diff options
Diffstat (limited to 'theories/NArith/Pminmax.v')
-rw-r--r-- | theories/NArith/Pminmax.v | 126 |
1 files changed, 126 insertions, 0 deletions
diff --git a/theories/NArith/Pminmax.v b/theories/NArith/Pminmax.v new file mode 100644 index 00000000..4cc48af6 --- /dev/null +++ b/theories/NArith/Pminmax.v @@ -0,0 +1,126 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +Require Import Orders BinPos Pnat POrderedType GenericMinMax. + +(** * Maximum and Minimum of two positive numbers *) + +Local Open Scope positive_scope. + +(** The functions [Pmax] and [Pmin] implement indeed + a maximum and a minimum *) + +Lemma Pmax_l : forall x y, y<=x -> Pmax x y = x. +Proof. + unfold Ple, Pmax. intros x y. + rewrite (ZC4 y x). generalize (Pcompare_eq_iff x y). + destruct ((x ?= y) Eq); intuition. +Qed. + +Lemma Pmax_r : forall x y, x<=y -> Pmax x y = y. +Proof. + unfold Ple, Pmax. intros x y. destruct ((x ?= y) Eq); intuition. +Qed. + +Lemma Pmin_l : forall x y, x<=y -> Pmin x y = x. +Proof. + unfold Ple, Pmin. intros x y. destruct ((x ?= y) Eq); intuition. +Qed. + +Lemma Pmin_r : forall x y, y<=x -> Pmin x y = y. +Proof. + unfold Ple, Pmin. intros x y. + rewrite (ZC4 y x). generalize (Pcompare_eq_iff x y). + destruct ((x ?= y) Eq); intuition. +Qed. + +Module PositiveHasMinMax <: HasMinMax Positive_as_OT. + Definition max := Pmax. + Definition min := Pmin. + Definition max_l := Pmax_l. + Definition max_r := Pmax_r. + Definition min_l := Pmin_l. + Definition min_r := Pmin_r. +End PositiveHasMinMax. + + +Module P. +(** We obtain hence all the generic properties of max and min. *) + +Include UsualMinMaxProperties Positive_as_OT PositiveHasMinMax. + +(** * Properties specific to the [positive] domain *) + +(** Simplifications *) + +Lemma max_1_l : forall n, Pmax 1 n = n. +Proof. + intros. unfold Pmax. rewrite ZC4. generalize (Pcompare_1 n). + destruct (n ?= 1); intuition. +Qed. + +Lemma max_1_r : forall n, Pmax n 1 = n. +Proof. intros. rewrite P.max_comm. apply max_1_l. Qed. + +Lemma min_1_l : forall n, Pmin 1 n = 1. +Proof. + intros. unfold Pmin. rewrite ZC4. generalize (Pcompare_1 n). + destruct (n ?= 1); intuition. +Qed. + +Lemma min_1_r : forall n, Pmin n 1 = 1. +Proof. intros. rewrite P.min_comm. apply min_1_l. Qed. + +(** Compatibilities (consequences of monotonicity) *) + +Lemma succ_max_distr : + forall n m, Psucc (Pmax n m) = Pmax (Psucc n) (Psucc m). +Proof. + intros. symmetry. apply max_monotone. + intros x x'. unfold Ple. + rewrite 2 nat_of_P_compare_morphism, 2 nat_of_P_succ_morphism. + simpl; auto. +Qed. + +Lemma succ_min_distr : forall n m, Psucc (Pmin n m) = Pmin (Psucc n) (Psucc m). +Proof. + intros. symmetry. apply min_monotone. + intros x x'. unfold Ple. + rewrite 2 nat_of_P_compare_morphism, 2 nat_of_P_succ_morphism. + simpl; auto. +Qed. + +Lemma plus_max_distr_l : forall n m p, Pmax (p + n) (p + m) = p + Pmax n m. +Proof. + intros. apply max_monotone. + intros x x'. unfold Ple. + rewrite 2 nat_of_P_compare_morphism, 2 nat_of_P_plus_morphism. + rewrite <- 2 Compare_dec.nat_compare_le. auto with arith. +Qed. + +Lemma plus_max_distr_r : forall n m p, Pmax (n + p) (m + p) = Pmax n m + p. +Proof. + intros. rewrite (Pplus_comm n p), (Pplus_comm m p), (Pplus_comm _ p). + apply plus_max_distr_l. +Qed. + +Lemma plus_min_distr_l : forall n m p, Pmin (p + n) (p + m) = p + Pmin n m. +Proof. + intros. apply min_monotone. + intros x x'. unfold Ple. + rewrite 2 nat_of_P_compare_morphism, 2 nat_of_P_plus_morphism. + rewrite <- 2 Compare_dec.nat_compare_le. auto with arith. +Qed. + +Lemma plus_min_distr_r : forall n m p, Pmin (n + p) (m + p) = Pmin n m + p. +Proof. + intros. rewrite (Pplus_comm n p), (Pplus_comm m p), (Pplus_comm _ p). + apply plus_min_distr_l. +Qed. + +End P.
\ No newline at end of file |