (Hb: 0 <= base) by (red; intros HH; discriminate).
assert (Hi2: phi2 ih il < (phi Tn + 1) ^ 2).
@@ -2428,9 +2428,9 @@ Section Int31_Spec.
apply Zcompare_Eq_eq.
now destruct ([|x|] ?= 0).
Qed.
-
+
(* Even *)
-
+
Let w_is_even := int31_op.(znz_is_even).
Lemma spec_is_even : forall x,
@@ -2460,13 +2460,13 @@ Section Int31_Spec.
exact spec_more_than_1_digit.
exact spec_0.
- exact spec_1.
+ exact spec_1.
exact spec_Bm1.
exact spec_compare.
exact spec_eq0.
- exact spec_opp_c.
+ exact spec_opp_c.
exact spec_opp.
exact spec_opp_carry.
@@ -2500,7 +2500,7 @@ Section Int31_Spec.
exact spec_head00.
exact spec_head0.
- exact spec_tail00.
+ exact spec_tail00.
exact spec_tail0.
exact spec_add_mul_div.
diff --git a/theories/Numbers/Cyclic/Int31/Int31.v b/theories/Numbers/Cyclic/Int31/Int31.v
index 154b436b..cc224254 100644
--- a/theories/Numbers/Cyclic/Int31/Int31.v
+++ b/theories/Numbers/Cyclic/Int31/Int31.v
@@ -8,7 +8,7 @@
(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
(************************************************************************)
-(*i $Id: Int31.v 11072 2008-06-08 16:13:37Z herbelin $ i*)
+(*i $Id$ i*)
Require Import NaryFunctions.
Require Import Wf_nat.
@@ -17,7 +17,7 @@ Require Export DoubleType.
Unset Boxed Definitions.
-(** * 31-bit integers *)
+(** * 31-bit integers *)
(** This file contains basic definitions of a 31-bit integer
arithmetic. In fact it is more general than that. The only reason
@@ -36,11 +36,13 @@ Definition size := 31%nat.
Inductive digits : Type := D0 | D1.
(** The type of 31-bit integers *)
-
-(** The type [int31] has a unique constructor [I31] that expects
+
+(** The type [int31] has a unique constructor [I31] that expects
31 arguments of type [digits]. *)
-Inductive int31 : Type := I31 : nfun digits size int31.
+Definition digits31 t := Eval compute in nfun digits size t.
+
+Inductive int31 : Type := I31 : digits31 int31.
(* spiwack: Registration of the type of integers, so that the matchs in
the functions below perform dynamic decompilation (otherwise some segfault
@@ -50,7 +52,7 @@ Register int31 as int31 type in "coq_int31" by True.
Delimit Scope int31_scope with int31.
Bind Scope int31_scope with int31.
-Open Scope int31_scope.
+Local Open Scope int31_scope.
(** * Constants *)
@@ -69,26 +71,26 @@ Definition Twon : int31 := Eval compute in (napply_cst _ _ D0 (size-2) I31) D1 D
(** * Bits manipulation *)
-(** [sneakr b x] shifts [x] to the right by one bit.
+(** [sneakr b x] shifts [x] to the right by one bit.
Rightmost digit is lost while leftmost digit becomes [b].
- Pseudo-code is
+ Pseudo-code is
[ match x with (I31 d0 ... dN) => I31 b d0 ... d(N-1) end ]
*)
Definition sneakr : digits -> int31 -> int31 := Eval compute in
fun b => int31_rect _ (napply_except_last _ _ (size-1) (I31 b)).
-(** [sneakl b x] shifts [x] to the left by one bit.
+(** [sneakl b x] shifts [x] to the left by one bit.
Leftmost digit is lost while rightmost digit becomes [b].
- Pseudo-code is
+ Pseudo-code is
[ match x with (I31 d0 ... dN) => I31 d1 ... dN b end ]
*)
-Definition sneakl : digits -> int31 -> int31 := Eval compute in
+Definition sneakl : digits -> int31 -> int31 := Eval compute in
fun b => int31_rect _ (fun _ => napply_then_last _ _ b (size-1) I31).
