summaryrefslogtreecommitdiff
path: root/theories/Numbers/Cyclic/DoubleCyclic/DoubleAdd.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/Cyclic/DoubleCyclic/DoubleAdd.v')
-rw-r--r--theories/Numbers/Cyclic/DoubleCyclic/DoubleAdd.v318
1 files changed, 318 insertions, 0 deletions
diff --git a/theories/Numbers/Cyclic/DoubleCyclic/DoubleAdd.v b/theories/Numbers/Cyclic/DoubleCyclic/DoubleAdd.v
new file mode 100644
index 00000000..61d8d0fb
--- /dev/null
+++ b/theories/Numbers/Cyclic/DoubleCyclic/DoubleAdd.v
@@ -0,0 +1,318 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* Benjamin Gregoire, Laurent Thery, INRIA, 2007 *)
+(************************************************************************)
+
+(*i $Id: DoubleAdd.v 10964 2008-05-22 11:08:13Z letouzey $ i*)
+
+Set Implicit Arguments.
+
+Require Import ZArith.
+Require Import BigNumPrelude.
+Require Import DoubleType.
+Require Import DoubleBase.
+
+Open Local Scope Z_scope.
+
+Section DoubleAdd.
+ Variable w : Type.
+ Variable w_0 : w.
+ Variable w_1 : w.
+ Variable w_WW : w -> w -> zn2z w.
+ Variable w_W0 : w -> zn2z w.
+ Variable ww_1 : zn2z w.
+ Variable w_succ_c : w -> carry w.
+ Variable w_add_c : w -> w -> carry w.
+ Variable w_add_carry_c : w -> w -> carry w.
+ Variable w_succ : w -> w.
+ Variable w_add : w -> w -> w.
+ Variable w_add_carry : w -> w -> w.
+
+ Definition ww_succ_c x :=
+ match x with
+ | W0 => C0 ww_1
+ | WW xh xl =>
+ match w_succ_c xl with
+ | C0 l => C0 (WW xh l)
+ | C1 l =>
+ match w_succ_c xh with
+ | C0 h => C0 (WW h w_0)
+ | C1 h => C1 W0
+ end
+ end
+ end.
+
+ Definition ww_succ x :=
+ match x with
+ | W0 => ww_1
+ | WW xh xl =>
+ match w_succ_c xl with
+ | C0 l => WW xh l
+ | C1 l => w_W0 (w_succ xh)
+ end
+ end.
+
+ Definition ww_add_c x y :=
+ match x, y with
+ | W0, _ => C0 y
+ | _, W0 => C0 x
+ | WW xh xl, WW yh yl =>
+ match w_add_c xl yl with
+ | C0 l =>
+ match w_add_c xh yh with
+ | C0 h => C0 (WW h l)
+ | C1 h => C1 (w_WW h l)
+ end
+ | C1 l =>
+ match w_add_carry_c xh yh with
+ | C0 h => C0 (WW h l)
+ | C1 h => C1 (w_WW h l)
+ end
+ end
+ end.
+
+ Variable R : Type.
+ Variable f0 f1 : zn2z w -> R.
+
+ Definition ww_add_c_cont x y :=
+ match x, y with
+ | W0, _ => f0 y
+ | _, W0 => f0 x
+ | WW xh xl, WW yh yl =>
+ match w_add_c xl yl with
+ | C0 l =>
+ match w_add_c xh yh with
+ | C0 h => f0 (WW h l)
+ | C1 h => f1 (w_WW h l)
+ end
+ | C1 l =>
+ match w_add_carry_c xh yh with
+ | C0 h => f0 (WW h l)
+ | C1 h => f1 (w_WW h l)
+ end
+ end
+ end.
+
+ (* ww_add et ww_add_carry conserve la forme normale s'il n'y a pas
+ de debordement *)
+ Definition ww_add x y :=
+ match x, y with
+ | W0, _ => y
+ | _, W0 => x
+ | WW xh xl, WW yh yl =>
+ match w_add_c xl yl with
+ | C0 l => WW (w_add xh yh) l
+ | C1 l => WW (w_add_carry xh yh) l
+ end
+ end.
