diff options
Diffstat (limited to 'theories/NArith/Pnat.v')
-rw-r--r-- | theories/NArith/Pnat.v | 462 |
1 files changed, 0 insertions, 462 deletions
diff --git a/theories/NArith/Pnat.v b/theories/NArith/Pnat.v deleted file mode 100644 index 29641dbe..00000000 --- a/theories/NArith/Pnat.v +++ /dev/null @@ -1,462 +0,0 @@ -(* -*- coding: utf-8 -*- *) -(************************************************************************) -(* v * The Coq Proof Assistant / The Coq Development Team *) -(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *) -(* \VV/ **************************************************************) -(* // * This file is distributed under the terms of the *) -(* * GNU Lesser General Public License Version 2.1 *) -(************************************************************************) - -(*i $Id: Pnat.v 14641 2011-11-06 11:59:10Z herbelin $ i*) - -Require Import BinPos. - -(**********************************************************************) -(** Properties of the injection from binary positive numbers to Peano - natural numbers *) - -(** Original development by Pierre Crégut, CNET, Lannion, France *) - -Require Import Le. -Require Import Lt. -Require Import Gt. -Require Import Plus. -Require Import Mult. -Require Import Minus. -Require Import Compare_dec. - -Local Open Scope positive_scope. -Local Open Scope nat_scope. - -(** [nat_of_P] is a morphism for addition *) - -Lemma Pmult_nat_succ_morphism : - forall (p:positive) (n:nat), Pmult_nat (Psucc p) n = n + Pmult_nat p n. -Proof. -intro x; induction x as [p IHp| p IHp| ]; simpl in |- *; auto; intro m; - rewrite IHp; rewrite plus_assoc; trivial. -Qed. - -Lemma nat_of_P_succ_morphism : - forall p:positive, nat_of_P (Psucc p) = S (nat_of_P p). -Proof. - intro; change (S (nat_of_P p)) with (1 + nat_of_P p) in |- *; - unfold nat_of_P in |- *; apply Pmult_nat_succ_morphism. -Qed. - -Theorem Pmult_nat_plus_carry_morphism : - forall (p q:positive) (n:nat), - Pmult_nat (Pplus_carry p q) n = n + Pmult_nat (p + q) n. -Proof. -intro x; induction x as [p IHp| p IHp| ]; intro y; - [ destruct y as [p0| p0| ] - | destruct y as [p0| p0| ] - | destruct y as [p| p| ] ]; simpl in |- *; auto with arith; - intro m; - [ rewrite IHp; rewrite plus_assoc; trivial with arith - | rewrite IHp; rewrite plus_assoc; trivial with arith - | rewrite Pmult_nat_succ_morphism; rewrite plus_assoc; trivial with arith - | rewrite Pmult_nat_succ_morphism; apply plus_assoc_reverse ]. -Qed. - -Theorem nat_of_P_plus_carry_morphism : - forall p q:positive, nat_of_P (Pplus_carry p q) = S (nat_of_P (p + q)). -Proof. -intros; unfold nat_of_P in |- *; rewrite Pmult_nat_plus_carry_morphism; - simpl in |- *; trivial with arith. -Qed. - -Theorem Pmult_nat_l_plus_morphism : - forall (p q:positive) (n:nat), - Pmult_nat (p + q) n = Pmult_nat p n + Pmult_nat q n. -Proof. -intro x; induction x as [p IHp| p IHp| ]; intro y; - [ destruct y as [p0| p0| ] - | destruct y as [p0| p0| ] - | destruct y as [p| p| ] ]; simpl in |- *; auto with arith; - [ intros m; rewrite Pmult_nat_plus_carry_morphism; rewrite IHp; - rewrite plus_assoc_reverse; rewrite plus_assoc_reverse; - rewrite (plus_permute m (Pmult_nat p (m + m))); - trivial with arith - | intros m; rewrite IHp; apply plus_assoc - | intros m; rewrite Pmult_nat_succ_morphism; - rewrite (plus_comm (m + Pmult_nat p (m + m))); - apply plus_assoc_reverse - | intros m; rewrite IHp; apply plus_permute - | intros m; rewrite Pmult_nat_succ_morphism; apply plus_assoc_reverse ]. -Qed. - -Theorem nat_of_P_plus_morphism : - forall p q:positive, nat_of_P (p + q) = nat_of_P p + nat_of_P q. -Proof. -intros x y; exact (Pmult_nat_l_plus_morphism x y 1). -Qed. - -(** [Pmult_nat] is a morphism for addition *) - -Lemma Pmult_nat_r_plus_morphism : - forall (p:positive) (n:nat), - Pmult_nat p (n + n) = Pmult_nat p n + Pmult_nat p n. -Proof. -intro y; induction y as [p H| p H| ]; intro m; - [ simpl in |- *; rewrite H; rewrite plus_assoc_reverse; - rewrite (plus_permute m (Pmult_nat p (m + m))); - rewrite plus_assoc_reverse; auto with arith - | simpl in |- *; rewrite H; auto with arith - | simpl in |- *; trivial with arith ]. -Qed. - -Lemma ZL6 : forall p:positive, Pmult_nat p 2 = nat_of_P p + nat_of_P p. -Proof. -intro p; change 2 with (1 + 1) in |- *; rewrite Pmult_nat_r_plus_morphism; - trivial. -Qed. - -(** [nat_of_P] is a morphism for multiplication *) - -Theorem nat_of_P_mult_morphism : - forall p q:positive, nat_of_P (p * q) = nat_of_P p * nat_of_P q. -Proof. -intros x y; induction x as [x' H| x' H| ]; - [ change (xI x' * y)%positive with (y + xO (x' * y))%positive in |- *; - rewrite nat_of_P_plus_morphism; unfold nat_of_P at 2 3 in |- *; - simpl in |- *; do 2 rewrite ZL6; rewrite H; rewrite mult_plus_distr_r; - reflexivity - | unfold nat_of_P at 1 2 in |- *; simpl in |- *; do 2 rewrite ZL6; rewrite H; - rewrite mult_plus_distr_r; reflexivity - | simpl in |- *; rewrite <- plus_n_O; reflexivity ]. -Qed. - -(** [nat_of_P] maps to the strictly positive subset of [nat] *) - -Lemma ZL4 : forall p:positive, exists h : nat, nat_of_P p = S h. -Proof. -intro y; induction y as [p H| p H| ]; - [ destruct H as [x H1]; exists (S x + S x); unfold nat_of_P in |- *; - simpl in |- *; change 2 with (1 + 1) in |- *; - rewrite Pmult_nat_r_plus_morphism; unfold nat_of_P in H1; - rewrite H1; auto with arith - | destruct H as [x H2]; exists (x + S x); unfold nat_of_P in |- *; - simpl in |- *; change 2 with (1 + 1) in |- *; - rewrite Pmult_nat_r_plus_morphism; unfold nat_of_P in H2; - rewrite H2; auto with arith - | exists 0; auto with arith ]. -Qed. - -(** Extra lemmas on [lt] on Peano natural numbers *) - -Lemma ZL7 : forall n m:nat, n < m -> n + n < m + m. -Proof. -intros m n H; apply lt_trans with (m := m + n); - [ apply plus_lt_compat_l with (1 := H) - | rewrite (plus_comm m n); apply plus_lt_compat_l with (1 := H) ]. -Qed. - -Lemma ZL8 : forall n m:nat, n < m -> S (n + n) < m + m. -Proof. -intros m n H; apply le_lt_trans with (m := m + n); - [ change (m + m < m + n) in |- *; apply plus_lt_compat_l with (1 := H) - | rewrite (plus_comm m n); apply plus_lt_compat_l with (1 := H) ]. -Qed. - -(** [nat_of_P] is a morphism from [positive] to [nat] for [lt] (expressed - from [compare] on [positive]) - - Part 1: [lt] on [positive] is finer than [lt] on [nat] -*) - -Lemma nat_of_P_lt_Lt_compare_morphism : - forall p q:positive, (p ?