-(** [shiftl], [shiftr], [twice] and [twice_plus_one] are direct
+(** [shiftl], [shiftr], [twice] and [twice_plus_one] are direct
consequences of [sneakl] and [sneakr]. *)
Definition shiftl := sneakl D0.
@@ -96,31 +98,31 @@ Definition shiftr := sneakr D0.
Definition twice := sneakl D0.
Definition twice_plus_one := sneakl D1.
-(** [firstl x] returns the leftmost digit of number [x].
+(** [firstl x] returns the leftmost digit of number [x].
Pseudo-code is [ match x with (I31 d0 ... dN) => d0 end ] *)
-Definition firstl : int31 -> digits := Eval compute in
+Definition firstl : int31 -> digits := Eval compute in
int31_rect _ (fun d => napply_discard _ _ d (size-1)).
-(** [firstr x] returns the rightmost digit of number [x].
+(** [firstr x] returns the rightmost digit of number [x].
Pseudo-code is [ match x with (I31 d0 ... dN) => dN end ] *)
-Definition firstr : int31 -> digits := Eval compute in
+Definition firstr : int31 -> digits := Eval compute in
int31_rect _ (napply_discard _ _ (fun d=>d) (size-1)).
-(** [iszero x] is true iff [x = I31 D0 ... D0]. Pseudo-code is
+(** [iszero x] is true iff [x = I31 D0 ... D0]. Pseudo-code is
[ match x with (I31 D0 ... D0) => true | _ => false end ] *)
-Definition iszero : int31 -> bool := Eval compute in
- let f d b := match d with D0 => b | D1 => false end
+Definition iszero : int31 -> bool := Eval compute in
+ let f d b := match d with D0 => b | D1 => false end
in int31_rect _ (nfold_bis _ _ f true size).
-(* NB: DO NOT transform the above match in a nicer (if then else).
+(* NB: DO NOT transform the above match in a nicer (if then else).
It seems to work, but later "unfold iszero" takes forever. *)
-(** [base] is [2^31], obtained via iterations of [Zdouble].
- It can also be seen as the smallest b > 0 s.t. phi_inv b = 0
+(** [base] is [2^31], obtained via iterations of [Zdouble].
+ It can also be seen as the smallest b > 0 s.t. phi_inv b = 0
(see below) *)
Definition base := Eval compute in
@@ -140,7 +142,7 @@ Fixpoint recl_aux (n:nat)(A:Type)(case0:A)(caserec:digits->int31->A->A)
caserec (firstl i) si (recl_aux next A case0 caserec si)
end.
-Fixpoint recr_aux (n:nat)(A:Type)(case0:A)(caserec:digits->int31->A->A)
+Fixpoint recr_aux (n:nat)(A:Type)(case0:A)(caserec:digits->int31->A->A)
(i:int31) : A :=
match n with
| O => case0
@@ -159,22 +161,22 @@ Definition recr := recr_aux size.
(** From int31 to Z, we simply iterates [Zdouble] or [Zdouble_plus_one]. *)
-Definition phi : int31 -> Z :=
+Definition phi : int31 -> Z :=
recr Z (0%Z)
(fun b _ => match b with D0 => Zdouble | D1 => Zdouble_plus_one end).
-(** From positive to int31. An abstract definition could be :
- [ phi_inv (2n) = 2*(phi_inv n) /\
+(** From positive to int31. An abstract definition could be :
+ [ phi_inv (2n) = 2*(phi_inv n) /\
phi_inv 2n+1 = 2*(phi_inv n) + 1 ] *)
-Fixpoint phi_inv_positive p :=
+Fixpoint phi_inv_positive p :=
match p with
| xI q => twice_plus_one (phi_inv_positive q)
| xO q => twice (phi_inv_positive q)
| xH => In
end.
-(** The negative part : 2-complement *)
+(** The negative part : 2-complement *)
Fixpoint complement_negative p :=
match p with
@@ -186,9 +188,9 @@ Fixpoint complement_negative p :=
(** A simple incrementation function *)
Definition incr : int31 -> int31 :=
- recr int31 In
- (fun b si rec => match b with
- | D0 => sneakl D1 si
+ recr int31 In
+ (fun b si rec => match b with
+ | D0 => sneakl D1 si
| D1 => sneakl D0 rec end).