+
+ Definition ww_add_carry_c x y :=
+ match x, y with
+ | W0, W0 => C0 ww_1
+ | W0, WW yh yl => ww_succ_c (WW yh yl)
+ | WW xh xl, W0 => ww_succ_c (WW xh xl)
+ | WW xh xl, WW yh yl =>
+ match w_add_carry_c xl yl with
+ | C0 l =>
+ match w_add_c xh yh with
+ | C0 h => C0 (WW h l)
+ | C1 h => C1 (WW h l)
+ end
+ | C1 l =>
+ match w_add_carry_c xh yh with
+ | C0 h => C0 (WW h l)
+ | C1 h => C1 (w_WW h l)
+ end
+ end
+ end.
+
+ Definition ww_add_carry x y :=
+ match x, y with
+ | W0, W0 => ww_1
+ | W0, WW yh yl => ww_succ (WW yh yl)
+ | WW xh xl, W0 => ww_succ (WW xh xl)
+ | WW xh xl, WW yh yl =>
+ match w_add_carry_c xl yl with
+ | C0 l => WW (w_add xh yh) l
+ | C1 l => WW (w_add_carry xh yh) l
+ end
+ end.
+
+ (*Section DoubleProof.*)
+ Variable w_digits : positive.
+ Variable w_to_Z : w -> Z.
+
+
+ Notation wB := (base w_digits).
+ Notation wwB := (base (ww_digits w_digits)).
+ Notation "[| x |]" := (w_to_Z x) (at level 0, x at level 99).
+ Notation "[+| c |]" :=
+ (interp_carry 1 wB w_to_Z c) (at level 0, x at level 99).
+ Notation "[-| c |]" :=
+ (interp_carry (-1) wB w_to_Z c) (at level 0, x at level 99).
+
+ Notation "[[ x ]]" := (ww_to_Z w_digits w_to_Z x)(at level 0, x at level 99).
+ Notation "[+[ c ]]" :=
+ (interp_carry 1 wwB (ww_to_Z w_digits w_to_Z) c)
+ (at level 0, x at level 99).
+ Notation "[-[ c ]]" :=
+ (interp_carry (-1) wwB (ww_to_Z w_digits w_to_Z) c)
+ (at level 0, x at level 99).
+
+ Variable spec_w_0 : [|w_0|] = 0.
+ Variable spec_w_1 : [|w_1|] = 1.
+ Variable spec_ww_1 : [[ww_1]] = 1.
+ Variable spec_to_Z : forall x, 0 <= [|x|] < wB.
+ Variable spec_w_WW : forall h l, [[w_WW h l]] = [|h|] * wB + [|l|].
+ Variable spec_w_W0 : forall h, [[w_W0 h]] = [|h|] * wB.
+ Variable spec_w_succ_c : forall x, [+|w_succ_c x|] = [|x|] + 1.
+ Variable spec_w_add_c : forall x y, [+|w_add_c x y|] = [|x|] + [|y|].
+ Variable spec_w_add_carry_c :
+ forall x y, [+|w_add_carry_c x y|] = [|x|] + [|y|] + 1.
+ Variable spec_w_succ : forall x, [|w_succ x|] = ([|x|] + 1) mod wB.
+ Variable spec_w_add : forall x y, [|w_add x y|] = ([|x|] + [|y|]) mod wB.
+ Variable spec_w_add_carry :
+ forall x y, [|w_add_carry x y|] = ([|x|] + [|y|] + 1) mod wB.
+
+ Lemma spec_ww_succ_c : forall x, [+[ww_succ_c x]] = [[x]] + 1.
+ Proof.
+ destruct x as [ |xh xl];simpl. apply spec_ww_1.
+ generalize (spec_w_succ_c xl);destruct (w_succ_c xl) as [l|l];
+ intro H;unfold interp_carry in H. simpl;rewrite H;ring.
+ rewrite <- Zplus_assoc;rewrite <- H;rewrite Zmult_1_l.
+ assert ([|l|] = 0). generalize (spec_to_Z xl)(spec_to_Z l);omega.
+ rewrite H0;generalize (spec_w_succ_c xh);destruct (w_succ_c xh) as [h|h];
+ intro H1;unfold interp_carry in H1.
+ simpl;rewrite H1;rewrite spec_w_0;ring.
+ unfold interp_carry;simpl ww_to_Z;rewrite wwB_wBwB.
+ assert ([|xh|] = wB - 1). generalize (spec_to_Z xh)(spec_to_Z h);omega.
+ rewrite H2;ring.
+ Qed.
+
+ Lemma spec_ww_add_c : forall x y, [+[ww_add_c x y]] = [[x]] + [[y]].
+ Proof.