= q) Eq = Lt -> nat_of_P p < nat_of_P q. -Proof. -intro x; induction x as [p H| p H| ]; intro y; destruct y as [q| q| ]; - intro H2; - [ unfold nat_of_P in |- *; simpl in |- *; apply lt_n_S; do 2 rewrite ZL6; - apply ZL7; apply H; simpl in H2; assumption - | unfold nat_of_P in |- *; simpl in |- *; do 2 rewrite ZL6; apply ZL8; - apply H; simpl in H2; apply Pcompare_Gt_Lt; assumption - | simpl in |- *; discriminate H2 - | simpl in |- *; unfold nat_of_P in |- *; simpl in |- *; do 2 rewrite ZL6; - elim (Pcompare_Lt_Lt p q H2); - [ intros H3; apply lt_S; apply ZL7; apply H; apply H3 - | intros E; rewrite E; apply lt_n_Sn ] - | simpl in |- *; unfold nat_of_P in |- *; simpl in |- *; do 2 rewrite ZL6; - apply ZL7; apply H; assumption - | simpl in |- *; discriminate H2 - | unfold nat_of_P in |- *; simpl in |- *; apply lt_n_S; rewrite ZL6; - elim (ZL4 q); intros h H3; rewrite H3; simpl in |- *; - apply lt_O_Sn - | unfold nat_of_P in |- *; simpl in |- *; rewrite ZL6; elim (ZL4 q); - intros h H3; rewrite H3; simpl in |- *; rewrite <- plus_n_Sm; - apply lt_n_S; apply lt_O_Sn - | simpl in |- *; discriminate H2 ]. -Qed. - -(** [nat_of_P] is a morphism from [positive] to [nat] for [gt] (expressed - from [compare] on [positive]) - - Part 1: [gt] on [positive] is finer than [gt] on [nat] -*) - -Lemma nat_of_P_gt_Gt_compare_morphism : - forall p q:positive, (p ?= q) Eq = Gt -> nat_of_P p > nat_of_P q. -Proof. -intros p q GT. unfold gt. -apply nat_of_P_lt_Lt_compare_morphism. -change ((q ?= p) (CompOpp Eq) = CompOpp Gt). -rewrite <- Pcompare_antisym, GT; auto. -Qed. - -(** [nat_of_P] is a morphism for [Pcompare] and [nat_compare] *) - -Lemma nat_of_P_compare_morphism : forall p q, - (p ?= q) Eq = nat_compare (nat_of_P p) (nat_of_P q). -Proof. - intros p q; symmetry. - destruct ((p ?= q) Eq) as [ | | ]_eqn. - rewrite (Pcompare_Eq_eq p q); auto. - apply <- nat_compare_eq_iff; auto. - apply -> nat_compare_lt. apply nat_of_P_lt_Lt_compare_morphism; auto. - apply -> nat_compare_gt. apply nat_of_P_gt_Gt_compare_morphism; auto. -Qed. - -(** [nat_of_P] is hence injective. *) - -Lemma nat_of_P_inj : forall p q:positive, nat_of_P p = nat_of_P q -> p = q. -Proof. -intros. -apply Pcompare_Eq_eq. -rewrite nat_of_P_compare_morphism. -apply <- nat_compare_eq_iff; auto. -Qed. - -(** [nat_of_P] is a morphism from [positive] to [nat] for [lt] (expressed - from [compare] on [positive]) - - Part 2: [lt] on [nat] is finer than [lt] on [positive] -*) - -Lemma nat_of_P_lt_Lt_compare_complement_morphism : - forall p q:positive, nat_of_P p < nat_of_P q -> (p ?= q) Eq = Lt. -Proof. - intros. rewrite nat_of_P_compare_morphism. - apply -> nat_compare_lt; auto. -Qed. - -(** [nat_of_P] is a morphism from [positive] to [nat] for [gt] (expressed - from [compare] on [positive]) - - Part 2: [gt] on [nat] is finer than [gt] on [positive] -*) - -Lemma nat_of_P_gt_Gt_compare_complement_morphism : - forall p q:positive, nat_of_P p > nat_of_P q -> (p ?