(** We can now define the conversion from Z to int31. *)
@@ -196,11 +198,11 @@ Definition incr : int31 -> int31 :=
Definition phi_inv : Z -> int31 := fun n =>
match n with
| Z0 => On
- | Zpos p => phi_inv_positive p
+ | Zpos p => phi_inv_positive p
| Zneg p => incr (complement_negative p)
end.
-(** [phi_inv2] is similar to [phi_inv] but returns a double word
+(** [phi_inv2] is similar to [phi_inv] but returns a double word
[zn2z int31] *)
Definition phi_inv2 n :=
@@ -211,7 +213,7 @@ Definition phi_inv2 n :=
(** [phi2] is similar to [phi] but takes a double word (two args) *)
-Definition phi2 nh nl :=
+Definition phi2 nh nl :=
((phi nh)*base+(phi nl))%Z.
(** * Addition *)
@@ -227,11 +229,11 @@ Notation "n + m" := (add31 n m) : int31_scope.
(* mode, (phi n)+(phi m) is computed twice*)
(* it may be considered to optimize it *)
-Definition add31c (n m : int31) :=
+Definition add31c (n m : int31) :=
let npm := n+m in
- match (phi npm ?= (phi n)+(phi m))%Z with
- | Eq => C0 npm
- | _ => C1 npm
+ match (phi npm ?= (phi n)+(phi m))%Z with
+ | Eq => C0 npm
+ | _ => C1 npm
end.
Notation "n '+c' m" := (add31c n m) (at level 50, no associativity) : int31_scope.
@@ -254,7 +256,7 @@ Notation "n - m" := (sub31 n m) : int31_scope.
(** Subtraction with carry (thus exact) *)
-Definition sub31c (n m : int31) :=
+Definition sub31c (n m : int31) :=
let nmm := n-m in
match (phi nmm ?= (phi n)-(phi m))%Z with
| Eq => C0 nmm
@@ -272,6 +274,10 @@ Definition sub31carryc (n m : int31) :=
| _ => C1 nmmmone
end.
+(** Opposite *)
+
+Definition opp31 x := On - x.
+Notation "- x" := (opp31 x) : int31_scope.
(** Multiplication *)
@@ -290,13 +296,13 @@ Notation "n '*c' m" := (mul31c n m) (at level 40, no associativity) : int31_scop
(** Division of a double size word modulo [2^31] *)
-Definition div3121 (nh nl m : int31) :=
+Definition div3121 (nh nl m : int31) :=
let (q,r) := Zdiv_eucl (phi2 nh nl) (phi m) in
(phi_inv q, phi_inv r).
(** Division modulo [2^31] *)
-Definition div31 (n m : int31) :=
+Definition div31 (n m : int31) :=
let (q,r) := Zdiv_eucl (phi n) (phi m) in
(phi_inv q, phi_inv r).
Notation "n / m" := (div31 n m) : int31_scope.
@@ -307,13 +313,16 @@ Notation "n / m" := (div31 n m) : int31_scope.
Definition compare31 (n m : int31) := ((phi n)?=(phi m))%Z.
Notation "n ?= m" := (compare31 n m) (at level 70, no associativity) : int31_scope.
+Definition eqb31 (n m : int31) :=
+ match n ?= m with Eq => true | _ => false end.
+
-(** Computing the [i]-th iterate of a function:
+(** Computing the [i]-th iterate of a function:
[iter_int31 i A f = f^i] *)
Definition iter_int31 i A f :=
- recr (A->A) (fun x => x)
- (fun b si rec => match b with
+ recr (A->A) (fun x => x)
+ (fun b si rec => match b with
| D0 => fun x => rec (rec x)
| D1 => fun x => f (rec (rec x))
end)
@@ -322,9 +331,9 @@ Definition iter_int31 i A f :=
(** Combining the [(31-p)] low bits of [i] above the [p] high bits of [j]:
[addmuldiv31 p i j = i*2^p+j/2^(31-p)] (modulo [2^31]) *)
-Definition addmuldiv31 p i j :=
- let (res, _ ) :=
- iter_int31 p (int31*int31)
+Definition addmuldiv31 p i j :=
+ let (res, _ ) :=
+ iter_int31 p (int31*int31)
(fun ij => let (i,j) := ij in (sneakl (firstl j) i, shiftl j))
(i,j)
in
@@ -346,7 +355,7 @@ Register addmuldiv31 as int31 addmuldiv in "coq_int31" by True.