+ destruct x as [ |xh xl];simpl;trivial.
+ destruct y as [ |yh yl];simpl. rewrite Zplus_0_r;trivial.
+ replace ([|xh|] * wB + [|xl|] + ([|yh|] * wB + [|yl|]))
+ with (([|xh|]+[|yh|])*wB + ([|xl|]+[|yl|])). 2:ring.
+ generalize (spec_w_add_c xl yl);destruct (w_add_c xl yl) as [l|l];
+ intros H;unfold interp_carry in H;rewrite <- H.
+ generalize (spec_w_add_c xh yh);destruct (w_add_c xh yh) as [h|h];
+ intros H1;unfold interp_carry in *;rewrite <- H1. trivial.
+ repeat rewrite Zmult_1_l;rewrite spec_w_WW;rewrite wwB_wBwB; ring.
+ rewrite Zplus_assoc;rewrite <- Zmult_plus_distr_l.
+ generalize (spec_w_add_carry_c xh yh);destruct (w_add_carry_c xh yh)
+ as [h|h]; intros H1;unfold interp_carry in *;rewrite <- H1.
+ simpl;ring.
+ repeat rewrite Zmult_1_l;rewrite wwB_wBwB;rewrite spec_w_WW;ring.
+ Qed.
+
+ Section Cont.
+ Variable P : zn2z w -> zn2z w -> R -> Prop.
+ Variable x y : zn2z w.
+ Variable spec_f0 : forall r, [[r]] = [[x]] + [[y]] -> P x y (f0 r).
+ Variable spec_f1 : forall r, wwB + [[r]] = [[x]] + [[y]] -> P x y (f1 r).
+
+ Lemma spec_ww_add_c_cont : P x y (ww_add_c_cont x y).
+ Proof.
+ destruct x as [ |xh xl];simpl;trivial.
+ apply spec_f0;trivial.
+ destruct y as [ |yh yl];simpl.
+ apply spec_f0;simpl;rewrite Zplus_0_r;trivial.
+ generalize (spec_w_add_c xl yl);destruct (w_add_c xl yl) as [l|l];
+ intros H;unfold interp_carry in H.
+ generalize (spec_w_add_c xh yh);destruct (w_add_c xh yh) as [h|h];
+ intros H1;unfold interp_carry in *.
+ apply spec_f0. simpl;rewrite H;rewrite H1;ring.
+ apply spec_f1. simpl;rewrite spec_w_WW;rewrite H.
+ rewrite Zplus_assoc;rewrite wwB_wBwB. rewrite Zpower_2; rewrite <- Zmult_plus_distr_l.
+ rewrite Zmult_1_l in H1;rewrite H1;ring.
+ generalize (spec_w_add_carry_c xh yh);destruct (w_add_carry_c xh yh)
+ as [h|h]; intros H1;unfold interp_carry in *.
+ apply spec_f0;simpl;rewrite H1. rewrite Zmult_plus_distr_l.
+ rewrite <- Zplus_assoc;rewrite H;ring.
+ apply spec_f1. simpl;rewrite spec_w_WW;rewrite wwB_wBwB.
+ rewrite Zplus_assoc; rewrite Zpower_2; rewrite <- Zmult_plus_distr_l.
+ rewrite Zmult_1_l in H1;rewrite H1. rewrite Zmult_plus_distr_l.
+ rewrite <- Zplus_assoc;rewrite H;ring.
+ Qed.
+
+ End Cont.
+
+ Lemma spec_ww_add_carry_c :
+ forall x y, [+[ww_add_carry_c x y]] = [[x]] + [[y]] + 1.
+ Proof.
+ destruct x as [ |xh xl];intro y;simpl.
+ exact (spec_ww_succ_c y).
+ destruct y as [ |yh yl];simpl.
+ rewrite Zplus_0_r;exact (spec_ww_succ_c (WW xh xl)).
+ replace ([|xh|] * wB + [|xl|] + ([|yh|] * wB + [|yl|]) + 1)
+ with (([|xh|]+[|yh|])*wB + ([|xl|]+[|yl|]+1)). 2:ring.
+ generalize (spec_w_add_carry_c xl yl);destruct (w_add_carry_c xl yl)
+ as [l|l];intros H;unfold interp_carry in H;rewrite <- H.
+ generalize (spec_w_add_c xh yh);destruct (w_add_c xh yh) as [h|h];
+ intros H1;unfold interp_carry in H1;rewrite <- H1. trivial.