= q) Eq = Gt. -Proof. - intros. rewrite nat_of_P_compare_morphism. - apply -> nat_compare_gt; auto. -Qed. - - -(** [nat_of_P] is strictly positive *) - -Lemma le_Pmult_nat : forall (p:positive) (n:nat), n <= Pmult_nat p n. -induction p; simpl in |- *; auto with arith. -intro m; apply le_trans with (m + m); auto with arith. -Qed. - -Lemma lt_O_nat_of_P : forall p:positive, 0 < nat_of_P p. -intro; unfold nat_of_P in |- *; apply lt_le_trans with 1; auto with arith. -apply le_Pmult_nat. -Qed. - -(** Pmult_nat permutes with multiplication *) - -Lemma Pmult_nat_mult_permute : - forall (p:positive) (n m:nat), Pmult_nat p (m * n) = m * Pmult_nat p n. -Proof. - simple induction p. intros. simpl in |- *. rewrite mult_plus_distr_l. rewrite <- (mult_plus_distr_l m n n). - rewrite (H (n + n) m). reflexivity. - intros. simpl in |- *. rewrite <- (mult_plus_distr_l m n n). apply H. - trivial. -Qed. - -Lemma Pmult_nat_2_mult_2_permute : - forall p:positive, Pmult_nat p 2 = 2 * Pmult_nat p 1. -Proof. - intros. rewrite <- Pmult_nat_mult_permute. reflexivity. -Qed. - -Lemma Pmult_nat_4_mult_2_permute : - forall p:positive, Pmult_nat p 4 = 2 * Pmult_nat p 2. -Proof. - intros. rewrite <- Pmult_nat_mult_permute. reflexivity. -Qed. - -(** Mapping of xH, xO and xI through [nat_of_P] *) - -Lemma nat_of_P_xH : nat_of_P 1 = 1. -Proof. - reflexivity. -Qed. - -Lemma nat_of_P_xO : forall p:positive, nat_of_P (xO p) = 2 * nat_of_P p. -Proof. - intros. - change 2 with (nat_of_P 2). - rewrite <- nat_of_P_mult_morphism. - f_equal. -Qed. - -Lemma nat_of_P_xI : forall p:positive, nat_of_P (xI p) = S (2 * nat_of_P p). -Proof. - intros. - change 2 with (nat_of_P 2). - rewrite <- nat_of_P_mult_morphism, <- nat_of_P_succ_morphism. - f_equal. -Qed. - -(**********************************************************************) -(** Properties of the shifted injection from Peano natural numbers to - binary positive numbers *) - -(** Composition of [P_of_succ_nat] and [nat_of_P] is successor on [nat] *) - -Theorem nat_of_P_o_P_of_succ_nat_eq_succ : - forall n:nat, nat_of_P (P_of_succ_nat n) = S n. -Proof. -induction n as [|n H]. -reflexivity. -simpl; rewrite nat_of_P_succ_morphism, H; auto. -Qed. - -(** Miscellaneous lemmas on [P_of_succ_nat] *) - -Lemma ZL3 : - forall n:nat, Psucc (P_of_succ_nat (n + n)) = xO (P_of_succ_nat n). -Proof. -induction n as [| n H]; simpl; - [ auto with arith - | rewrite plus_comm; simpl; rewrite H; - rewrite xO_succ_permute; auto with arith ]. -Qed. - -Lemma ZL5 : forall n:nat, P_of_succ_nat (S n + S n) = xI (P_of_succ_nat n). -Proof. -induction n as [| n H]; simpl; - [ auto with arith - | rewrite <- plus_n_Sm; simpl; simpl in H; rewrite H; - auto with arith ]. -Qed. - -(** Composition of [nat_of_P] and [P_of_succ_nat] is successor on [positive] *) - -Theorem P_of_succ_nat_o_nat_of_P_eq_succ : - forall p:positive, P_of_succ_nat (nat_of_P p) = Psucc p. -Proof. -intros. -apply nat_of_P_inj. -rewrite nat_of_P_o_P_of_succ_nat_eq_succ, nat_of_P_succ_morphism; auto. -Qed. - -(** Composition of [nat_of_P], [P_of_succ_nat] and [Ppred] is identity - on [positive] *) - -Theorem pred_o_P_of_succ_nat_o_nat_of_P_eq_id : - forall p:positive, Ppred (P_of_succ_nat (nat_of_P p)) = p. -Proof. -intros; rewrite P_of_succ_nat_o_nat_of_P_eq_succ, Ppred_succ; auto. -Qed. - -(**********************************************************************) -(** Extra properties of the injection from binary positive numbers to Peano - natural numbers *) - -(** [nat_of_P] is a morphism for subtraction on positive numbers *) - -Theorem nat_of_P_minus_morphism : - forall p q:positive, - (p ?