Definition gcd31 (i j:int31) :=
(fix euler (guard:nat) (i j:int31) {struct guard} :=
- match guard with
+ match guard with
| O => In
| S p => match j ?= On with
| Eq => i
@@ -370,17 +379,17 @@ Eval lazy delta [Twon] in
| _ => j
end.
-Fixpoint iter31_sqrt (n: nat) (rec: int31 -> int31 -> int31)
+Fixpoint iter31_sqrt (n: nat) (rec: int31 -> int31 -> int31)
(i j: int31) {struct n} : int31 :=
- sqrt31_step
+ sqrt31_step
(match n with
O => rec
| S n => (iter31_sqrt n (iter31_sqrt n rec))
end) i j.
-Definition sqrt31 i :=
+Definition sqrt31 i :=
Eval lazy delta [On In Twon] in
- match compare31 In i with
+ match compare31 In i with
Gt => On
| Eq => In
| Lt => iter31_sqrt 31 (fun i j => j) i (fst (i/Twon))
@@ -388,7 +397,7 @@ Eval lazy delta [On In Twon] in
Definition v30 := Eval compute in (addmuldiv31 (phi_inv (Z_of_nat size - 1)) In On).
-Definition sqrt312_step (rec: int31 -> int31 -> int31 -> int31)
+Definition sqrt312_step (rec: int31 -> int31 -> int31 -> int31)
(ih il j: int31) :=
Eval lazy delta [Twon v30] in
match ih ?= j with Eq => j | Gt => j | _ =>
@@ -401,28 +410,28 @@ Eval lazy delta [Twon v30] in
| _ => j
end end.
-Fixpoint iter312_sqrt (n: nat)
- (rec: int31 -> int31 -> int31 -> int31)
+Fixpoint iter312_sqrt (n: nat)
+ (rec: int31 -> int31 -> int31 -> int31)
(ih il j: int31) {struct n} : int31 :=
- sqrt312_step
+ sqrt312_step
(match n with
O => rec
| S n => (iter312_sqrt n (iter312_sqrt n rec))
end) ih il j.
-Definition sqrt312 ih il :=
+Definition sqrt312 ih il :=
Eval lazy delta [On In] in
let s := iter312_sqrt 31 (fun ih il j => j) ih il Tn in
match s *c s with
W0 => (On, C0 On) (* impossible *)
| WW ih1 il1 =>
match il -c il1 with
- C0 il2 =>
+ C0 il2 =>
match ih ?= ih1 with
Gt => (s, C1 il2)
| _ => (s, C0 il2)
end
- | C1 il2 =>
+ | C1 il2 =>
match (ih - In) ?= ih1 with (* we could parametrize ih - 1 *)
Gt => (s, C1 il2)
| _ => (s, C0 il2)
@@ -431,7 +440,7 @@ Eval lazy delta [On In] in
end.
-Fixpoint p2i n p : (N*int31)%type :=
+Fixpoint p2i n p : (N*int31)%type :=
match n with
| O => (Npos p, On)
| S n => match p with
@@ -444,26 +453,26 @@ Fixpoint p2i n p : (N*int31)%type :=
Definition positive_to_int31 (p:positive) := p2i size p.
(** Constant 31 converted into type int31.
- It is used as default answer for numbers of zeros
+ It is used as default answer for numbers of zeros
in [head0] and [tail0] *)
Definition T31 : int31 := Eval compute in phi_inv (Z_of_nat size).
Definition head031 (i:int31) :=
- recl _ (fun _ => T31)
- (fun b si rec n => match b with
+ recl _ (fun _ => T31)
+ (fun b si rec n => match b with
| D0 => rec (add31 n In)
| D1 => n
end)
i On.
Definition tail031 (i:int31) :=
- recr _ (fun _ => T31)
- (fun b si rec n => match b with
+ recr _ (fun _ => T31)
+ (fun b si rec n => match b with
| D0 => rec (add31 n In)
| D1 => n
end)
i On.
Register head031 as int31 head0 in "coq_int31" by True.