+ unfold interp_carry;repeat rewrite Zmult_1_l;simpl;rewrite wwB_wBwB;ring.
+ rewrite Zplus_assoc;rewrite <- Zmult_plus_distr_l.
+ generalize (spec_w_add_carry_c xh yh);destruct (w_add_carry_c xh yh)
+ as [h|h];intros H1;unfold interp_carry in H1;rewrite <- H1. trivial.
+ unfold interp_carry;rewrite spec_w_WW;
+ repeat rewrite Zmult_1_l;simpl;rewrite wwB_wBwB;ring.
+ Qed.
+
+ Lemma spec_ww_succ : forall x, [[ww_succ x]] = ([[x]] + 1) mod wwB.
+ Proof.
+ destruct x as [ |xh xl];simpl.
+ rewrite spec_ww_1;rewrite Zmod_small;trivial.
+ split;[intro;discriminate|apply wwB_pos].
+ rewrite <- Zplus_assoc;generalize (spec_w_succ_c xl);
+ destruct (w_succ_c xl) as[l|l];intro H;unfold interp_carry in H;rewrite <-H.
+ rewrite Zmod_small;trivial.
+ rewrite wwB_wBwB;apply beta_mult;apply spec_to_Z.
+ assert ([|l|] = 0). clear spec_ww_1 spec_w_1 spec_w_0.
+ assert (H1:= spec_to_Z l); assert (H2:= spec_to_Z xl); omega.
+ rewrite H0;rewrite Zplus_0_r;rewrite <- Zmult_plus_distr_l;rewrite wwB_wBwB.
+ rewrite Zpower_2; rewrite Zmult_mod_distr_r;try apply lt_0_wB.
+ rewrite spec_w_W0;rewrite spec_w_succ;trivial.
+ Qed.
+
+ Lemma spec_ww_add : forall x y, [[ww_add x y]] = ([[x]] + [[y]]) mod wwB.
+ Proof.
+ destruct x as [ |xh xl];intros y;simpl.
+ rewrite Zmod_small;trivial. apply spec_ww_to_Z;trivial.
+ destruct y as [ |yh yl].
+ change [[W0]] with 0;rewrite Zplus_0_r.
+ rewrite Zmod_small;trivial.
+ exact (spec_ww_to_Z w_digits w_to_Z spec_to_Z (WW xh xl)).
+ simpl. replace ([|xh|] * wB + [|xl|] + ([|yh|] * wB + [|yl|]))
+ with (([|xh|]+[|yh|])*wB + ([|xl|]+[|yl|])). 2:ring.
+ generalize (spec_w_add_c xl yl);destruct (w_add_c xl yl) as [l|l];
+ unfold interp_carry;intros H;simpl;rewrite <- H.
+ rewrite (mod_wwB w_digits w_to_Z spec_to_Z);rewrite spec_w_add;trivial.
+ rewrite Zplus_assoc;rewrite <- Zmult_plus_distr_l.
+ rewrite(mod_wwB w_digits w_to_Z spec_to_Z);rewrite spec_w_add_carry;trivial.
+ Qed.
+
+ Lemma spec_ww_add_carry :
+ forall x y, [[ww_add_carry x y]] = ([[x]] + [[y]] + 1) mod wwB.
+ Proof.
+ destruct x as [ |xh xl];intros y;simpl.
+ exact (spec_ww_succ y).
+ destruct y as [ |yh yl].
+ change [[W0]] with 0;rewrite Zplus_0_r. exact (spec_ww_succ (WW xh xl)).
+ simpl;replace ([|xh|] * wB + [|xl|] + ([|yh|] * wB + [|yl|]) + 1)
+ with (([|xh|]+[|yh|])*wB + ([|xl|]+[|yl|]+1)). 2:ring.
+ generalize (spec_w_add_carry_c xl yl);destruct (w_add_carry_c xl yl)
+ as [l|l];unfold interp_carry;intros H;rewrite <- H;simpl ww_to_Z.
+ rewrite(mod_wwB w_digits w_to_Z spec_to_Z);rewrite spec_w_add;trivial.
+ rewrite Zplus_assoc;rewrite <- Zmult_plus_distr_l.
+ rewrite(mod_wwB w_digits w_to_Z spec_to_Z);rewrite spec_w_add_carry;trivial.
+ Qed.
+
+(* End DoubleProof. *)
+End DoubleAdd.