= q) Eq = Gt -> nat_of_P (p - q) = nat_of_P p - nat_of_P q. -Proof. -intros x y H; apply plus_reg_l with (nat_of_P y); rewrite le_plus_minus_r; - [ rewrite <- nat_of_P_plus_morphism; rewrite Pplus_minus; auto with arith - | apply lt_le_weak; exact (nat_of_P_gt_Gt_compare_morphism x y H) ]. -Qed. - - -Lemma ZL16 : forall p q:positive, nat_of_P p - nat_of_P q < nat_of_P p. -Proof. -intros p q; elim (ZL4 p); elim (ZL4 q); intros h H1 i H2; rewrite H1; - rewrite H2; simpl in |- *; unfold lt in |- *; apply le_n_S; - apply le_minus. -Qed. - -Lemma ZL17 : forall p q:positive, nat_of_P p < nat_of_P (p + q). -Proof. -intros p q; rewrite nat_of_P_plus_morphism; unfold lt in |- *; elim (ZL4 q); - intros k H; rewrite H; rewrite plus_comm; simpl in |- *; - apply le_n_S; apply le_plus_r. -Qed. - -(** Comparison and subtraction *) - -Lemma Pcompare_minus_r : - forall p q r:positive, - (q ?= p) Eq = Lt -> - (r ?= p) Eq = Gt -> - (r ?= q) Eq = Gt -> (r - p ?= r - q) Eq = Lt. -Proof. -intros; apply nat_of_P_lt_Lt_compare_complement_morphism; - rewrite nat_of_P_minus_morphism; - [ rewrite nat_of_P_minus_morphism; - [ apply plus_lt_reg_l with (p := nat_of_P q); rewrite le_plus_minus_r; - [ rewrite plus_comm; apply plus_lt_reg_l with (p := nat_of_P p); - rewrite plus_assoc; rewrite le_plus_minus_r; - [ rewrite (plus_comm (nat_of_P p)); apply plus_lt_compat_l; - apply nat_of_P_lt_Lt_compare_morphism; - assumption - | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; - apply ZC1; assumption ] - | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; - assumption ] - | assumption ] - | assumption ]. -Qed. - -Lemma Pcompare_minus_l : - forall p q r:positive, - (q ?= p) Eq = Lt -> - (p ?= r) Eq = Gt -> - (q ?= r) Eq = Gt -> (q - r ?= p - r) Eq = Lt. -Proof. -intros p q z; intros; apply nat_of_P_lt_Lt_compare_complement_morphism; - rewrite nat_of_P_minus_morphism; - [ rewrite nat_of_P_minus_morphism; - [ unfold gt in |- *; apply plus_lt_reg_l with (p := nat_of_P z); - rewrite le_plus_minus_r; - [ rewrite le_plus_minus_r; - [ apply nat_of_P_lt_Lt_compare_morphism; assumption - | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; - apply ZC1; assumption ] - | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; - assumption ] - | assumption ] - | assumption ]. -Qed. - -(** Distributivity of multiplication over subtraction *) - -Theorem Pmult_minus_distr_l : - forall p q r:positive, - (q ?= r) Eq = Gt -> - (p * (q - r) = p * q - p * r)%positive. -Proof. -intros x y z H; apply nat_of_P_inj; rewrite nat_of_P_mult_morphism; - rewrite nat_of_P_minus_morphism; - [ rewrite nat_of_P_minus_morphism; - [ do 2 rewrite nat_of_P_mult_morphism; - do 3 rewrite (mult_comm (nat_of_P x)); apply mult_minus_distr_r - | apply nat_of_P_gt_Gt_compare_complement_morphism; - do 2 rewrite nat_of_P_mult_morphism; unfold gt in |- *; - elim (ZL4 x); intros h H1; rewrite H1; apply mult_S_lt_compat_l; - exact (nat_of_P_gt_Gt_compare_morphism y z H) ] - | assumption ]. -Qed. |