-Register tail031 as int31 tail0 in "coq_int31" by True.
+Register tail031 as int31 tail0 in "coq_int31" by True.
diff --git a/theories/Numbers/Cyclic/Int31/Ring31.v b/theories/Numbers/Cyclic/Int31/Ring31.v
new file mode 100644
index 00000000..2ec406b0
--- /dev/null
+++ b/theories/Numbers/Cyclic/Int31/Ring31.v
@@ -0,0 +1,103 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id$ i*)
+
+(** * Int31 numbers defines Z/(2^31)Z, and can hence be equipped
+ with a ring structure and a ring tactic *)
+
+Require Import Int31 Cyclic31 CyclicAxioms.
+
+Local Open Scope int31_scope.
+
+(** Detection of constants *)
+
+Local Open Scope list_scope.
+
+Ltac isInt31cst_lst l :=
+ match l with
+ | nil => constr:true
+ | ?t::?l => match t with
+ | D1 => isInt31cst_lst l
+ | D0 => isInt31cst_lst l
+ | _ => constr:false
+ end
+ | _ => constr:false
+ end.
+
+Ltac isInt31cst t :=
+ match t with
+ | I31 ?i0 ?i1 ?i2 ?i3 ?i4 ?i5 ?i6 ?i7 ?i8 ?i9 ?i10
+ ?i11 ?i12 ?i13 ?i14 ?i15 ?i16 ?i17 ?i18 ?i19 ?i20
+ ?i21 ?i22 ?i23 ?i24 ?i25 ?i26 ?i27 ?i28 ?i29 ?i30 =>
+ let l :=
+ constr:(i0::i1::i2::i3::i4::i5::i6::i7::i8::i9::i10
+ ::i11::i12::i13::i14::i15::i16::i17::i18::i19::i20
+ ::i21::i22::i23::i24::i25::i26::i27::i28::i29::i30::nil)
+ in isInt31cst_lst l
+ | Int31.On => constr:true
+ | Int31.In => constr:true
+ | Int31.Tn => constr:true
+ | Int31.Twon => constr:true
+ | _ => constr:false
+ end.
+
+Ltac Int31cst t :=
+ match isInt31cst t with
+ | true => constr:t
+ | false => constr:NotConstant
+ end.
+
+(** The generic ring structure inferred from the Cyclic structure *)
+
+Module Int31ring := CyclicRing Int31Cyclic.
+
+(** Unlike in the generic [CyclicRing], we can use Leibniz here. *)
+
+Lemma Int31_canonic : forall x y, phi x = phi y -> x = y.
+Proof.
+ intros x y EQ.
+ now rewrite <- (phi_inv_phi x), <- (phi_inv_phi y), EQ.
+Qed.
+
+Lemma ring_theory_switch_eq :
+ forall A (R R':A->A->Prop) zero one add mul sub opp,
+ (forall x y : A, R x y -> R' x y) ->
+ ring_theory zero one add mul sub opp R ->
+ ring_theory zero one add mul sub opp R'.
+Proof.
+intros A R R' zero one add mul sub opp Impl Ring.
+constructor; intros; apply Impl; apply Ring.
+Qed.
+
+Lemma Int31Ring : ring_theory 0 1 add31 mul31 sub31 opp31 Logic.eq.
+Proof.
+exact (ring_theory_switch_eq _ _ _ _ _ _ _ _ _ Int31_canonic Int31ring.CyclicRing).
+Qed.
+
+Lemma eqb31_eq : forall x y, eqb31 x y = true <-> x=y.
+Proof.
+unfold eqb31. intros x y.
+generalize (Cyclic31.spec_compare x y).
+destruct (x ?= y); intuition; subst; auto with zarith; try discriminate.
+apply Int31_canonic; auto.
+Qed.
+
+Lemma eqb31_correct : forall x y, eqb31 x y = true -> x=y.
+Proof. now apply eqb31_eq. Qed.
+
+Add Ring Int31Ring : Int31Ring
+ (decidable eqb31_correct,
+ constants [Int31cst]).
+
+Section TestRing.
+Let test : forall x y, 1 + x*y + x*x + 1 = 1*1 + 1 + y*x + 1*x*x.
+intros. ring.
+Qed.
+End TestRing.
+